学术报告:稀疏信号重构的低秩Hankel矩阵填充方法

分类: 学术新闻    编辑: 陈亮君    发布时间: 2017-05-12    次点击

报告题目:Low-Rank Hankel Matrix Completion for Spectrally Sparse Signal Reconstruction with Super Resolution


主讲人:蔡剑锋(Jianfeng Cai),香港科技大学副教授

时间:5月18日(周四)下午4:00-5:00

地点:数学与信息学院201报告厅

联系人:张 娜   副教授


报告摘要:A spectrally sparse signal of order r is a mixture of r damped or undamped complex sinusoids. In this talk, we consider the problem of reconstructing spectrally sparse signals from a random subset of n regular time domain samples, which can be reformulated as a low rank Hankel matrix completion problem. We introduce a fast iterative hard thresholding (FIHT) algorithm for efficient reconstruction of spectrally sparse signals via low rank Hankel matrix completion. Theoretical recovery guarantees have been established for FIHT, showing that O(r^2log^2(n)) number of samples are sufficient for exact recovery with high probability. Empirical performance comparisons establish significant computational advantages for FIHT. In particular, numerical simulations on 3D arrays demonstrate the capability of FIHT on handling large and high-dimensional real data.


QQ图片20170512194814.jpg

主讲人简介:

    蔡剑锋于2015年加盟香港科技大学,目前为数学系副教授。他于2000年本科毕业于复旦大学数学系,并于2007年在香港中文大学获数学博士学位。在加入港科大之前,蔡剑锋先后在新加坡国立大学,美国加州大学洛杉矶分校,以及美国爱荷华大学工作。蔡剑锋在计算与应用调和分析,图像处理以及数据分析等领域做过许多优秀研究工作。目前已经在国际顶级数学期刊J. Amer. Math. Soc.和国际著名期刊如Appl. Comput. Harmon. Anal.,IEEE Trans. Image Process., IEEE Trans. Signal Process., SIAM J. Optimiz., SIAM J. Imaging Sci.等发表近50篇论文,论文的Google Scholar总引用次数为5357次。



欢迎广大师生莅临参加!


分享到: