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Abstract:

To break the technical bottleneck of green weed control in rice fields, this project
innovatively proposes a novel solution for efficient, intelligent, and precise weed
control, which includes “ground-air multiscale” weeds perception and “mechanical-chemical
integration” weed control strategy. The methods are described as follows. 1) By
introducing the idea of camouflage object detection, the problem of identifying weeds in
paddy field under the perspective of unmanned aerial vehicles can be effectively
resolved, yvielding accurate results on the perception of weed density and location. 2) In
order for the intelligent ground weeding equipment to identify the species of weeds
precisely, a deep neural framework, which complements the same representations and
distinguishes different representations, is established based on the attention mechanism
for feature extraction. 3) By mechanically modifying the surface structure and
hydrophobic properties of weed leaves, the wetting performance, conduction efficiency,
and performance of herbicides on the damaged leaf surface are elucidated; 4) The weed
control strategies adapted to different reproductive characteristics of weeds are
proposed accordingly, and then the execution mechanism and visual servo control system
for precise weeding operations are developed based on the “mechanical-chemical
integration” strategy. The models and methods proposed by this project can not only
provide technical support for green weeding in paddy field with improved weeding
effectiveness and reduced herbicide use, but also provide guidance and reference for the
research on the precise weed control of other crop fields
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 HLb- 24 7 )

Keywords (FH4r54FF) : Agricultural machinery and agronomy

integration; Automatic field— information acquisition; Weed control in paddy
fields; Intelligent and precise weeding; Mechanical-chemical integration on
weed control
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Reference point is a key component in decomposition-based constrained multi-objective evolutionary
algorithms (CMOEAs). A proper way of updating it requires considering constraint-handling techniques
due to the existing constraints. However, it remains unexplored in this field. To remedy this issue,
this paper firstly designs a set of benchmark problems with difficulties that a CMOEA must update the
reference point effectively. Then a two-phase framework of locating the reference point is proposed
to enhance performance of the current decomposition-based CMOEAs by evolving two populations—
the main and external population. At the first phase, the external population evolves along with
the main population to identify the approximate locations of the constrained and unconstrained
Pareto front (PF). At the second phase, a location estimation mechanism is designed to estimate
the best fit reference point between the two PFs for the main population by evolving the external
population. Besides, a replacement strategy is used to drive the main population to the promising
regions. Experimental studies are conducted on 26 benchmark problems, and the results highlight the
effectiveness of the proposed framework.
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1. Introduction

Constrained multi-objective optimization problems (CMOPs)
have been frequently encountered in a wide range of domains,
including science, economics and engineering [1-7]. Usually a
CMOP has two or three objectives and a set of constraints. Prob-
lems with no less than four objectives and a set of constraints are
called constrained many-objective optimization problems [8-10].
Without loss of generality, CMOPs can be formulated as :

minF(x) = (fi(x), £(X), .. ., fn(X))"

s.t.
ax)<0 i=1,2,...,¢q (1)
hX)=0 i=gq+1,....1
X=X, X2,...,%) €D

where X = (xq,X2,...,X,) is an n-dimensional decision vector,
F(x) is an m-dimensional objective function. ¢;(x) is an inequality
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constraint, and h;(x) is an equality constraint, | is the number
of the constraints, including equality and inequality constraints.
In this paper, the overall constraint violation is taken as the
constraint violation of a solution x as in [1].

The recent decades have witnessed the fast development of
decomposition-based constrained multi-objective evolutionary
algorithms (CMOEAs) [1-5,7,9,11,12]. These CMOEAs decompose
a CMOP into a set of subproblems with a set of weight vectors,
and collaboratively solve these subproblems. The weight vectors
are taken as reference lines, and a Pareto optimal solution as-
sociated with a reference line is expected to be obtained along
this reference line. Reference point is one of the key components
in decomposition-based CMOEAs as the weight vectors originate
from it. In general, the reference point is unknown beforehand.
Thus it has to be estimated. By taking a minimization problem as
an example, the reference point can be specified by the following
equation.

z™" = min {f,(x),xeD}, i=1,2,.. (2)

Where m is the number of objectives, z{“i“ is the ith component
of zM" = (z{"", z"", .., zM"), which is the minimum objective
value of f; (x).

., m
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Fig. 1. Illustration of the constrained and unconstrained reference points.

The most commonly used way of updating the reference point
is using the current population, including feasible and infeasi-
ble solutions. However, due to the existence of constraints, it
may not work well on some CMOPs, especially for a problem
with a characteristic that the extreme points of the constrained
and unconstrained Pareto front (PF) are different. In this paper,
the reference point updated only by feasible solutions is called
constrained reference point, while if it is updated by feasible
and infeasible solutions, it is called unconstrained reference point
as shown in Fig. 1. Usually, the unconstrained reference point
is no worse than the constrained reference point in terms of
objective values. For a problem with the characteristic as shown
in Fig. 1(a), some weight vectors, such as w1, w2 and w3, do not
have intersection with the constrained PF, resulting in a waste of
computational resources.

This leads us to think: can a decomposition-based CMOEA
only use feasible solutions to update its reference point? As
presented in Fig. 1(b), the constrained reference point is taken as
the reference point for a CMOEA, and all the solutions are moved
to the first quadrant except three infeasible solutions A, B and
C. That is, the three solutions are ignored by any of the weight
vectors. Nevertheless, the utilization of them can help the algo-
rithm go through the infeasible region. Apparently, updating the
reference point only with feasible solutions may stop a CMOEA
from traversing through infeasible regions.

Few efforts have been given to address this issue [13,14].
In [13], the authors proposed an estimation method for the refer-
ence point and conducted numerical experiments to verify the
effect of the reference point specified in three different man-
ners, i.e., pessimistic, optimistic and dynamic manner. The ex-
perimental results indicate that the dynamic manner outper-
forms the others. However, it is designed only for unconstrained
multi-objective evolutionary algorithms based on decomposition.
In [14], an estimation method of the ideal and nadir point was
proposed to handle differently scaled objectives by normaliza-
tion and to handle real-world CMOPs with unknown PFs. In this
method, it firstly updates the ideal and nadir point by the feasible
solutions with better non-dominated ranking, following by the
infeasible solutions with smaller constraint violations till at least
95% of the population is inside the area formed by the ideal
and nadir point. However, for the constraint-handling techniques
with an ability of maintaining infeasibility, this method may
not work well since it will waste some of the weight vectors
selecting the same solutions. Actually, a proper way of updating
the reference point relies on what kind of constraint handling
technique that a CMOEA uses, since they have different abilities
to traverse through infeasible regions. To our best knowledge, this
has not been explored in the community of decomposition-based
CMOEAs. Beside, several constrained multi-objective benchmark
problems are proposed recently [1,5,7,8,15,16]. However, none
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of them has focused on providing decomposition-based CMOEAs
with difficulties of updating the reference point. Since they may
occur in real-world problems, it is necessary to design such a set
of artificial problems to further help researchers study the be-
haviors of decomposition-based CMOEAs and design appropriate
ones to that domain. Table 1 lists some of the popular and recent
decomposition-based CMOEAs and CMOPs.

Based on the above considerations, we design a set of test
problems called RCMOPs with challenges of updating the ref-
erence point for decomposition-based CMOEAs. A two-phase
framework of locating the referent point is proposed by evolv-
ing two populations, i.e., the main and external population. To
improve the robustness of the proposed method with no need
to consider what kind of constraint-handling technique a CMOEA
uses, the external population with two phases serves this pur-
pose. At the first phase, the external population evolves without
considering constraint violations along with the main popula-
tion, aiming at finding the constrained and unconstrained PF.
During this phase, two reference points, i.e., the constrained and
unconstrained reference point, are updated accordingly. At the
second phase, the proposed method will encounter two scenarios
that the two reference points are different or identical. For the
first case, a location estimation mechanism is proposed to find
the best estimated reference point between the constrained and
unconstrained PF, since the shape of a PF is unknown a priori.
As for the second case, either the constrained reference point or
the unconstrained reference point can be taken as the reference
point since a use of any of them does not waste any weight
vector. The remained computational resources of the external
population are reassigned to evolve the main population. The
major contributions of this paper are summarized as follows.

1. A set of artificial benchmark problems regarding to the
challenges of updating the reference point has been intro-
duced in detail.

2. A local estimation mechanism is proposed to estimate the
best fit location of the reference point for a CMOEA.

3. The proposed two-phase framework can be applied to any
kind of decomposition-based CMOEA without extra param-

eters.
4. Systematic experiments have been conducted on 26 CMOPs
to study performance of three representative

decomposition-based CMOEAs.

The remainder of this paper is organized as follows. Section 2
presents a brief literature review of constrained multi-objective
optimization. Section 3 introduces a set of RCMOPs and discusses
their properties in detail. In Section 4, we introduce the proposed
framework thoroughly. A series of experimental comparisons and
further discussion are presented in Section 5. Section 6 draws the
conclusion.



C. Peng, H.-L. Liu, E.D. Goodman et al.

Table 1
Summary of the popular and recent CMOEAs and CMOPs.
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Algorithm or Proposed CMOPs Main Contributions

To consider the reference point

PPS [2] Propose an algorithm with push and pull search for CMOPs by temporarily disregarding No
constraint violations.

M2M-DW [3] Propose an algorithm with directed weight vectors for CMOPs by considering good No
infeasible individuals.

CCMODE [17] Propose a cooperative differential evolution framework for CMOPs by taking advantages No
of the existing constraint-handling techniques.

C-TAEA [9] Propose a two-archive evolutionary algorithm for CMOPs by balancing convergence, No
diversity and feasibility simultaneously.

CHT-DAE [11] Propose a detect-and-escape strategy to guide the search to the promising regions. No

ToP and DOC [1] Propose a set of CMOPs, i.e., DOC, which considers decision and objective constraints, No

and design a framework named ToP for solving DOC.

M2M-IDW and DCMOPs [5]

Propose a set of CMOPs with deceptive constraints, i.e., DCMOPs, and design a No

cooperative evolution framework for solving DCMOPs.

UCMOPs [7] Propose a set of CMOPs with unbalanced constraints. No
MW [15] Propose a set of CMOPs which reflect the characteristics of the real-world applications. No
DAS-CMOPs [16] Propose a general toolkit to construct difficulty adjustable and scalable CMOPs. No

2. Related work

Generally speaking, the existing constraint-handling techniques
in CMOEAs can be grouped into the following five categories.

The first category is based on penalty functions [18-22]. They
are one of the most commonly used constraint-handling tech-
niques. But there is a drawback that the penalty factor is a
problem-dependent value. A large penalty factor may result in
heavy selection pressure. The algorithms may easily get stuck
in one of the disjoint feasible regions and converge to locally
optimal regions. A small factor may cause a broad search region,
and the algorithms may converge to an infeasible region at the
end. In [21], a constraint-handling technique based on an adap-
tive penalty function and a distance measure was proposed to
solve CMOPs. The number of the feasible solutions in this method
is used to guide the search process either to find more feasible
solutions or to find more feasible non-dominated solutions. This
method is easy to implement and does not require any parameter
tuning. However, each individual is punished with the same
penalty factor in the current population, which may be too small
or too large for some individuals.

In order to avoid tuning penalty factor, another type of
constraint-handling techniques preferring feasible solutions over
infeasible ones is carried out [1,8,23,24]. This type of methods
prefer feasible solutions in the population, and tend to remove
infeasible solutions. However, infeasible solutions may carry use-
ful information about the optimal direction of objectives, which
can help a CMOEA find potential optimal solutions. In [24], the au-
thors extended or modified two constraint-handling techniques,
i.e., constraint domination principle (CDP) [23] and stochastic
ranking (SR) [25], yielding two CMOEAs, to solve CMOPs. The
experimental results suggest that CDP outperforms SR on the test
problems used in the paper.

The third category is using repair operator to drive infeasible
solutions to feasible regions [6,26,27]. In [27], a simulated an-
nealing algorithm was proposed to solve CMOPs. It can accelerate
progress of the movement from an infeasible individual to a
feasible one. However, this type of methods may not work well
on a problem with small ratio of feasible regions, since finding a
feasible solution itself is an issue.

The fourth category is based on preservation of infeasible
solutions [3,7,28]. In general, infeasible individuals containing
important information cannot be frequently replaced by feasi-
ble individuals, since they may benefit the evolution process. A
constraint-handling technique based on directed weight vectors
was proposed in [3]. In this method, a set of infeasible weight
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vectors are used to maintain a number of well-distributed in-
feasible solutions. Furthermore, they are dynamically changed
along with the evolution process, to select the infeasible solutions
with better objective values and smaller constraint violations.
The experimental results show its effectiveness of solving CMOPs
considered in the paper.

The last category of algorithms temporarily disregards con-
straint violations [2,5,9,29], which has drawn great interests of
researchers recently. In [2], a push and pull search framework
consisting of two stages, i.e., the push and pull stage, was pro-
posed to solve CMOPs. In the push stage, the population evolves
without considering any constraint, which can help an algorithm
traverse through infeasible regions quickly. Then in the pull stage,
an improved epsilon constraint-handling technique is applied
to pull the infeasible individuals found in the push stage to
feasible regions. In [5], the authors proposed a cooperative evo-
lutionary framework based on an improved version of directed
weight vectors for handling CMOPs with deceptive constraints
(DCMOPs). Due to the existence of the deceptive constraints,
most of the current constraint-handling techniques do not work
well on DCMOPs, since they may be misled to the less promis-
ing regions. To address this issue, an evolutionary framework
with two switchable phases is proposed. The first phase uses
two sub-populations—one to explore feasible regions and the
other to explore the entire space, respectively. And they pro-
vide useful information about the optimal direction of objective
improvement for each other. The second phase mainly aims at
finding Pareto optimal solutions. The experimental results indi-
cate the superiority of the proposed method over the compared
algorithms.

3. Proposed benchmark problems

As pointed out in [30] that real-world problems cannot be
taken as benchmark problems, since they may need special soft-
ware or hardware. Though several new constrained multi-
objective test suites are designed with different characteristics re-
cently [1,5,7,8,15,16], none of them has provided decomposition-
based CMOEAs with difficulties of updating the reference point.
To further enrich this domain, seven RPCMOPs, including five 2-D
problems and two 3-D problems, are proposed in this paper. They
are introduced one by one in this section. Due to the limitation
of the space, the formulas of the proposed test problems are put
in the supplementary document.

RPCMOP1: In RPCMOP1, there is an infeasible region repre-
sented by the gray area before approaching the PF. Part of the PF
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(the red line segment) is covered by the infeasible region, there-
fore it becomes infeasible, as shown in Fig. 2. A decomposition-
based CMOEA must first have an ability to traverse through
the infeasible region. However, this may lead to an excessive
exploration around the unconstrained PF, resulting in using the
unconstrained reference point as the reference point for the algo-
rithm. A special mechanism of finding the best fit reference point
between the constrained and unconstrained reference point must
be designed to handle the problems with such the characteristics.

RPCMOP2: As presented in Fig. 3, there is an infeasible region
represented by the gray area before approaching the PF in RPC-
MOP2. Two parts of the PF (the red line segments) are covered by
the infeasible region. A decomposition-based CMOEA may suffer
from a waste of a number of weight vectors, especially for an
algorithm with a strong ability to explore infeasible regions, since
some of the weight vectors out of the constrained reference point
select the same individuals.

RPCMOP3: In RPCMOP3, an inner part of the original PF is cov-
ered by an infeasible region. The constrained and unconstrained
reference point are identical, as presented in Fig. 4. It provides
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a decomposition-based CMOEA with a difficulty that only using
feasible solutions in current population to update the reference
point may not help the algorithm get through the infeasible
barrier, especially for a constraint-handling technique based on
the preference on feasible solutions over infeasible ones.

RPCMOP4: In RPCMOP4, the original PF (the red line seg-
ment) totally becomes infeasible, and the constrained PF (the blue
line segment) lies in between the feasible region and infeasible
region as shown in Fig. 5. Two reference points, i.e., the con-
strained and unconstrained reference point, are different on axis
fo. A decomposition-based CMOEA may perform poorly on this
test problem due to a waste of computational resources with
a constraint-handling technique based on preserving infeasible
solutions, since usually the solutions found in the population are
used to update the reference point, and infeasible solutions may
have better objective values than the feasible ones, resulting in
taking the unconstrained reference point as the reference point
for the algorithm.

RPCMOP5: As shown in Fig. 6, the original PF (the red line seg-
ment) is rendered infeasible, and the constrained PF (the blue line
segment) lies in between the feasible region and deceptive infea-
sible region [5]. It provides a decomposition-based CMOEA with a
difficulty that the algorithm must handle constraints properly to
locate the reference point, otherwise it may be driven away from
the feasible region by the deceptive constraints, resulting in using
the unconstrained reference point as the reference point.

RPCMOP6: RPCMOP6 is a 3-D test problem, in which part of
the original PF becomes infeasible (the red area) as shown in
Fig. 7. RPCMOP6 is an extension of RPCMOP1, providing
decomposition-based CMOEAs with the same difficulties that
RPCMOP1 has.

RPCMOP7: As shown in Fig. 8, RPCMOP7 is a 3-D test problem,
and the original PF fully becomes infeasible, which is represented
by the red area. The constrained PF lies in between the feasible
and deceptive infeasible area. RPCMOP?7 is an extension of RPC-
MOP5, providing decomposition-based CMOEAs with the same
difficulties that RPCMOPS5 has.
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4. Proposed framework

In this section, the details of the proposed framework are
presented in the following subsections.

4.1. Pseudo-code of the proposed framework

This paper proposes a two-phase framework of locating the
reference point for decomposition-based CMOEAs. Its pseudo-
code is given in Algorithm 1. To better understand the work-
ing procedure of the proposed framework, we also present the
flowchart as shown in Fig. 9.

The proposed framework includes two phases. The first phase
aims to find the appropriate location of the unconstrained and
constrained reference point. At a generation t during this phase,
we have the main and external population P; and E; both with
a size N, and a CMOEA denoted as MOEA/D-CHT. Noted that
MOEA/D denotes a decomposition-based multi-objective evolu-
tionary algorithm, and CHT denotes a constraint-handling tech-
nique in the pseudo-code (see line 6, 11 and 29 in Algorithm
1). Two populations are evolved by using the genetic operations
in MOEA/D-CHT when a decomposition-based CMOEA is spec-
ified. Two reference points—the unconstrained and constrained
reference point are updated according to Section 4.2. Besides, the
feasible individuals found in the external population are stored
into the archive A. If the size of A exceeds N, the best N feasi-
ble individuals regarding to the achievement scalarizing function
(ASF) [31] are chosen into A.

. (X) — zmin
ASF (X|w) = max (fl()i’) (3)
1<i<m Wi
where w is a weight vector, z™" = (z{"" zn . zMin) s

the reference point given by Eq. (4). The external population E;
evolves without taking constraints into account (see line 11-15)
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with a purpose to maximumly explore the whole region. When
the whole population changes slightly at a generation, which
can be regarded that it does not evolve any more. That is, the
exploration of the two reference points is done at this moment.
The proposed framework will switch to the second phase (see line
35-37).

At the second phase, the proposed framework firstly checks
whether the unconstrained and constrained reference point are
different or not (see line 18). It will undergo two scenarios as
follows:

1. If they are different, then a location estimation mechanism
is designed to find the best estimated reference point be-
tween the unconstrained and constrained reference point
according to Algorithm 2 (see line 21 in Algorithm 1). Due
to the fact that the external population evolves without
considering feasibility at the first phase, it may end up
with getting stuck in the infeasible regions. To draw the
external population back to feasible regions, a replacement
mechanism is designed to use the feasible solutions in A
to replace the solutions in E;y; (see line 16). Each of the
N weight vectors is associated with the closest individual
in A, and this individual is used to compare with the one
associated with the same weight vector in E;,; based on
CDP, better one survives.

. If they are identical, then there is no need to estimate the
reference point between the two reference points. In this
case, the rest of computational resources of the external
population is reassigned to the main population (see line
23).

Remark. The idea of the two-phase strategy has also been ex-
ploited in [1,2,5,9]. However, these papers used the two-phase
strategy to cope with constraints, by which the algorithms can
traverse through infeasible regions quickly. In contrast, this pa-
per uses this idea to estimate the locations of the constrained
and unconstrained referent point, and find the best location of
the reference point for a decomposition-based multi-objective
evolutionary algorithm. Therefore, the idea of this paper is quite
different from these papers.

4.2. The local estimation mechanism

The proposed framework updates the reference point as fol-
lows:

z™" — CRP; — A (CRP; — URP) ,i=1,2,...,m (4)

Where A is a value in [0, 1]. When A = 0, the constrained
reference point is taken as the reference point, while A = 1, the
unconstrained reference point is taken as the reference point. The
pseudo-code of updating the reference point is given in Algorithm
2.

Each newly generated individual is used to update the con-
strained and unconstrained reference point. The constrained ref-
erence point is only updated by feasible individuals. While the
unconstrained reference point is updated both by feasible and
infeasible individuals. Finally the reference point for a given
decomposition-based CMOEA is determined by Eq. (4).

The proposed framework consists of two phases. At the first
phase, the unconstrained reference point is used as the reference
point (i.e., A is set to 1). As discussed in Section 1, the constrained
reference point cannot be used as the reference point at the early
stage of the evolution process since it may stop a decomposition-
based CMOEA traversing through infeasible regions.

At the second phase, when the unconstrained and constrained
reference point are identical, either one of them can be used
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Fig. 9. The flowchart of the proposed framework.

as the reference point since they are the same according to
Eq. (4). However, when they are different, a location mechanism
is proposed to find the most suitable location at the line segment
formed by these two reference points (see line 4-18 in Algorithm
2). k different locations between the two reference points are
investigated. Each of the k locations is corresponding to one A
in As, where As is given in Eq. (5). The rest of the computa-
tional resources of the external population is divided into k equal
parts, in which each part is assigned to evolve E; under the
same experimental conditions except the values of A. Then the
hyper-volume [32] (HV) values of these k final populations are
calculated. The reference point for calculating HV value is set to
1.1 times of the average maximum values of each objective in k
obtained populations. The value of A in As regarding to the best
HV value is used in Eq. (4) at the second phase.

{k—i—l
AS={——

5
k—1 ()
4.3. The switching condition

H=QL1””k—Lkz4

Algorithm 3 presents the idea of the switching condition, in
which the switching condition is triggered when the population
changes slightly at a small range. To serve this purpose, a set
of well-distributed trial weight vectors with a size of |aN] are
used, which are selected from N well-distributed weight vectors
by using the Max-Min method [3].

The switching condition is checked in every 20 generations
according to Algorithm 1. The set old_TA stores the historical
individuals selected by the trial weight vectors, and another set
new_TA stores the individuals selected from E;,; with the same
trial weight vectors in every 20 generations. Then the inverted

107

generation distance metric (IGD) [33] is applied to compare the
closeness between these two sets in terms of the convergence and
diversity (see line 3-12). It is noted that a normalization scheme
is applied to these two sets by shrinking the objective values into
[0, 1]. If the IGD value is smaller than a given parameter r, then
the population is considered that it does not evolve any more,
therefore the switching condition is triggered.

4.4. Computational complexity of the proposed framework

The computational complexity of the proposed framework is
analyzed as below. The proposed framework mainly includes
evolving P; and E;, updating A and two reference points, the
replacement mechanism, the switch condition and the location
estimation mechanism. Therefore, the computational complexity
of the proposed algorithm can be determined by the seven com-
ponents. Suppose the computational complexity of an embedded
algorithm is O (A). At the first phase, the proposed framework
evolves two populations P; and E; that consumes O (A), updates
the archive A that consumes O (mNZ) and two reference points
that consumes O (mN). Thus the computational complexity of the
proposed algorithm at the first phase is max (0 (4), 0 (mN?)).
The second phase includes the local estimation mechanism, the
switching condition, updating two reference points, the replace-
ment mechanism and evolving P;. For the local estimation mech-
anism, it repeats the same procedure to find the best fit reference
point by evolving E; with K times. It is noted that the proposed
framework preserves the fair comparison with other algorithms,
the generations for finding the best fit reference point are sub-
tracted from the total generations. Hence, it consumes O (A) for
a generation. The switching condition consumes O (mﬂz) mainly



C. Peng, H.-L. Liu, E.D. Goodman et al.

Knowledge-Based Systems 239 (2022) 107933

Algorithm 1: The Proposed Framework

1: Initialize two populations Py and Eg, an archive A, a set of trial weight vectors TW, a

constrained and unconstrained reference point-CRP and URP.

temporary archive TA, the maximum generation number max_gen, and the

2: Initialize a decomposition-based CMOEA as MOEA/D-CHT.

3: Set the switching condition Flag = 0, the complementary condition CFlag = 0, the stopping condition stop_gen = M A=1land t=1.
4: while t < stop_gen do

5: if Flag == 0 then

6: function MOEA/D-CHT (P;)

7: Generate a new solution y by genetic operators.

8: updateRefPoint (y, CRP, URP, 1.).

9: Select the best N individuals into P 1.

10: end function

11: function MOEA/D (E;) %Evolving E; without considering constraints..
12: Generate a new solution y by genetic operators.

13: updateRefPoint (y, CRP, URP, 1).

14: Select the best N individuals into E¢ 1.

15: end function

16: Update A with the feasible solutions found in E 1.

17:  else

18: Set IDFlag = 0 if CRP and URP are different.

19: if IDFlag == 0 then

20: AEplied the replacement mechanism to update E; by using A.
21: APest A = findTheBestRefPoint(E;, CRP, URP, A).

22: else

23: Assign the rest of the computational resources of E; to P;: stop_gen = max _gen — t.
24: end if

25: CFlag = 1.

26: Applied the replacement mechanism to update Pr by using A.
27:  end if

28: if CFlag == 1 then

29: function MOEA/D-CHT (P¢) %Evolving P; with the best reference point..
30: Generate a new solution y by genetic operators.

31: updateRefPoint (y, CRP, URP, Abest).

32: Select the best N individuals into Py 1.

33: end function

34:  end if

35:  if mod(t,20) == 0 & Flag == 0 then

36: Flag, TA = checkSwitchingCondition (E; 1, TA, TW).

37:  end if

38: t=t+1.

39: end while
40: Output the feasible non-dominated solutions in P;.

Algorithm 2: findTheBestRefPoint(CDP, E;, CRP, URP, A)

Algorithm 3: checkSwitchingCondition(E; 1, TA, TW, 1)

1: RP = 0.
2: r_gen =
3: Initialize As by using Eq. (5).

stop_gen—t
—% — tt

4: fori=1:k do

5: TP =E;

6: Setc=t.

7:  while ¢ < r_gen do

8: function MOEA/D-CDP (TP;)

9: Generate a new solution y by genetic operators.
10: updateRefPoint (y, CRP, URP, As;).

11: Select the best N individuals into TPqyq.
12: end function

13: c=c+1

14:  end while

15:  RP; =TP.

16:  Update A with the feasible solutions found in TPc.
17: end for

18: Calculate the HV values of k populations in RP, and return the A regarding to
the best HV value.
19: Output the value A related to the best estimated reference point and A.

1: old_TA = TA.
2: Set new_TA = (.
3: fori=1:aN] do
4:  Obtain the individual y in terms of the best ASF value ASF1 in E;yq with the
i-th trial weight vector according to Eq. (3).
new_TA = new_TA U {y}.
Calculate the ASF value ASF2 of the i-th individual in TA with the i-th trial
weight vector according to Eq. (3).
if ASF1 < ASF2 then
Update the i-th individual in TA with y.
end if
end for
Applied normalization scheme to old_TA and new_TA.
Calculate the IGD value: IGD_V = IGD (Old_TA, new_TA).
if IGD_V < r then
Flag = 1.
else
Flag = 0.
end if
Output the switching condition Flag and the temporary archive TA.

5:
6:

7:

8:

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

for calculating IGD value. Having 8 = [aN], which is at the
scale of N, the computational complexity of the switching con-
dition is O(mNZ). And the replacement mechanism consumes
0 (mNz). While the rest of the components has been analyzed
above. The computational complexity at the second phase is
max (0 (A), 0 (mN?)). As a result, the total computational com-

plexity of the propose algorithm is max (0 (4) , 0 (mN?)).
5. Experimental studies

In this section, a series of experiments on three sets of con-
strained multi-objective benchmark problems, i.e., the proposed

108

test problems, CF test problems [17] and CTP test problems [34],
are conducted to study performance of the proposed framework.
Three CMOEAs, i.e, CMOEA/D-CDP [24], MOEA/D-PPS [2] and
M2M-DW [3], with three ways of updating the reference point—
only using feasible solutions, both using feasible and infeasible
solutions and the proposed method (denoted as OUFS, BUFIS and
TPM), are used in our experiments. Besides, the IGD and HV
metric are used to evaluate performance of the three CMOEAs.
100 and 150 feasible solutions are chosen from the final obtained
population by using the Max-Min method to calculate the IGD
and HV values of 2D and 3D problems respectively. The reference
point is set to 1.1 times of the extremely largest values of the PF.
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Generally speaking, a smaller IGD value implies the population
found by an algorithm is closer to the PF, while a larger HV value
implies that an algorithm achieves better performance in terms
of convergence and diversity.

Due to the limitation of the space, some of the experiments
regarding to the computational time of the proposed frame-
work, strength and weakness of the proposed framework, per-
formance of the proposed framework on a real-world problem
named OSY [35] are presented in the supplementary document.

5.1. Parameter settings

The parameters related to the proposed framework and the
other two CMOEAs are set in this subsection. The proposed frame-
work includes three parameters, i.e., a, r and k. Therein, a in-
dicates the number of the representative points that are used
to measure the similarity between two populations. A smaller
value of a indicates that two populations are easier to get similar.
r controls the similarity of two populations. A smaller value
of r indicates that two populations are more similar. That is,
the proposed framework spends more computational resources
evolving the external population. While k defines the number
of A (or the size of As). When the parameter k is specified, As
can be given by Eq. (5). A larger value of k indicates that more
locations between the unconstrained and constrained reference
point are investigated to find the most suitable reference point
for a decomposition-based CMOEA. Their details are discussed
in Sections 5.4-5.6, respectively.

1. Each of the CMOEAs in this paper runs 30 independent
times, and stops after 3 x 10° and 5 x 10° function evalu-
ations (FEs) for 2D and 3D problems, respectively.

. The population size N is set to 100 and 300 for problems
with two and three objectives, respectively.

. The parameter a is set to [ 15%].

. The parameter r is set to 0.01.

. The parameter k is set to 5, and As is set to {0, 0.25, 0.5,
0.75, 1} by using Eq. (5).

. The number of the feasible and infeasible weight vectors in
M2M-DW is set to (70, 30) and (180, 120) for 2D and 3D
problems, respectively.

. The rest of parameter settings of the three CMOEAs remain
the same as in the original papers.

S OV}

5.2. Comparisons among three variants of updating the reference
point

Tables 2-4 display experimental results of three CMOEAs with
the three variants of updating the reference point over 30 inde-
pendent runs regarding to the mean value and standard deviation
of IGD and HV on RPCMOPs respectively. It is worth noting that
if the number of the runs that the final obtained population of a
CMOP contains no feasible solutions is more than half of the 30
runs, the IGD and HV values of the CMOP will be assigned NAN.
While if it is less than half of the 30 runs, the runs without finding
any feasible solution are disregarded when calculating IGD and
HV values. Besides, the overall ranking (OR) is used to verify the
overall performance of CMOEAs on the test instances. A CMOEA is
ranked 1 on a test instance when it achieves the best result, and
is ranked 2 when it achieves the second best result, and so on.
Afterward, the OR of a CMOEA is calculated by summing up the
rankings of all the test instances. The smaller value indicates an
algorithm has better overall performance among the compared
algorithms. Furthermore, Wilcoxon’s rank sum test [36] at 0.05
significance level is performed between the proposed method and
the other two methods of updating the reference point under the
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three CMOEAs. The plus sign implies that the distribution of the
performance metric values achieved by the proposed method is
significantly better than the compared method of updating the
reference point. The asymp sign implies that the distribution of
the performance metric values obtained by the proposed method
and the compared method has no difference. The minus sign
implies that the distribution of the performance metric values
achieved by the proposed method is worse than the compared
method. Better results are highlighted in light gray shade.

The advantages of the proposed framework can be intuitively
observed from Tables 2-4. The proposed framework consistently
achieves better results than the other two methods, i.e., OUFS
and BUFIS, under the three different CMOEAs on each RPCOMP
in terms of the mean values of IGD and HV. The main reason is
given as follows. When only using feasible solutions to update the
reference point, the algorithms may be stopped from traversing
through infeasible regions. As shown in Section 3, each RPCMOP
except RPCMOP3 has an infeasible barrier before approaching
the PF, therefore, the three CMOEAs with the way of updating
reference point only by feasible solutions, i.e., MOEA/D-PPS-OUFS,
CMOEA/D-CDP-OUFS and M2M-DW-OUFS, fail to find the PFs on
these RPCMOPs. From these three tables, we can also see that the
method based on updating reference point both with feasible and
infeasible solutions seems to achieve more comparable results
than OUFS. However, they waste some of the computational
resources since parts of the PF on most of the RPRCMOPs become
infeasible, and the weight vectors on these areas are wasted. The
proposed method consisting of two phases can relatively estimate
the right location of the reference point for a decomposition-
based CMOEA. At the first phase, the proposed method aims at
finding the locations of the unconstrained and constrained refer-
ence point. During this phase, the unconstrained reference point
is used as the reference point. Then the most suitable location of
the reference point for a decomposition-based CMOEA is specified
between the unconstrained and constrained reference point at
the second phase.

Fig. 10 presents non-dominated fronts obtained at the median
run based on IGD values of the three different methods of updat-
ing the reference point by M2M-DW. Due to the limitation of the
space, figures obtained by MOEA/D-PPS and CMOEA/D-CDP can
be found in the supplementary document.

The advantages of the proposed method are obvious as shown
in Fig. 10. M2M-DW with the proposed method of updating
the reference point, i.e., M2M-DW-TPM (the first column), ob-
tains a set of better-distributed feasible non-dominated solutions
compared with the other two variants. A closer look at this
figure is that M2M-DW-OUFS updates the reference point only
with the feasible solutions, and prevents itself traversing through
infeasible regions, resulting in a failure on six RCMOPs. While
M2M-DW-BUFIS updates the reference point with infeasible solu-
tions, some weight vectors which have no intersections with the
constrained PFs select the feasible solutions around the bound-
ary between the feasible and infeasible regions with a waste of
computational resources.

5.3. Experimental results on CF and CTP test problems

Table 5 displays the experimental results of M2M-DW with the
three variants of updating the reference point over 30 indepen-
dent runs regarding to the average value and standard deviation
of IGD and HV on CFs and CTPs. The overall ranking (OR) is used to
verify the overall performance of a CMOEA on the test instances.
A CMOEA achieves the best result on a test instance is ranked
1, the second best result is ranked 2, and so on. Afterward, the
OR of a CMOEA is calculated by summing up the rankings of
all the test instances. The smaller value indicates a better result
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Table 2
Experimental results of MOEA/D-PPS over 30 independent runs in terms of the mean value and standard deviation of IGD and HV on RPCMOPs.
Problem IGD HV
TPM OUFS BUFIS TPM OUFS BUFIS
RPCMOP1 2.6144e—03(2.3194e—04) 2.8289e+00(1.5868e—04)+ 4.4490e—03(6.4465e—05)+ 2.0242e—01(2.0216e—04) 0.0000e+0(0.0000e+0)+ 2.0119e—01(1.0546e—04)+
RPCMOP2 2.1320e—03(1.9304e—04) 2.8288e+00(1.1765e—04)+ 3.1812e—03(6.3402e—05)+ 1.2032e—01(8.8139e—05) 0.0000e+0(0.0000e+0)+ 1.1980e—01(7.1221e—05)+
RPCMOP3 4.5756e—03(3.7371e—05) 4.8496e—02(1.3371e—01)~ 4.5768e—03(5.1467e—05)~ 6.5622e—01(1.4835e—04) 6.2365e—01(9.8245e—02)~ 6.5619e—01(1.8655e—04)~
RPCMOP4 8.7284e—03(3.9967e—03) 5.1537e+00(1.3259e+00)+ 1.5411e—02(8.2974e—04)+ 9.1534e—01(6.0354e—03) 4.0435e—02(1.7371e—01)+ 9.0058e—01(3.8932e—03)+
RPCMOP5 4.9200e—03(6.3801e—04) 3.7479e+00(3.7947e—05)+ NAN 8.9607e—01(6.6335e—04) 0.0000e+0(0.0000e+0)+ NAN
RPCMOP6 1.5480e—02(1.4388e—03) 5.1979e+00(4.3462e—04)+ 2.5691e—02(5.0323e—04)+ 1.0636e—01(3.2725e—04) 0.0000e+0(0.0000e+0)+ 1.0441e—01(3.7962e—04)+
RPCMOP7 2.9290e—02(1.5718e—03) 3.0618e+00(1.1274e—04)+ NAN 1.3430e+00(1.7055e—03) 0.0000e+0(0.0000e+0)+ NAN
OR 7 20 15 7 20 15
Table 3
Experimental results of CMOEA/D-CDP over 30 independent runs in terms of the mean value and standard deviation of IGD and HV on RPCMOPs.
Problem IGD HV
TPM OUFS BUFIS TPM OUFS BUFIS
RPCMOP1 2.4333e—03(1.7970e—04) 2.8288e+00(1.3319e—04)+ 2.8300e+00(7.6979e—04)+ 2.0265e—01(1.5169e—04) 0.0000e+0(0.0000e+0)+ 0.0000e+0(0.0000e+0)+
RPCMOP2 2.1592e—03(2.3694e—04) 2.8287e+00(7.9596e—05)+ 2.8302e+00(1.0832e—03)+ 1.2035e—01(1.3958e—04) 0.0000e+0(0.0000e+0)+ 0.0000e+0(0.0000e+0)+
RPCMOP3 4.6083e—03(8.4216e—05) 2.4015e—01(2.2053e—01)+ 4.6498e—03(1.4188e—04)~ 6.5603e—01(3.2676e—04) 4.8030e—01(1.5980e—01)+ 6.5593e—01(5.4614e—04)~
RPCMOP4 7.2286e—03(2.7467e—03) 5.1345e+00(1.3939e+00)+ 4.9607e+00(1.6228e+00)+ 9.1757e—01(4.2266e—03) 6.1076e—02(2.3243e—01)+ 7.1626e—02(2.3459e—01)+
RPCMOP5 5.0259e—03(6.9180e—04) 3.7479e+00(3.8860e—05)+ 3.7488e+00(3.7914e—04)+ 8.9616e—01(8.1887e—04) 0.0000e+0(0.0000e+0)+ 0.0000e+0(0.0000e+0)+
RPCMOP6 1.4598e—02(8.3405e—04) 5.1977e+00(3.9380e—04)+ 5.1983e+00(1.2166e—03)+ 1.0711e—01(2.2347e—04) 0.0000e+0(0.0000e+0)+ 0.0000e+0(0.0000e+0)+
RPCMOP7 2.8058e—02(1.6255¢—03) 3.0617e+00(1.2518e—04)+ 3.0622e+00(5.1018e—04)+ 1.3453e+00(1.5251e—03) 0.0000e+0(0.0000e+0)+ 0.0000e+0(0.0000e+0)+
OR 7 16 19 7 16 14
Table 4
Experimental results of M2M-DW over 30 independent runs in terms of the mean value and standard deviation of IGD and HV on RPCMOPs.
Problem IGD HV
TPM OUFS BUFIS TPM OUFS BUFIS
RPCMOP1 2.4950e—03(1.7856e—04) 2.8286e+00(4.6879e—05)+ 4.7273e—03(2.7477e—05)+ 2.0285e—01(1.3799e—04) 0.0000e+0(0.0000e+0)+ 2.0121e—01(5.2600e—05)+
RPCMOP2 1.8730e—03(2.5975e—04) 2.8285e+00(4.5751e—05)+ 3.8331e—03(2.3356e—05)+ 1.2062e—01(1.3838e—04) 0.0000e+0(0.0000e+0)+ 1.1964e—01(2.9521e—05)+
RPCMOP3 5.0901e—03(1.7336e—05) 6.3450e—02(1.5127e—01)~ 5.0916e—03(3.6103e—05)~ 6.5607e—01(1.2221e—04) 6.1308e—01(1.1120e—01)~ 6.5597e—01(6.7522e—04)~
RPCMOP4 6.7581e—03(2.4662e—03) 4.9436e+00(1.6741e-+00)+ 1.9820e—02(3.3415e—03)+ 9.1960e—01(3.5734e—03) 9.2015e—02(2.8077e—01)+ 8.9892e—01(5.0124e—03)+
RPCMOP5 4.4537e—03(3.4115e—05) 3.4982e+00(9.4973e—01)+ 9.9541e—03(1.3040e—04)+ 8.9697e—01(1.0263e—04) 5.9809e—02(2.2761e—01)+ 8.8931e—01(1.7583e—04)+
RPCMOP6 1.3652e—02(8.7474e—04) 5.1970e+00(1.5982e—04)+ 2.4637e—02(3.1534e—04)+ 1.0792e—01(2.0664e—04) 0.0000e+0(0.0000e+0)+ 1.0506e—01(1.8200e—04)+
RPCMOP7 2.9285e—02(8.1244e—04) 3.0614e+00(7.3466e—05)+ 4.4504e—02(9.9695e—04)+ 1.3461e+00(7.7556e—04) 0.0000e+0(0.0000e+0)+ 1.3294e+00(1.3455e—03)+
OR 7 21 14 7 21 14

among the compared algorithms. Besides, Wilcoxon’s rank sum
test at 0.05 significance level is performed between the proposed
method and the other two methods of updating the reference
point under the three different CMOEAs. The plus sign implies
that the distribution of the performance metric values achieved
by the proposed method is significantly better than the com-
pared method of updating the reference point. The asymp sign
implies that the distribution of the performance metric values
obtained by the proposed method and the compared method has
no difference. The minus sign implies that the distribution of the
performance metric values achieved by the proposed method is
worse than the compared method. Better results are marked in
light gray shade. Due to the limitation of the space, experimental
results obtained by MOEA/D-PPS and CMOEA/D-CDP are put in
the supplementary document.

The superiority of the proposed method can be further ob-
served from Table 5. As for M2M-DW, M2M-DW-TPM works
better than M2M-DW-OUFS and M2M-DW-BUFIS on CF1, CF3,
CF5-CF8, CF10, CTP1, CTP2, CTP6-CTP8 and CF2, CF3, CF5, CF7,
CF8, CF10, CTP1, CTP2, CTP5-CTPS8 in terms of mean value of IGD
and HV values respectively. Besides, we can observe that M2M-
DW-TPM achieves the best overall performance on these two test
problems in terms of OR.

5.4. Investigation of the parameter a

We investigate sensitivity of the parameter a in this sub-
section. RPCMOP2 and RPCMOP5 are used since they provide a
CMOEA with different difficulties that are usually used to test
performance of a CMOEA. The proposed framework with M2M-
DW and five values of parameter a (5%, 15%, 25%, 35% and 45%)
are adopted in this numerical experiment, while the rest of the
parameters remain the same as in Section 5.1. The result is
presented in Table 7.

From Table 6, we can see that M2M-DW-TPM is not sensitive
to the parameter a based on the obtained mean values and
deviations of IGD and HV on RPCMOP2 and RPCMOPS5.

110

5.5. Investigation of the parameter r

We investigate sensitivity of the parameter r on RPCMOP2
and RPCMOPS5 in this subsection. The proposed framework with
M2M-DW and five values of parameter r (0.001, 0.01, 0.1, 0.5 and
1) are adopted in this numerical experiment, while the rest of
the parameters remain the same as in Section 5.1. The result is
presented in Table 7.

From Table 7, we can see that M2M-DW-TPM is not sensitive
to the parameter r based on the obtained mean values and
deviations of IGD and HV on RPCMOP2 and RPCMOP5.

5.6. Investigation of the parameter k

We investigate sensitivity of the parameter k on two test prob-
lems, i.e., RPCMOP2 and RPCMOP5, in this subsection. The pro-
posed framework with M2M-DW and five values of parameter k
(2,4, 5, 6 and 8) are adopted in this numerical experiment, while
the rest of the parameters remain the same as in Section 5.1. The
result is presented in Table 7.

From Table 8, we can see that M2M-DW-TPM is not sensitive
to the parameter k based on the obtained mean values and
deviations of IGD and HV on RPCMOP2 and RPCMOP5.

6. Conclusion

We proposed a two-phase framework of locating the refer-
ence point for decomposition-based CMOEAs in this paper. A set
of RPCMOPs which provides decomposition-based CMOEAs with
difficulties of updating the reference point were introduced in
Section 3.

In Section 4, we introduced the proposed framework in de-
tail. To eliminate the difference brought by different constraint-
handling techniques, an external population was used to help
find the most suitable reference point for a decomposition-based
CMOEA. The proposed framework consisted of two phases. At
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Fig. 10. Non-dominated fronts obtained at the median run based on IGD values of M2M-DW-TPM (the first column), M2M-DW-OUEFS (the second column) and
M2M-DW-BUFIS (the last column).

the first phase, the external population evolved without con- this phase, two reference points, i.e., the constrained and uncon-
sidering constraint violations along with the main population, strained reference point, were updated according to Section 4.2.
aiming at finding the constrained and unconstrained PF. During At the second phase, the proposed framework firstly checked
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Table 5

Experimental results of M2M-DW over 30 independent runs in terms of the mean value and standard deviation of IGD and HV on CF and CTP test problems.
Problem IGD HV

TPM OUFS BUFIS TPM OUFS BUFIS

CF1 2.0108e—03(3.5171e—04) 2.4403e—03(1.2775e—03)~ 2.0969e—03(9.1973e—04)~ 6.8187e—01(5.6626e—04) 6.8166e—01(1.1274e—03)~ 6.8191e—01(9.3299e—04)~
CF2 9.3485e—03(4.5410e—03) 6.4137e—03(8.9726e—04)- 6.2910e—03(9.2013e—04)- 8.1470e—01(2.9583e—03) 8.1432e—01(3.5518e—03)~ 8.1438e—01(2.8475e—03)~
CF3 6.2946e—02(5.2139e—02) 7.3720e—02(7.6974e—02)~ 6.4775e—02(8.6692e—02)~ 4.0740e—01(5.3851e—02) 3.9867e—01(6.9015e—02)~ 4.0632e—01(8.1452e—02)~
CF4 1.8614e—02(4.8328e—03) 2.2395e—02(2.3778e—02)~ 1.7898e—02(3.4187e—03)~ 6.1829e—01(7.5651e—03) 6.1874e—01(1.9983e—02)- 6.2170e—01(5.5241e—03)~
CF5 1.6147e—01(8.9643e—02) 2.3305e—01(8.9195e—02)+ 2.1768e—01(9.5343e—02)+ 4.4438e—01(6.7240e—02) 4.0314e—01(6.7446e—02)+ 4.0820e—01(7.2936e—02)~
CF6 2.0535e—02(3.5100e—03) 4.0260e—02(2.5079e—02)+ 2.0563e—02(5.7258e—03)~ 8.2012e—01(3.9607e—03) 8.1152e—01(1.6791e—02)~ 8.2238e—01(4.4747e—03)-
CF7 1.5917e—01(6.7675e—02) 2.4166e—01(1.0372e—01)+ 2.3321e—-01(1.3595e—01)+ 6.1416e—01(5.9373e—02) 5.5367e—01(1.0380e—01)+ 5.5840e—01(1.1894e—01)~
CF8 7.5588e—02(5.9556e—03) 9.0815e—02(6.9417e—03)+ 8.8932e—02(5.9953e—03)+ 6.5586e—01(9.9842e—03) 6.2707e—01(1.0737e—02)+ 6.3030e—01(1.0491e—02)+
CF9 3.5872e—02(2.1164e—03) 3.3121e—02(1.6866e—03)- 3.3327e—02(1.8201e—03)- 7.3134e—01(1.9597e—03) 7.3210e—01(1.8532e—03)~ 7.3200e—01(2.2714e—03)~
CF10 2.8013e—01(1.5041e—01) 3.4202e—01(8.4486e—02)+ 3.9575e—01(9.3362e—02)+ 3.4646e—01(1.3620e—01) 3.2476e—01(6.6792e—02)~ 2.6046e—01(7.2181e—02)+
CTP1 9.7039e—03(9.3018e—04) 1.0438e—02(6.5085e—04)+ 1.0430e—02(1.5706e—03)~ 4.5149e—01(4.0557e—04) 4.5129e—01(3.7095e —04)~ 4.5141e—01(5.8826e—04)~
CTP2 5.6658e—03(1.3146e—03) 6.4802e—03(1.8815e—03)+ 7.2938e—03(2.4913e—03)+ 5.0488e—01(1.1352e—03) 5.0373e—01(1.4393e—03)+ 5.0286e—01(2.3995e—03)+
CTP3 4.2315e—03(5.6957e—04) 3.8948e—03(6.2380e—04)- 3.8531e—03(5.6875e—04)- 4.8187e—01(8.8281e—04) 48236e—01(1.1634e—03)~ 4,8257e—01(1.0606e—03)-
CTP4 4.2904e—02(4.0914e—03) 4.4694e—02(3.7294e—03)+ 3.9724e—02(4.7483e—03)- 4.3084e—01(4.9005e—03) 4.2907e—01(4.2733e—03)~ 4.3456e—01(6.3116e—03)-
CTP5 6.4862e—03(1.2049e—03) 5.7133e—03(1.1373e—03)- 9.6602e—03(3.2038e—03)+ 4.9828e—01(1.0204e—03) 4.9730e—01(1.5553e—03)+ 4.9757e—01(9.3319e—04)+
CTP6 1.7242e—02(2.2452e—03) 4.8113e—01(1.4185e+00)+ 2.5007e—02(1.0594e—03)+ 2.0670e+00(4.3141e—03) 1.8623e+00(6.3140e—01)+ 2.0528e+00(2.1495e—03)+
CTP7 1.2172e—02(7.8112e—05) 1.2181e—02(7.8439% —05)~ 1.2189e—02(1.0398e—04)~ 6.6140e—01(2.9600e—04) 6.6131e—01(4.2599e—04)~ 6.6139e—01(3.4662e—04)~
CTP8 1.4652e—02(2.7164e—03) 1.9253e+00(2.2244e+00)~ 2.1092e—02(1.1025e—03)+ 1.3487e+00(3.4816e—03) 7.6449e—01(6.7997e—01)+ 1.3403e+00(1.2539e—03)+
OR 27 44 37 27 48 33

Table 6

Experimental results on investigation of the parameter a over 30 independent runs in terms of the mean value and standard deviation of IGD and HV on RPCMOP2

and RPCMOP5.

a RPCMOP2 RPCMOP5
IGD HV IGD HV
a=0.05 1.9300e—03(2.1944e—04) 1.2059e—01(1.3493e—04) 4.4334e—03(2.3776e—05) 8.9702e—01(6.6818e—05)
a=0.15 1.8730e—03(2.5975e—04 1.2062e—01(1.3838e—04) 4.4537e—03(3.4115e—05) 8.9697e—01(1.0263e—04)
a=0.25 1.8500e—03(1.7987e—04) 1.2064e—01(1.0201e—04) 4.4408e—03(2.7860e—05) 8.9711e—01(6.2051e—05)
a=0.35 1.8611e—03(1.7892e—04) 1.2071e—01(1.0225e—04) 4.4501e—03(2.7921e—05) 8.9678e—01(6.1121e—05)
a=0.45 1.8446e—03(1.8251e—04) 1.2104e—01(1.0437e—04) 4.4346e—03(2.7916e—05) 8.9698e—01(3.6828e—05)
Table 7

Experimental results on investigation of the parameter r over 30 independent runs in terms of the mean value and standard deviation of IGD and HV on RPCMOP2

and RPCMOP5.

r RPCMOP2 RPCMOP5
IGD HV IGD HV
r=0.001 1.8548e—03(1.8638e—04) 1.2062e—01(1.1216e—04) 4.4804e—03(4.2653e—05) 8.9684e—01(1.1439e—04)
r=0.01 1.8730e—03(2.5975e—04 1.2058e—01(1.3838e—04) 4.4537e—03(3.4115e—05) 8.9697e—01(1.0263e—04)
r=0.1 1.7698e—03(1.4973e—05) 1.2066e—01(2.7115e—05) 4.4456e—03(2.0744e—05) 8.9710e—01(8.7405e—05)
r=05 1.7664e—03(1.0738e—05) 1.2067e—01(2.1396e—05) 4.4462e—03(2.0773e—05) 8.9720e—01(8.7417e—05)
r=1 1.7687e—03(1.0747e—05) 1.2074e—01(2.1446e—05) 4.4826e—03(3.8669e—05) 8.9695e—01(1.7522e—04)
Table 8
Experimental results over 30 independent runs in terms of the mean value and standard deviation of IGD and HV on RPCMOP2 and RCMOP5.
k RPCMOP2 RPCMOP5
IGD HV IGD HV
k=2 1.7492e—03(5.0695e—06) 1.2071e—01(1.4381e—05) 4.4490e—03(3.2588e—05) 8.9708e—01(9.2871e—05)
=4 1.7558e—03(1.3424e—05) 1.2067e—01(3.4456e—05) 4.4754e—03(3.5232e—05) 8.9701e—01(9.1612e—05)
k=5 1.8730e—03(2.5975e—04 1.2062e—01(1.3838e—04) 4.4537e—03(3.4115e—05) 8.9697e—01(1.0263e—04)
k=6 2.0594e—03(4.0259e—04) 1.2050e—01(2.0108e—04) 4.6828e—03(5.1765e—04) 8.9664e—01(6.4047e—04)
k=8 1.9722e—03(2.5965e—04) 1.2052e—01(1.5176e—04) 4.7106e—03(5.5355e—04) 8.9564e—01(2.8808e—03)

whether the unconstrained and constrained reference point were
different or not. And then the location estimation mechanism was
designed to help find the most suitable reference point between
the unconstrained and constrained reference point as shown in
Algorithm 2.

Subsequently, we conducted a series of experiments to study
performance of the three CMOEAs on PRCMOPs, CFs, CTPs and a
real-world problem OSY. All the experimental results highlighted
the advantages of the proposed framework on solving the CMOPs
used in this paper. Furthermore, the parameters of the proposed
framework were studied and the results showed that the pro-
posed framework was insensitive to these parameters on the test
instances studied.
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Constrained Multi-Objective Optimization for UAV-Enabled Mobile Edge
Computing: Offloading Optimization and Path Planning

Chaoda Peng, Xumin Huang™, Yuan Wu

Abstract—An unmanned aerial vehicle (UAV) is employed to
sequentially visit the specific waypoints and provide offloading
services for nearby devices. Most of the current works optimized
the UAV-enabled offloading according to a single criterion while
neglecting necessary optimizations and constraints for flight
safety of the UAV. This motivates us to study the optimization
problem of the UAV from a multi-objective viewpoint by con-
sidering the UAV’s flight safety. A constrained multi-objective
optimization problem (CMOP) involving two objective functions
about the energy-efficient offloading and safe path planning is for-
mulated for the UAYV. To solve the formulated CMOP, we present a
constrained decomposition-based multi-objective evolution algo-
rithm. To further improve the algorithm, we particularly utilize
the infeasible individuals with great objective values, which pro-
vide useful information for improving the optimized objective
values during the evolution process. Finally, experimental results
demonstrate that compared with the existing works, our scheme
is beneficial to simultaneously reduce energy consumption and
ensure safe flight for the UAV.

Index Terms—Computation offloading, 3D path planning,
constrained multi-objective optimization, and evolutionary
algorithm.

I. INTRODUCTION

UE TO the flexible deployment and mobility, unmanned

aerial vehicle (UAV) has been widely exploited to
provide various services, e.g., event and data detection [1], [2],
reliable connectivity and proximal computing for users, par-
ticularly in the scenarios where communication infrastructures
are damaged and network congestion is continuously aggra-
vated. This results in a new computing paradigm called by
UAV-enabled mobile edge computing (MEC).
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Many research efforts have been devoted to jointly opti-
mizing the task offloading and trajectory design for the UAV
scheduling. The authors in [3] considered that the UAV was
approximately stationary and used binary offloading deci-
sions for the devices with offloading requests. The similar
problem was extended to jointly optimize the user associ-
ation and horizontal location of the UAV to maximize the
overall data rate for the users [4]. The joint optimization
of resource allocation and 3D trajectory of the UAV from
the viewpoint of energy efficiency was studied in [S]. The
use of the UAV as an aerial communication platform was
proposed to tackle the traffic offloading problems in a vari-
ety of application scenarios such as cellular hotspot areas [6]
and community communications [7]. A dual-role UAV playing
both as an edge-server and a traffic relay was proposed in [8].
Furthermore, wireless power transfer was integrated into the
UAV-enabled MEC to establish the on-demand power links
and communication channels for wireless devices [9].

However, most of the current works formulated the network-
wide optimization problem as a single-objective optimization
problem, while the UAV scheduling could consider both the
efficiency of task processing and the safe path planning of
the UAV as a joint criterion. Toward feasible deployment of
the UAV, there may exist several important yet conflicting
objectives which need to be jointly optimized. Technically,
it is not suitable to simply sum the different objectives
with fixed weights. Moreover, the current UAV’s trajectory
was determined by assigning processing order to the devices
and the trajectory design was based on the straight flight
among the specific locations. The practical UAV path plan-
ning that accounts for the obstacle avoidance and safe flight
requirements has not been widely studied yet.

Motivated by the above considerations, we investigate a
constrained multi-objective optimization problem (CMOP) for
UAV-enabled MEC, which aims at simultaneously achiev-
ing the energy-efficient offloading and safe path planning for
the UAV. Given the locations of the devices, the UAV flies
from one place to another to provide offloading services for
the devices. In this multi-objective optimization, we simul-
taneously optimize the transmission power of the devices,
computing resource, flying velocity and 3D path of the UAV.
The main contributions of this letter are summarized as
follows.

¢ A CMOP for UAV-enabled MEC is investigated to simul-

taneously study the energy-efficient offloading and safe
path planning for the UAV.

e A constrained multi-objective evolutionary algorithm

with a mechanism of utilizing the useful infeasible
individuals is developed to tackle the proposed problem.

118


https://orcid.org/0000-0003-1819-5398
https://orcid.org/0000-0001-6661-9461

Path Destination

planning

Task ‘

Hovering
location

! ! 3!

; {Offloading  Obstacle I @ L~
m Obstacle Q

Device 1 Device i Device /

Fig. 1. System model.

e Numerical results are provided to demonstrate the
effectiveness of our proposed algorithm, especially its
robustness in obtaining the feasible optimal solutions.

II. PROBLEM FORMULATION

We consider a system model in Fig. 1 where a single UAV
with computing resources is scheduled to sequentially visit /
hovering locations to serve I devices, and finally flies toward
the destination. For simplicity, the UAV flies above the devices
at a constant height H. We denote the location of device i as
(:1:;, yZ/-, 0), and the i-th hovering location of the UAV refers to
(z],y;, H). We describe the task of device i by input data size
S; and computation workloads Wj;. Similar to [10], we do not
consider the small output data size compared with the input
data size and the following delay of receiving the output data.
Let B; and pf—x represent the channel bandwidth and transmit-
ter power of device i, respectively Thus, the uplink data rate of
device i is expressed by 7Vl = B;logy(1+ p¥*g;/0?), where
the free-space path loss model g = go/H2 in [11], [12]
is used, gp is the received power at the reference distance
dyp =1 m and o2 is the noise power. For the UAV, let fi; AV,i
indicate the computing resources allocated to device i. The
hovering duration of the i-th hovering location is calculated
by ’7' = td + tW, where the data transmission and work-
load processing time are td Si/ rUL and ¢ = W;/fuav,is
respectively. Given a real path between the i- th and the (i + 1)-
th hovering locations, the length of the i-th path segment is
measured by L;, and the flying time of the UAV is 7' = L;/v;
under the assumption that the UAV is flying at a constant
velocity denoted by wv;.

At the i-th hovering location, energy consumption for
receiving the offloading data, handling the offloading data and
staying hovering is equal to p{fyyt z , EUAV fg AV,i W;, and
Py AVTiH, respectively, where pyy;, euav and pg Ay are the
receiver power, effective switched capacitance of the proces-
sor, and hovering power, respectively. To maintain the stable
flying motion with the constant velocity, the flying power
of the UAV is estimated by pLFJ Ay according to the method
in [13]. From the i-th hovering location to the (i 4+ 1)-th hov-
ering location, the total energy consumption of the UAV, which
is denoted by FE;, is given as follows:

2 H F F
E; = pfavt + euavfiav, Wi+ pUavT +poavT (D)
The delay constraint is given by:

Ci: hy = Ti—TZ»H ¥

10

and hy >0 2)
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where T; is the maximum tolerable time duration required by
the UAV. We try to reduce E; to achieve the energy-efficient
task offloading in UAV-enabled MEC.

At the same time, we enable the safe flight for the UAV.
Before defining the whole UAV’s path, we simulate the fly-
ing environment of the UAV by considering the existence of
obstacles. Referring to [14], we use the following 3D model:

z(z,y) = sin(y + K1) + k2 sin(z) + k3 cos(y) + k4 cos(y)
+ k5 cos(kev/ T2 + y2) + rrsin(kryv/ 22 + 3y2)  (3)

where K1, K2, K3, K4, K5, kg and k7 are experimentally studied
constants, and they can be configured to produce the consistent
surface of the obstacles such as a building, valley and moun-
tain. B-spline curve is used in this letter to model the UAV’s
path since it is defined only by a set of control points that
can represent a complicated path. It has been widely utilized
in industrial applications such as computer graphic repre-
sentations and computer aided manufacturing [14]. Suppose
that we have A control points CPy = (x1,¥1,21), CPy =
(z2,vy2,22),..., CPy = (xx,yxr,2)), and then the corre-
sponding B-spline curve, i.e., the UAV’s path, consists of J
path points By = (z1,9],2]),Bs = (2, 95,2),...,By =
(z!, 95, 2%).

To derive a collision-free path, an objective function with
respect to the safe flight is considered. We project the path
points and mesh points of the obstacles into horizontal plane
coordinate, and obtain the mesh points of the obstacles within
the safe distance denoted by dg, which guarantees that the UAV
flies away from the known obstacles. By referring to [15], we
set the objective function which is related to the safe path as:

ZZ( ) “4)

7=1k=1

where K is the number of mesh points of all obstacles within
the safe distance, and d; ;. indicates the Euclidean distance
between the j-th path point and the k-th mesh point. We aim
to reduce Dy since a smaller value of Dy means that the UAV
can reduce the risk of colliding with the obstacles.

In addition, the UAV’s path should satisfy the following
three constraints, i.e., U5, C3, and Cy4. Constraint Co ensures
that the UAV flies above the minimum flight altitude, namely,

J

Co: by =Y {d]mi“} . and hy = 0 (5)

7j=1
where [ e ]~ = min(e, 0), dmin = 2 — 2(g] y’) A™In - and
R™IN s the minimum ﬂlght altitude, and ( yj, z(z y/ , yj’)) is

the j-th mesh point regarding to Eq. (3). h2 = 0 means that
each path point is above the minimum flight height. However,
ho < 0 means that there are some path points below the min-
imum flight height, i.e., violating the feasible conditions of
the safety path. As we will illustrate in Section III, we will
leverage infeasible individuals for improving the performance
of our evolutionary algorithm. Thus, the value of hy (when
it is negative) will be used in Eq. (10) at the beginning of
Section III for evaluating how much an individual violates the
feasibility conditions.
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The following constraint (5 restricts the upper flight altitude
of the UAV:

J
Cy: hy=Y [d;nﬂ " and hy =0 6)
j=1

where dMaX — pMaX _ 5/ and A™M3X is the maximum flight
altitude. h3 = 0 means that each path point is under the
maximum flight height.

The constraint Cy ensures that the turning angle of the UAV
along the path cannot surpass the maximum value 0 ax,

J—-1
Cy: hy=Y_ [Af;]7, and hy =0 7
j=2
where Af; = ™% — 0(B; ;_1,Bj11;), Bm,n means the
vector from point By, to point By, and 0(B; ;_1,B;11 ;) is
the angle of two vectors B; ;1 and Bj 1 ;,

Bjj-1-Bjy1,

0(Bjj-1,Bj11;) = cos™! @®
B [[Bj414]]
Finally, the proposed CMOP is given as follows.
min { G1(x) = Ds
Ga(x) = Zle Ei
s.t. Cp~Cy4, x€D ©))

where G1(x) and Go(x) are the two objective functions
related to the safe path planning and energy consumption,
respectively. x is a (3A 4+ 3I) dimensional decision variable
in the given decision space D, which includes two parts: the
first part is a sequence of A control points in sequence and
the second part refers to {p!™, fyav 4, vi, Vi}. The X control
points are represented by an one-dimensional vector with the
dimension of 3\, and the decision variables of offloading
optimization are also represented by an one-dimensional vec-
tor with the dimension of 3/. As a summary, we will use x =

(Z1, Y1, 21, - -5 Tx, Yo 200 DY JUAV 10 UL - -+ DY, fUAv. T, vr)
in our proposed system.

III. PROPOSED ALGORITHM

The above problem (9) is a complicated CMOP. Referring
to [16], we calculate the constraint violation of an individual
x according to the constraints from C} to Cy:

4
CV(x) = [evi(x)] (10)
i=1
where cv;(x) = min(0, h;(x)). cv;(x) = 0,V means that

x is a feasible individual, while cv;(x) # 0,3i means that
x is an infeasible individual. To solve the problem (9), a
multi-objective evolutionary algorithm in [17] with a dynamic
infeasibility allocation mechanism is proposed. It has three
main components, i.e., the initialization, the reproduction, and
the constraint-handling technique with a dynamic infeasibility
allocation mechanism. The details are shown as follows.
Step 1 (Initialization): In the first phase, we initialize a
population Py with N individuals, and calculate the values of
the two objective functions G1(x), Ga(x) and four constraints

Algorithm 1: The Proposed Constraint-Handling
Technique

iInput:
e The combined population M.
e The M unit center vectors.
e The N weight vectors.
Output:
e K sub-populations Q21,...,Q2/.
1: Update o by using Eq. (13).
2: A dominated infeasible individuals trim scheme is applied to M; by eliminating
the infeasible individuals which do not dominate any feasible individual.

3: The individuals in My are decomposed into K sub-populations 21, ..., Qs by
using Eq. (11).

4: for each sub-population €2; do

5: i ||Q]] < s; then

6: Select all the individuals in €2; and randomly select s; — ||€2;|| individuals

from M; as the next sub-population for £2;.

7: else

8: & = ;. % The number of feasible solutions should be saved in advance.

9: Obtain the number of the feasible individuals in §2;: 8.

10: if 3 < & then

11: Sort the individuals in €2; in ascending order of C'V (x) regarding to
Eq. (10), and then the best ¢ individuals are stored into €2;.

12: else

13: Select the best § feasible individuals in €2; by using the weight vectors
v, V2, ..., VS according to Eq. (12).

14: end if

15: if § < s; then

16: Select the best s; — & individuals from the rest of the population in £2;
in terms of ASF.

17: end if

18: end if

19: end for

C1 ~ (4. The current generation ¢ is set to 1. A set of N
weight vectors VI, V2, ... VY are evenly chosen from the
hyperplane to select a set of individuals, since a weight vector
is corresponding to a Pareto optimal solution in the context of
multi-objective optimization. The N weight vectors are decom-
posed into M sub-populations 21,9, ..., by using a set
of M unit center vectors, and the size of a sub-population s;
is determined by the number of the weight vectors assigned
into the 2;. Each weight vector is assigned to its closest unit
center vector according to Eq. (11).

Qi:{u|<u,wi>§<u,wj>, 1§j§M} (11)

where u is a vector and w’ is a unit center vector.
Step 2 (Reproduction): At the generation ¢, each individual x
is used to produce an offspring by using genetic operators [17].
Afterwards, an offspring population O; is generated.
Step 3 (Selection with a dynamic infeasibility allocation
mechanism): Combining the parent population P; with its off-
spring population Oy as My, the next step is to select the best
N members from the combined population ;. To handle the
constraints of problem (9) effectively, how to utilize infeasible
individuals is a significant issue. Hereby, a constraint-handling
technique with a dynamic infeasibility allocation mechanism
is proposed as shown Algorithm 1.
To maintain the population with the same size in each gen-
eration, each sub-population must select the best s; individuals
for itself (see lines 5 - 18). This will encounter two scenarios:
1) When ||€2;] is smaller than s;, all the individuals in €;
with s; — ||€2;|| randomly selected individuals are stored
into ; (see lines 5 - 7).

2) Otherwise, the § best individuals regarding to the con-
straint violations are selected into £2; (see lines 10 - 14).

120



Note that when ¢ is still smaller than s;, s; — ¢ individu-
als from the rest of the population are selected into €2; in
terms of an achievement scalarizing function (ASF) [18]
(see lines 15 - 17).

G; (X1)/Z,_ Z; )

where Z = (Z1, Z2) with each element Z; = min(G;(x)),
G, (x) is the i-th objective function of problem (9).

Parameter « is used to control the algorithm either towards
exploring more regions or finding feasible optimal solutions
by deciding how many infeasible individuals can be saved
into the next generation, which is given in Eq. (13). When the
current population does not have any feasible individual, « is
set to 1 (see lines 10 - 12). The proposed algorithm will select
the infeasible individuals with smaller constraint violations,
guiding the search towards the feasible regions.

{1 £=0
o = t
BEmax

otherwise

where £ is the ratio of the feasible individuals in the combined
population My, ™3 is the maximum generation number, and
£ is to control the number of the generations to explore the
infeasible regions. When the current population has at least a
feasible individual, the proposed constraint-handling technique
starts to guide the search towards the feasible regions. In other
words, with the increase of «, the algorithm tends to save
more individuals with smaller constraint violations in each
sub-population. To accelerate the convergence of the algorithm
towards the promising feasible regions, we only explore the
infeasible regions in the first St™2% generations.

Step 4 (Output the results): When t < t™2% g0 to Step 2.
Otherwise, output all the feasible optimal individuals in P;.

ASF(x|V) = max( (12)

i=1,2

13)

IV. EXPERIMENTAL STUDIES

We perform the experiments to verify performance of our
algorithm. Two recent constrained multi-objective evolutionary
algorithms, i.e., ToP [16] and PPS [19], are used as the baseline
algorithms for the purpose of performance comparisons.

1) Each algorithm runs 30 independent times, and stops

after 3 x 10% function evaluations.
2) The parameters related to the terrain with an area of
200 x 200 x 20 m3 are set as follows: K1 =05, ko = 9,
k3 =12,k4=1, k5 =3, kg = 1.8 and k7 = 1.

3) A=6,ds =10 m, K™ =2 m, A = 20 m, Opax =
27/3.

4) For simplicity, we consider I = 1 device. pII}AV =
59.2 W, eyay = 10727, B; = 10 MHz, H = 5 m,
go = —30 dB, 02 = 10710 W, p* € [0.01,0.2] W,
S1 = 80 MB, Wi = 10 giga CPU cycles, v; €
[1,20] m/s, fuav, € [0.1,1.5] GHz, and T} is set to
50 seconds.

5) The location of device 1 and the destination is set to
(50, 30, 5) and (165, 165, 5), respectively.

6) Two parameters of the genetic operator F and CR are
set to 0.5 and 0.1 respectively, and let n = 21, N = 100,
M =10, p =04.
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TABLE I
THE MEAN AND STD VALUE OF IGD AND HV METRIC.
BETTER RESULTS ARE MARKED BOLD

Algorithm IGD HV
ToP 1.38E+03(8.91E+01)|4.93E+06(1.27E+06)
PPS 1.00E+03(3.83E+02)|4.09E+06(7.25E+05)
Our Algorithm|6.66E+02(1.81E+02)(5.81E+06(3.30E+05)

Fig. 2. Paths under three different preferences obtained by the proposed
algorithm (the first row), ToP (the second row), and PPS (the third row).

IGD and HV metrics are two commonly used performance
indexes to evaluate the overall performance of multi-objective
evolutionary algorithms in terms of convergence and diver-
sity of the obtained solution set [16] . A smaller IGD value
indicates that an algorithm achieves better performance regard-
ing to convergence, while a larger HV value implies that an
algorithm achieves better performance regarding to both the
convergence and diversity. All feasible solutions are chosen
from the final obtained population to calculate the IGD and
HYV values. The reference point for HV metric is (5000, 5000).

Table I presents the mean and standard deviation (STD)
value of IGD and HV metric among the three algorithms.
Compared with PPS and ToP, our method has achieved
better results of IGD and HV values. Specifically, our algo-
rithm obtains a set of better feasible non-dominated solutions
in terms of convergence and diversity, which enables the
algorithm to provide more choices with a wider range of
preferences.

Fig. 2 illustrates the paths derived by three preferences
in terms of the median run of IGD values among the three
algorithms. For the UAYV, the first column is obtained by the
weight vector [1, 0], which pays all the attention to the safe
flight. The second column is obtained by the weight vector
[0.5, 0.5], which fairly considers both for the safe flight and
the energy consumption. The last column is obtained by the
weight vector [0, 1], which pays all the attention to the energy
consumption. We can observe that our algorithm is able to find
much smoother paths on three obtained paths with different
preferences compared with the other two algorithms.
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INVESTIGATION OF THE SENSITIVITY OF PARAMETER [3

IGD

HV

G1 (x)

G2 (x) (J)

0.2

6.19E+02(2.36E+02)

5.89E+06(3.26E+05)

2.98E+03

2.29E+03

0.3

6.68E+02(2.24E+02)

5.77TE+06(3.77E+05)

2.97E+03

2.34E+03

0.4

6.71E+02(1.94E+02)

5.94E+06(2.82E+05)

2.90E+03

2.34E+03

0.5

6.66E+02(1.81E+02)

5.81E+06(3.30E+05)

2.97E+03

2.33E+03

0.6

7.09E+02(1.89E+02)

5.80E+06(3.45E+05)

2.98E+03

2.34E+03

results were provided to demonstrate the effectiveness and effi-
ciency of our algorithm. In our future work, we will investigate
a joint computation offloading and deployment optimization
scheme for the multi-UAV scenario.
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1. Introduction where X = (xq,X2,...,X,) is an n-dimensional decision vector,

F(x) is an m-dimensional objective function. ¢;(x) and h;(x) are the

Unmanned aerial vehicles (UAVs) have been applied to a wide
range of real-world applications, such as search and rescue work,
crop dusting and agricultural surveillance, traffic monitoring, net-
work provisioning, military use and so on [1-3]. For example,
in rush-hour time, the number of mobile devices may rapidly
increase and cause network congestion and high delay, and UAVs
carrying base station with computing resources can be appointed
to the place with an ability to help alleviate network overload
and execution latency. For such an application, how to fly a UAV
to the destination without any collision is one of the critical issues
in drone technologies, i.e., UAV path planning.

In general, UAV path planning problem can be modeled as
a constrained multi-objective optimization problem (CMOP) as
follows:

min F(X) = (f1(x), fa(X). . . .., fm(X))

s.t.
x)>0 i=1,2,...,¢q (1)
h(x)=0 i=q+1,...,1
X=(X1,X2,...,Xy) €D
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inequality and equality constraint respectively, | is the number of
the constraints.

In this paper, the constraint violation of a solution x on the ith
constraint is calculated by the following equation [4]:

oy ) min{0, ¢; (x)} 1<i=<gq
G’(")—{ min (0, I G0l) q+1<i=! @
The constraint violation of a solution X is calculated as:
!
G =Y IG I (3)

i=1

UAV path planning problems can be treated as constrained
single-objective optimization problems (CSOPs) [5-7] or CMOPs
[8-12]. When taking UAV path planning problem as a CSOP,
most algorithms construct an objective function with a weighted-
sum method, which incorporates requirements and constraints
related to the UAVs and their flight path. In [6], a safety-enhanced
UAV path planning with spherical vector-based particle swarm
optimization algorithm was proposed. It firstly converts the path
planning problem into an objective function by weightedly sum-
ming the path optimality, safety and feasibility constraints with
a weight vector. Then a particle swarm algorithm based on a
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spherical vector is designed to solve the problem. In [7], the
UAV path planning problem is also designed as a weighted-sum
objective function by considering traveling distance, safety, flight
height, flight angle and limited UAV slope. However, determining
a weight vector is a time-consuming task, especially if there are
many requirements and constraints. It is hard to find an appropri-
ate weight vector based on the preference of the decision-makers.
While taking it as a CMOP, the advantage is that it can obtain a
set of optimal solutions with various preferences in a single run.

Constrained  multi-objective  evolutionary  algorithms
(CMOEAs) have stimulated the interest of many researchers dur-
ing the past few decades [4,13-31]. They can be divided into five
groups based on the constraint-handling techniques they use—
i.e., penalty functions [13,14], methods based on the preference
of feasible solutions over infeasible solutions [4,15-17], methods
based on a repair operator [ 18-20], methods based on preserving
informative infeasible solutions [22-25] and methods based on
temporarily disregarding constraint violations [26-28]. They are
introduced as follows:

(1) Penalty function is one of the most popular constraint-
handling techniques. Nevertheless, the main drawback is
that the penalty factor is problem-dependent. In [32], a
constraint-handling technique based on an adaptive func-
tion and a distance measure was proposed to handle with
CMOPs. Therein, the number of the feasible solutions is
used to decide the search either towards finding more
feasible solutions or finding optimal solutions. The paper
is easy to implement and does not need any parameter
tuning. It however uses the same penalty factor to punish
the individuals in the whole population, which may be too
large or small for some search regions.

(2) To avoid setting penalty factor, methods based on the
preference of feasible solutions over infeasible solutions are
used to deal with CMOPs. They prefer feasible solutions,
which may easily converge to locally optimal regions, es-
pecially there are more than one feasible regions. In [4], a
constraint-domination principle (CDP) was used to select
solutions with feasibility preference. If an individual x is
said to constraint-dominate another individual y if x and
y are feasible individuals and X dominates y, or X has a
smaller constraint violation than y.

(3) Another methods based on a repairing operator are de-
signed to avoid setting penalty factor. They try to fix in-
feasible solutions to feasible solutions. However, for some
problems with small feasibility ratios, finding a feasible
solution itself is a problem. In [19], a Pareto descent repair-
ing operator was designed to drive the infeasible towards
feasible regions. It studies the guidelines for a method
to handle constraints and then explains the concepts and
calculations to meet the guidelines.

Methods based on preserving infeasible solutions have

caught the attention of many researchers since the uti-

lization of the infeasible solutions with better objective
values is beneficial to the evolution process. Peng et al.
proposed a CMOEA based on the directed weight vectors

(M2M-DW) [23]. It designs two types of weight vectors,

i.e., feasible and infeasible weight vectors. The infeasi-

ble weight vectors are used to select a set of infeasible

individuals which participate in the genetic operations.

Besides, they are changed dynamically to select the infea-

sible individuals with better objective values and smaller

constraint violations along with the evolution process. The
experimental results highlight its effectiveness.

(5) The last type of constraint-handling techniques is based on
temporarily disregarding constraint violations during the

s
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evolution process. Fan et al. proposed a CMOEA based on
push and pull search mechanism (PPS) [26]. It divides the
evolution process into two phases. At the first phase, it
does not consider constraint violations while takes it into
account to direct the search to the feasible regions at the
second phase. But it may not guide search back to the
feasible regions, resulting in poor performance on some
CMOPs with complicated constraints.

UAV path planning problems are highly constrained in compli-
cated scenarios, and algorithms for solving must have an ability
to handle constraints with an appropriate manner. However, to
the best of our knowledge, this has seldom been explored in
the community of constrained multi-objective UAV path planning
problems [8,10,12,33,34]. In [8], a 3-D offline path planner for
UAVs by using NSGA-II [15] with CDP was proposed. The pro-
posed algorithm can generate a number of feasible paths, which
allows decision-makers to select a path based on their interests.
Nevertheless, the constraint-handling technique prefers feasible
solutions over the infeasible solutions, which may produce lo-
cal optimal solutions. In [34], the UAV path planning problem
was modeled as a constraint satisfaction problem (CSP). Then a
multi-objective evolutionary algorithm based on the branch and
bound method is used to find feasible optimal paths. These algo-
rithms do not take advantages of the useful infeasible individuals
to improve their performance when solving UAV path planning
problems.

Motivated by the above considerations, M2M-DW with a local
infeasibility utilization method is proposed for solving UAV path
planning problems in this paper. At first, three sets of UAV path
planning problems with different difficulties are presented by
minimizing the traveling distance and the risk of a UAV sub-
jected to four constraints, including the minimum flight alti-
tude, maximum flight altitude, minimum flight angle and min-
imum/maximum flight scope. To effectively handle constraints,
M2M-DW is adopted since it has an ability to utilize the useful
infeasible individuals. However, its manner of utilizing infeasible
solutions is arbitrary, which may result in poor performance. To
solve this issue, a local infeasible utilization method is proposed
to make good use of infeasible solutions, aiming at guiding the
search to the promising regions. Besides, an improved mutation
scheme is designed to enhance the search ability of the proposed
algorithm. The main contributions of this paper are summarized
as follows:

e Three sets of UAV path planning problems with different
difficulties are conducted to verify the performance of the
algorithms related to their constraint-handling ability.

e The proposed constraint-handling technique based on a lo-
cal infeasibility utilization not only maintains a set of well-
distributed infeasible non-domination solutions, but also
makes better use of the informative infeasible solutions,
improving its performance in terms of finding a set of well-
distributed Pareto optimal solutions.

e An improved mutation scheme effectively enhances the
search ability of the proposed algorithm.

e The effectiveness of the proposed algorithm and the sensi-
tivity of the parameters have been experimentally investi-
gated.

The remainder of this paper is organized as follows. Section 2
reviews the literature in the field of UAV path planning. Section 3
presents the details of the UAV path planning problem. Sec-
tion 4 introduces the proposed algorithm thoroughly. Section 5
shows a series of experiments. Finally, the conclusion is drawn in
Section 6.
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2. Related work

Algorithms for solving UAV path planning problems can be
roughly grouped into five categories, including methods based on
geometric search [35-37], methods based on traditional math-
ematics [38,39], methods based on heuristic algorithms [40,41],
methods based on the artificial potential field [42,43], and meth-
ods based on artificial intelligence algorithms [5-12,33].

The first category is the methods based on geometric search.
This type of methods usually divide the whole region into a
number of connected regions, and each of them forms a vertex
of the graph which the UAV path passes through. In [35], the
paper presented an end-to-end solution in the battlefield scenario
for multiple UAVs to strike a number of known targets. The
Voronoi diagram is used to generate a graph as the input for the
algorithms to find the best path. A sampling-based path planning
solver for UAV collision avoidance was proposed in [36]. It uses a
method based on the closed-loop rapidly-exploring random tree
to produce a search graph. The main drawback of these methods
is that they are unsuitable for UAV path planning problems with
constraints.

The second category is the methods based on traditional math-
ematics (such as dynamic programming algorithm, linear pro-
gramming algorithm). A fast-dynamic mixed integer linear pro-
gramming method was proposed for efficient UAV path planning
in various flight formations [38]. An elaborate construction of
constraint equations is designed to enforce the formation to
visit pre-defined waypoints and avoid collisions with obstacles.
In [39], the UAV path planning problem for search and rescue
scenarios was modeled by using the Markov decision process and
solved by dynamic programming algorithms. These methods need
gradient information for the problems, which limits their scalable
capacity.

The third category is the methods based on heuristic algo-
rithms (such as A* [40], D* [41]). In [40], a minimum-time trajec-
tory planning algorithm under intermittent measurements was
proposed. It presents a robust perception-aware bi-directional
A* algorithm for differentially flat systems and a derivative-free
Kalman filter is used to approximate the belief dynamics in the
flat space. The main shortcoming of these methods is that they
easily obtain the local optimal path when there are some obsta-
cles in the way of from the start point to the end point. Besides,
they may suffer from slow speed and execution of running the
algorithms if the search space increases.

The fourth category is the methods based on the artificial
potential field that takes a UAV as a particle moving under the
influence of a potential field related to the objective function and
obstacles. In [42], a UAV path planner with the artificial potential
field updated by the optimal control theory was proposed. It
firstly remodels the UAV path planning problem based on the
artificial potential field into a constrained optimization problem,
then the problem is translated into an unconstrained optimiza-
tion problem, which is later reformed into an optimal control
problem. The UAV path planning problem is solved with the help
of the optimal control method. The experimental results show
that the proposed method finds a shorter and smoother path than
the other compared algorithms based on the artificial potential
field. In [43], a collision-free trajectory planning algorithm for
multi-rotor UAVs in a wind condition based on the modified
potential field was proposed. The modified potential field is used
to avoid collision for multi-rotor UAVs under uncertain environ-
ments. Usually, this type of methods have difficulty to cope with
local minima since they do not take the optimality of the solution
into account.

The last category is the methods based on artificial intelligence
algorithms (such as genetic algorithm, particle swarm optimiza-
tion algorithm, pigeon-inspired algorithm, gray wolf optimizer

130

Applied Soft Computing 118 (2022) 108495

and so on). They have attracted the attention of many researchers
in the field of UAV path planning due to their natural advan-
tages that they are cable of handling constraints and can search
the global optimal solutions in complicated scenarios. In [12],
the authors considered the path planning problem as a CMOP
in a three-dimensional terrain disaster scenario. To solve this
problem, an adaptive selection mutation constrained differential
evolution algorithm is proposed to guide the search direction to
the promising regions. However, it uses CDP as the constraint-
handling technique, which may produce local optimal solutions.
In [10], a multi-objective pigeon-inspired algorithm to UAV dis-
tributed flocking among obstacles was proposed. The constraints
related to flight safety are divided into the hard constraints which
must be satisfied and soft constraints which will be optimized.
When an individual does not meet the hard constraints, it will be
reproduced within the search space. UAV path planning under the
complex environments usually contains many constraints, and
the algorithm may not work on this type of problems since gener-
ating an individual that satisfies the hard constraints is a problem.
Although these algorithms achieve competitive results in UAV
path planning problems, their performance however remains an
issue for complicated scenarios with more constraints.

3. UAV path planning problems
3.1. Representation of the terrain and UAV path

Prior to building the UAV path planning model, the flying
environment must be given, which is often represented by a 3-D
model by using Eq. (4) [7].

Z(x,y) =sin(y + y1) + y2 sin (x) + y3 cos (¥) + ya cos (y) +
¥5 €os(¥s+/ X% + y2) + 7 sin(y7/x2 + y?)
(4)

Where y1, ¥4, ¥3, Y4, V5, ¥s and y; are experimentally studied
constants that a combination of them produces a smooth surface
simulating a terrain with valleys and mountains.

In general, B-Spline curve is used to model the UAV path since
it is defined only by a few number of control points that can
represent a complicated path [8]. Moreover, it is smooth at least
up to the first order and easy to implement. In this paper, the
control points are taken as variables for the proposed algorithm.

Suppose Co (X0, Yo, Z0), C1 (X1, ¥1,21), =+, G—1 Kr—1, Yr—1, Zr—1)
are r control points, and then the corresponding B-Spline curve,
i.e., the UAV path, is generated with the r control points. The UAV
path composes of (s + 1) path points B, = (xg,y(),z{)) ,B1 =
(x1.¥,.2) ..., By = (xi, i, 2)), and it is generated as follows:

r—1

X = Bia(t)-X;
=0
r—1

Y§=ZBj,d(ti)'YJ ,

j=0
r—1
!/
zi =7 Btz
j=0

Where d is its degree, which reflects the smoothness of the
curve. Larger value of d implies a smoother curve. B; 4 (f;) is the
blending function of the curve and defined recursively in terms
of a non-decreasing sequence of real numbers, i.e., a knot vector

=0,1,2,... (5)

.S
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Fig. 1. Projection of a path point and mesh points to the horizontal plane.

U = {up, uy, ..., uy}. The uniform non-periodic knot vector is
one of the most commonly used ones as follows:
Uy = 0 ] < d
uy=j—d d<j<s-1 (6)
uj=s—d s<j
Then the blending function B; 4 (t;) is computed as follows:
i N 1 U <t < Uj4q
Bja(t) = { 0  otherwise (7)
ti — u Uipg —
Bjg(t) = ———— -Bja_1 (t) + ———— Bjr141 (&)
Ujtd—1 — Uj Ujrd — Ujt+1
(8)

Parameter t; is a value in the range between 0 and r + d with a
constant step, therefore providing a set of discrete points of the
B-Spline curve.

3.2. Model of UAV path planning

This paper considers the UAV path planning problem as a two-
objective problem with four constraints, which is presented as
follows.

The first objective function is the overall length of the path:

s—1
fi=e)_ IBi1—Bil
i=1
Where ¢ is a factor which makes two objective functions have a
similar scale.

The second objective is to ensure a collision-free path. The
objective function is the same as in [12]. It firstly finds the nearest
mesh points with a given path point. To achieve this purpose,
it projects the path point and all the mesh points of a terrain
into the horizontal plane. Then the nearest mesh points that
are within the range of the safe distance (denoted as dsy) are
obtained as shown in Fig. 1. The second objective is calculated as
follows:

(9)

s np

1
fz_g;w (10)

Where np is the number of the nearest mesh points. d;; is the
distance between the jth path point and ith mesh point. s is
related to the total number of the path points in Eq. (5).

The first constraint is that a UAV must fly above the minimum
flight altitude, it is given as follows:

N
hy=Y h;=0 (11)
i=1
d. o d. <0
hyi = { 0 otherwise (12)
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Where dimn =z — z(x,y}) — hmin, hmin is the minimum flight
altitude, and (x{, ¥}, z(x}, ¥;)) is the ith mesh point regarding to
Eq. (4).

The second constraint is the turning angle of a UAV along the
path that cannot surpass its maximum turning angle 6p.y:

s—1
hy= hy=0 (13)
i=2
L AB; AfG; <0
hyi = { 0 otherwise (14)

Where Af; = 6Onax — 6 (Bi,i—1, Bit1,i), Bir1,i is the vector from
point B, to point B;, 6 (B;,;_1, Bi;1,;) is the angle of two vectors
Bi,i_1 and B, 1,; as follows:

_ Bi,i—1.Bit1.i
6 (Bi,i_1, Bir1,i) = cos™" (—) (15)
mimh B IBi—1ll 1Bt
The third constraint is the limited upper flight altitude:
N
hy= h3 =0 (16)
i=1
p— dmaxi dmaxi < 0
hsi = l 0  otherwise a7

Where dimx = hmax — Z{, hmax is the maximum flight altitude.
The fourth constraint is related to UAV manoeuvrability, i.e.,

the minimum climbing slope S;'mn and maximum climbing slope

Sax [44], it is defined as follows:
s—1
hy=) hyi=0 (18)
i=1
0 . i € (‘Sjll'nin’ S:nax)
hy = Sl — Srlnin Si < Srfnin (19)
S1l'nax Si Si> S1l'nax
Where, L
S = Zig1 "%
2 2’
)+ )
Shin = 25063 x 10792 — 6.3014x 107°z —0.3257 ,
St = —1.5377 x 10710 2> —2.6997 x 10> z/ +0.4211.

3.3. Three sets of UAV path planning problems

In this paper, three sets of UAV path planning problems with
different difficulties are considered by varying the parameters of
the terrain and UAV path planning model. The parameters of the
three sets of UAV path planning problems are listed in Table 1.

For the first set of the problems, i.e., UAV1-1 and UAV1-2, it
considers a simple path planning which the UAV should fly above
the terrain. As for the second set of the problems, i.e., UAV2-1 and
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Table 1
The parameters for three sets of UAV path planning.
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Problem (V15 Y2, V3, Va» V55 Ves V7) 5 r Asafe Omax Rpmin Rimax start point end point hy hy h3 hy
UAV1-1 (1,2,0.3,0,0.2,2,0.1) 5 4 1.2 z 2 16 (1,4,10) (17,18,12) v v X X
UAV1-2 (1,2,0.3,0,0.2,2,0.1) 5 4 12 I 2 16 (1,4,10) (17,18,12) v v v v
UAV2-1 (1,0.5,1,01,2,0.1) 20 5 12 I 2 5.5 (4,3.4) (17,16,4) v v X X
UAV2-2 (1,05,1,01,2,0.1) 20 5 1.2 I 2 55 (43.4) (17,16,4) v v v v
UAV3-1 (5,5,1.2,1,3,1.8,1) 15 6 1.2 I 2 10 (435) (17,19,5) v v X X
UAV3-2 (5,5,1.2,1,3,1.8,1) 15 6 12 I 2 10 (4,3,5) (17,19,5) v v v v

UAV2-2, it considers a scenario that a UAV should avoid collisions A

near the start and end point. While for UAV3-1 and UAV3-2, both infeasible weight vector

of them need a UAV to avoid collisions along their flight path, G(x)

which makes them more difficult for the path planners to find a
feasible path. Besides, from the table, it can be observed that the
second problem of each set has two more constraints than the
first problem, which makes it more dependent on the ability of
handling constraints.

4. The proposed algorithm
4.1. The proposed framework

To effectively handle UAV path planning problems, an algo-
rithm must have an ability to make good use of the infeasible
individuals with better objective values. M2M-DW [23] is adopted
to serve this purpose. However, the manner of utilizing infeasible
solutions is arbitrary, a local infeasibility utilization mechanism
is designed in this paper to further make better use of infeasible
solutions. The detail of the proposed local infeasibility utilization
mechanism can be found in Algorithm 2. Besides, this paper
designs an improved mutation scheme to enhance the search
ability of the proposed algorithm. The pseudo-code! is given in
Algorithm 1.

Algorithm 1: The framework of the proposed algorithm
1:

Generate Ny infeasible weight vectors, N, feasible weight vectors and K unit
center vectors.

2: Initialize population Qg with a size of N (N = Ny + N3) and the ideal point
z2=(21,22, "+ ,2Zm) by zi = min (f; (X1) , f; (X2) , - - - , fi (Xn)). Set the stopping
criterion and current generation t = 1.

3: Decompose (N1 + Ny) weight vectors into K sub-regions £2; (i=1,2,---,K) by
using Eq. (21). Set s; = [|£2;] as the size of the ith sub-region.

4: while the stopping criterion is not satisfied do

5: fori=1toKdo

6: for j=1: ||| do

7: if rand < 0.9 then

8: Select three individuals x’, x” and X’ according to Algorithm 2.

9: else

10: Randomly select three individuals X/, X” and x”” from the current

population.

11: end if

12: Generate an offspring y with x;, X', X" and x”" according to Egs. (22)

and (24).

13: M = Mt U {y}.

14: end for

15:  end for

16:  Update z with each x; in M;: z; = min (z;, f; (x}))-

17: Set the combined population C; = Q¢ U M¢, and reset £21,--- , 2k by using

Ct according to Eq. (21).
18: Q1= _6] P;.
i=
19: Update the infeasible weight vectors according to Eq. (28).
20: Update the current generation t =t + 1.

21: end while
22: Output all the feasible non-domination individuals in Q;.

At first, M2M-DW transforms an m-dimensional CMOP into an
(m+1)-dimensional unconstrained multi-objective optimization
problem by using Eq. (20). As shown in Fig. 2, the proposed algo-
rithm generates N; infeasible weight vectors on infeasible region,

1 The Matlab code of this paper can be freely obtained from: https://github.
com/ChaodaPeng/M2M-DW-for-UAV-Path-planning.git.
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feasible region

unit center vector

feasible weight vector

Fig. 2. Illustration of the feasible, infeasible and unit center weight vector.

i.e., the space above the horizontal plane F;0OF,, N, feasible weight
vectors and K unit center vectors on feasible region, i.e., the
horizontal plane F;OF;, (see line 1 in Algorithm 1). They are evenly
generated from a hyperplane, and the details can be found in [23].
The N; infeasible weight vectors aim to preserve a set of infeasible
solutions during the evolution process, providing useful genetic
information about the optimal direction of improvement for the
objective functions.

minF X) = (fi X),L X),....fn X),GX))

20
st. XxeD (20)

The (N7 + N;) weight vectors used in the proposed algorithm
are decomposed into K sub-populations £21, £2,, ..., £, and the
size of each sub-population is set to s;. Each weight vector is
assigned to its closest unit center vector according to Eq. (21).

2= {u/(u,w)<(uw) j=12. K} (21)

where (u, wi) is the angle between vector u and the ith unit
center vector w', w', w?, ..., wK are the K predefined unit center
vectors (see line 3 in Algorithm 1).

At a generation t, the proposed algorithm performs genetic
operations on the individuals in each sub-population. To utilize
the informative infeasible solutions, a local infeasibility utilization
mechanism is designed (see line 8 in Algorithm 1), which the
pseudo-code can be found in Algorithm 2.

In this paper, a DE operator named DE/current-to-rand/1 is
performed on individuals x;, X, X" and X" to generate a new
individual y = (y1,¥2, ..., ¥n) [4]:

_ X///)

Where F is the scaling factor, which is randomly obtained from
the F pool in every generation before performing the genetic
operations. When y violates the boundary constraint, it is fixed
back to its domain:

2L — y;
Yi={ i —JYi

y=xX+Fx (X —x")+Fx (x (22)

yi <l
2U; — y; otherwise (23)


https://github.com/ChaodaPeng/M2M-DW-for-UAV-Path-planning.git
https://github.com/ChaodaPeng/M2M-DW-for-UAV-Path-planning.git
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Where U; and L; are the upper and lower boundary of the ith
decision variable y;.

Then an improved version of mutation operator is proposed to
enhance the search ability of the proposed algorithm. It is given
as follows:

_ ) yitoi (Ui —=Lj) rand <CR
yi= { Vi otherwise (24)
2randﬁ -1 rand < 0.5
o = ! (25)
1— (2 —2rand)"™1  otherwise

Where CR is the control parameter, which is updated by Eq. (26).
rand is a uniformly distributed random number in (0, 1). Each
component of the individual y is fixed within its boundary con-

straint.
I
CR=max<(1— ) ,0.])

Where t is the current generation number, and max_t is the
maximum generation number. The parameter CR decreases from
1 to 0.1 along with the generation t. That is, a larger value of
CR enlarges the exploration ability of the proposed algorithm at
the beginning stage of the evolution process. As the generation
number t increases, the proposed algorithm starts to focus on the
exploitation with the decreasing CR. The UAV path problems in
complex scenarios have many constraints, which complicates the
feasible search space, therefore the algorithms for solving them
should have a strong ability of exploring more regions at the early
stage in case of getting stuck in the local optimal regions.

The combined population C; is divided into K sub-populations
by using Eq. (21) (see line 17 in Algorithm 1). For the ith sub-
population with || £2;|| individuals, if ||£2;|| < s;, these individuals
are assigned to this sub-population, and then || £2;]| —s; individuals
are randomly selected into the ith sub-population from the com-
bined population. Otherwise, we use the achievement scalarizing
function (ASF) [45] to select the best ||£2;|| individuals.

<Fi (x) _Zi>

wi
Where v is a weight vector, z = (z1,22, ..., 2Zn+1) is the ideal
point, z; mingep F; (X). It is noted that when selecting the
individuals x’, x” and x” in Algorithm 2, the proposed algo-
rithm calculates ASF value of an individual only with its objective
functions.
Finally, each infeasible weight is updated by decreasing the

angle w:
mk
2

t

— (26)
max_t +1

ASF (x|v) = max (27)

1<ism+1

w= (28)
A

Where k = 1 — rand("=max)” . A is usually set to a value from 2

to 5. In this paper, it is set to 3 as suggested in [23].

4.2. The proposed local infeasibility utilization mechanism

The proposed local infeasibility utilization mechanism is in-
troduced in this subsection. The pseudo-code is presented in
Algorithm 2.

In the original M2M-DW, it randomly selected individuals for
the genetic operations. Although there is a possibility that an
individual can participate in the genetic operations with other
individuals which have better fitness, the manner is arbitrary.
This may result in poor performance when handling CMOPs with
complex constraints. To make better use of the infeasible individ-
uals with better objective values, the local infeasibility utilization
mechanism is designed in this paper. The pairing individuals
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Fig. 3. lllustration of the local infeasibility utilization mechanism.

Algorithm 2: The local infeasibility utilization mechanism
Input:

e The population Q.
e The ith sub-population £2;.
e The ideal point z.

The ith unit center vector w'.

The jth individual x;.

L]
Output:

o Three selected individuals X', X" and x”.

. Calculate the ASF values of the individuals in Q; associated with the ith unit
center vector w' according to Eq. (27).

: Calculate the ASF value of the individual x; associated with the ith unit center
vector w' according to Eq. (27).

: Randomly select the first individual X’ that has better ASF values than Xj
among the individuals in Q; if exists. Otherwise, randomly select X' from the
ith sub-population £2;. The rest of two individuals x” and x” are randomly
selected from £2;.

with better fitness in the same sub-region are likely selected
for the genetic operations. As shown in Fig. 3, for an individual
X;, one of the individuals A, B, C and D will be selected as the
individual X' in Eq. (22). If there is no any individual that has
better objective values than the individual x;, then X’ is randomly
selected from the current sub-population. The individuals x” and
x”" are selected randomly from the current sub-population to
preserve the diversity of the genetic information.

5. Experimental studies

In this section, a series of experiments on the three sets of UAV
path planning problems are conducted to verify the performance
of the proposed algorithm. Three decomposition-based CMOEAs,
i.e, M2M-DW [23], PPS [26] and MOEA/D-CDP [16], are used as
the compared algorithms. Due to the unknown Pareto fronts of
these problems, performance metrics prior to knowing the Pareto
front, such as the inverted generation distance metric (IGD) [46],
usually are not suitable for the used problems. Therefore, only
hypervolume metric (HV) [47] is used to evaluate the perfor-
mance of the four algorithms in this paper. All feasible solutions
are chosen from the final obtained population to calculate the HV
values. The reference points are set to (200, 200) for UAV1-1 and
UAV1-2, (800, 1000) for UAV2-1 and UAV2-2, and (800, 800) for
UAV3-1 and UAV3-2, respectively. A larger HV value implies that
an algorithm achieves better performance related to convergence
and diversity.
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Table 2

Comparison of the mean and Std values of HV on six UAV path planning problems.
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Problem M2M-DW MOEA/D-CDP PPS Our algorithm
UAVI-1 Mean 8.9053e+4-03 (3) 1.0537e+4-04 (2) 8.8971e+03 (4) 1.0593e+-04 (1)
Std 2.8138E4-02 7.2170E+01 3.1040E+4-02 6.8103E+01
UAV12 Mean 5.5440e+03 (3) 9.2104e+03 (2) 5.5120e+03 (4) 9.4487e+03 (1)
Std 8.5604E+4-02 3.6969E+-02 9.5296E+-02 2.3218E4-01
UAV2-1 Mean 3.3337e4-05 (3) 3.3168e+05 (4) 3.3401e+05 (1) 3.3363e+05 (2)
Std 4.0265E+4-02 8.7583E+02 3.2944E+-02 3.4188E+4-02
UAV2-2 Mean 3.3538e4-05 (2) 3.3434e+05 (3) 1.4791e+4-05 (4) 3.3571e+05 (1)
Std 1.4982E+-02 4.2016E+02 1.1434E+4-04 2.6744E+02
UAV3-1 Mean 2.9366e4-05 (4) 3.0560e+05 (3) 3.0598e+-05 (2) 3.0681e+05 (1)
Std 1.6524E+03 9.8659E+02 1.7046E+03 9.9166E+-02
UAV3-1 Mean 2.9613e+4-04 (4) 1.6310e+4-05 (2) 1.2046e+-05 (3) 1.7540e+-05 (1)
Std 3.8354E+-04 1.7890E+04 5.7912E+4-04 1.8297E+04
Overall Ranking 19 16 18 7

5.1. Parameter settings

The parameters of this paper are set as follows:

e Each of the algorithms in this paper runs 21 independent
times, and stops after 3 x 10* function evaluations (FEs).

e The population size N is set to 100, N; and N, are set to 30

and 70 respectively.

The F pool is set to {0.5, 0.7, 0.9}, n is set to 20.

The number of sub-populations K is set to 10.

The parameter 7 related to Eq. (25) is set to 25.

The parameter u related to Eq. (26) is set to 0.2.

The rest of the parameters in M2M-DW, PPS, and MOEA/D-

CDP remain the same as in the original papers.

5.2. Experimental results

5.2.1. Comparison of the proposed algorithm with the other algo-
rithms

Table 2 displays the experimental results of the four CMOEAs
over 21 independent runs regarding to the mean value and
standard deviation (Std) of HV on the six UAV path planning
problems. For each UAV path planning problem, a CMOEA that
achieves the best mean value of HV is ranked 1 within a bracket as
shown in the table, the one achieving the second best mean value
of HV is ranked 2, and so for the rest of the CMOEAs. Afterward,
the overall ranking of a CMOEA is obtained by summing up all the
rankings of each UAV path planning problem. The smaller overall
ranking indicates a better result among the compared algorithms.
Better results are marked bold.

The advantages of the proposed algorithm can be intuitively
observed from Table 2. The proposed algorithm consistently
achieves better results than the other three decomposition-based
methods, i.e., M2M-DW, PPS and MOEA/D-CDP, on each UAV
path planning problem in terms of mean values of HV and the
overall ranking except UAV2-1. The main reason is given as
follows. For M2M-DW and the proposed algorithm, it can be
observed that the proposed algorithm is superior over M2M-DW,
even these two algorithms have an ability to utilize infeasible
solutions, the manner of utilizing infeasible solutions of M2M-
DW is arbitrary, which implies the effectiveness of the proposed
local infeasibility utilization and the improved mutation scheme.
Although M2M-DW and PPS can make use of infeasible solutions,
they achieve worse results than MOEA/D-CDP. It is because the
arbitrary manner of infeasibility utilization results in the degen-
eration of finding optimal feasible solutions. A closer look at this
table that MOEA/D-CDP seems to achieve the second best result
according to the overall ranking, however, it obtains the highest
Std values than the other three compared algorithms, especially
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on UAV1-2, UAV2-2, and UAV3-2, which are highly constrained
problems. Therefore, MOEA/D-CDP is not stable for solving these
UAV path planning problems.

Figs. 4 and 5 present the paths obtained with two preferences
at the median run of HV values of the four compared algorithms.
Fig. 4 shows the path obtained by the weight vector (0.8, 0.2)
on test instances UAV1-2, UAV2-2 and UVA3-2, which considers
the path with the shorter traveling distance. Fig. 5 shows the
path obtained by the weight vector (0.2, 0.8), which considers
the path with more safety but the longer flight path among the
final obtained Pareto optimal solutions. Besides, a weighted sum
(denoted as WS in the figures) of the two objective functions f; (x)
and f, (x) associated with the given weight vector is presented
in each figure. A smaller value indicates the presented figure is
a better choice with the corresponding weight vector. The best
weighted sum value is marked red.

From Figs. 4 and 5, it can be observed that our algorithm
obtained shorter and safer paths under the considerable range
of preferences on most of the UAV path planning problems. The
reason is clear that the proposed algorithm has a strong ability to
utilize the useful infeasible individuals with the local infeasibility
utilization mechanism, which is able to guide the search to the
more promising regions than the other compared algorithms.
Focusing on the last columns of the two figures, as UAV3-2 is
the highly constrained problem, the paths obtained by M2M-
DW, MOEA/D-CDP and PPS are either longer or less safe than
the ones obtained by the proposed algorithm. That is, the three
compared algorithms fail to effectively handle the constraints and
result in poor performance, which implies the effectiveness of the
proposed algorithm again.

Fig. 6 presents the convergence graphs of HV values at the
median run for the four compared algorithms on problems UAV1-
1, UAV1-2, UAV2-1, UAV2-2, UAV3-1 and UAV3-2. The X axis
indicates the generation number t, and the Y axis indicates the
HV values of the obtained population consisting of feasible non-
domination solutions at generation t. It is noted that the reference
point for each problem is set the same as in this paper. When
there are no feasible solutions inside the area formed by the ref-
erence point and two objectives, then HV value will be assigned
to zero, and when there is no any feasible solution in the current
population, the HV value will be assigned to -1.

The advantages of the proposed algorithm can be observed
from these convergence graphs once again. The proposed algo-
rithm stably finds the feasible optimal promising regions for each
UAV path planning problem, and obtains better results on five
out of six problems compared with M2M-DW, MOEA/D-CDP and
PPS. It can be observed that PPS is unstable to find the optimal
solutions since it disregards the feasible solutions during the
push stage. That is, it finds some feasible solutions and suddenly
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UAV1-2: The safer path

UAV2-2: The safer path
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UAV3-2: The safer path
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(a) The paths obtained by M2M-DW.

UAV1-2: The safer path

UAV2-2: The safer path

UAV3-2: The safer path
@ Thestart point
& The end point

i N a, WS:433.40

(b) The paths obtained by MOEA /D-CDP.

UAV1-2: The safer path

UAV2-2: The safer path

UAV3-2: The safer path

(¢) The paths obtained by PPS.

UAV1-2: The safer path

UAV2-2: The safer path

UAV3-2: The safer path

(d) The paths obtained by our algorithm.

Fig. 4. The paths obtained with the safer flight based on the median run of HV value of M2M-DW, MOEA/D-CDP, PPS and our algorithm on UAV1-2, UAV2-2 and

UAV3-2.

Table 3
The sensitivity of the parameter .

UAV2-2 ;=005 u=0.1 uw=015 =02 w =025
3.3573E+05 3.3533E4+05 3.3564E+4-05 3.3571e+05 3.3561E+05
1.7260E+02 1.9299E+02 2.1919E+402 2.6744E+02 1.6681E4-02

Mean
Std

converges back to the infeasible regions since the solutions in the
infeasible regions have better objective values than the feasible
ones.

5.2.2. Investigation of the parameter

We investigate the sensitivity of the parameter u related to
the improved mutation scheme on UAV2-2 in this subsection.
The proposed algorithm with five values of parameter u (0.05,
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0.1, 0.15, 0.2 and 0.25) are adopted in this numerical experi-
ment, while the rest of the parameters remain the same as in
Section 5.1. The result is presented in Table 3.

The parameter u controls the possibility of the improved mu-
tation scheme. A smaller value of x indicates that an individual
will have less mutation operation. That is, the ability of exploring
the search space of the proposed algorithm is decreasing. From
Table 3, we can see that the proposed algorithm is not sensitive
to the parameter u based on the obtained mean and Std value of
HV on UAV2-2.

5.2.3. Investigation of the F pool

We investigate the sensitivity of the parameter F pool on
UAV2-2 in this subsection. The proposed algorithm with five
values of F pool, i.e,, {0.1,0.3, 0.5}, {0.1,0.5, 0.9}, {0.5,0.8, 1},
{0.5,0.7,0.9} and {0.2, 0.5, 0.8}, are adopted in this numerical
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UAV1-2: The shorter path
® The startpoint
® The end point
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(a)

UAV1-2: The shorter path

UAV2-2: The shorter path

UAV2-2: The shorter path
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UAV3-2: The shorter path

The paths obtained by M2M-DW.

UAV3-2: The shorter path

(b) The paths obtained by MOEA /D-CDP.

UAV1-2: The shorter path

UAV2-2: The shorter path

UAV3-2: The shorter path
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(c) The paths obtained by PPS.

UAV1-2: The shorter path

UAV2-2: The shorter path

UAV3-2: The shorter path

(d) The paths obtained by our algorithm.

Fig. 5. The paths obtained with the shorter traveling distance based on the median run of HV value of M2M-DW, MOEA/D-CDP, PPS and our algorithm on UAV1-2,

UAV2-2 and UAV3-2.

experiment, while the rest of the parameters remain the same as
in Section 5.1. The result is presented in Fig. 7.

From Fig. 7, we can see that the proposed algorithm is not
sensitive to the parameter F pool on UAV2-2 since it obtains
similar mean values of HV.

6. Conclusion

M2M-DW with the local infeasibility utilization method and
the improved mutation scheme was proposed for solving UAV
path planning problems in this paper. UAV path planning repre-
sented by B-Spline curve was first formulated as a multi-objective
optimization problem, i.e., minimizing the traveling distance and
the risk of a UAV, with four constraints including the minimum
flight altitude, maximum flight altitude, minimum flight angle
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and minimum/maximum flight scope, and then three sets of UAV
path planning problems with different difficulties were presented
in Section 3.

Subsequently, we conducted a series of experiments to study
the performance of the four CMOEAs on the three sets of UAV
path planning problems in Section 4. The experimental results
highlighted the superiority of the proposed algorithm over the
compared algorithms in terms of finding a set of well-distributed
and well-converged feasible non-dominated solutions. Further-
more, the parameters of the proposed algorithm were investi-
gated and the results showed that the proposed algorithm was in-
sensitive to the parameter w and F pool on the test instance stud-
ied. In conclusion, the proposed algorithm can provide smoother
paths, which makes it more appropriate for UAV path planning.
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Fig. 6. Convergence graphs for the four compared algorithms based on the median run of HV value on six UAV path planning problems.
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Joint Energy and Completion Time Difference
Minimization for UAV-Enabled Intelligent
Transportation Systems: A Constrained
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Abstract— An unmanned aerial vehicle (UAV)-enabled intel-
ligent transportation system utilizes a set of UAVs to collect
and process surveillance data for transportation management.
Subsequently, the processing results of the UAVs are transmitted
to a control center that makes a centralized transportation
management decision based on the fusion of all processing results.
When performing the monitoring tasks, the UAVs can access to
an edge server for offloading. To reduce the energy consumption
and improve the fusion performance, the control center schedules
the UAVs to perform the tasks in an energy-efficient manner while
synchronizing the completion time of the UAVs. As a result, the
control center studies a constrained multi-objective optimization
problem (CMOP), in which two objectives, i.e., the total energy
consumption of the UAVs and total completion time difference
among the UAVs, are simultaneously considered. To tackle the
CMOP, we develop an improved constrained multi-objective
evolutionary algorithm. Particularly, we design an improved
genetic operator and repairing constraint-handling technique
to improve the overall performance of the proposed algorithm
in seeking Pareto optimal solutions for the CMOP. Numerical
results demonstrate that compared with the baseline algorithms,
the proposed algorithm has great advantages in finding better
solutions with the enhanced diversity and convergence for the
CMOP.
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I. INTRODUCTION

NTELLIGENT Transportation System (ITS) relies on

recent advances in the area of Internet of Things (IoT)
to facilitate data collection, data analysis, and information
fusion for improving the transportation management. Due
to great advantages of easy deployment, flexible mobility,
and lower cost, unmanned aerial vehicles (UAVs) have been
widely applied in diverse IoT services and applications, e.g.,
performing data collection on land [1] or over the sea [2],
providing aerial edge computing [3], [4], or acting as aerial
base stations [5], [6] for ground IoT devices. UAVs can also
be scheduled to support diverse traffic surveillance applica-
tions in ITS [7]. In UAV-enabled ITS, UAVs serve as aerial
agents for accident reporting, flying police eyes to track target
vehicles, and airborne cameras to monitor traffic flow and road
conditions [8]. In a mission planning period, a control center
employs a set of UAVs to reach specific monitoring locations
and stay hovering to collect and process the surveillance
data. Besides, mobile edge computing brings cloud computing
capability closer to IoT devices and deploys an edge server at
the network edge to support computation offloading with lower
service latency, less bandwidth consumption, and improved
data security [9]. When processing a monitoring task, a UAV
can locally perform or access a nearby edge server to offload
the task. Subsequently, data processing results are transmitted
to the control center for the fusion. To ensure the overall
performance of the mission planning, the control center should
consider a joint optimization problem of UAV association, task
offloading, and resource allocation for UAV-enabled ITS.

However, a number of challenges still need to be addressed.
First, different UAVs have obvious differences in flight dis-
tance and parameters, hardware configuration, and energy con-
sumption profiles while different task executions necessitate
different monitoring locations, service programs, computing
workloads, and time. The association between the UAVs and
tasks is optimized to reduce the total energy consumption of
the UAVs (i.e., the first objective denoted as Gp). Second,
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the control center aims at facilitating the unified scheduling
of UAVs and particularly considers the total completion time
difference among all employed UAVs (i.e., the second objec-
tive denoted as Gj). In the conventional multi-UAV-enabled
mobile edge computing, the joint optimization problem of task
offloading and resource allocation between multiple UAVs and
the edge server has been investigated for the mission planning
period, according to different optimization objectives. In the
previous works, different UAVs are selected to perform the
tasks within different deadlines, and data processing results
of different tasks are independently utilized. But the control
center in UAV-enabled ITS necessitates to fuse the data pro-
cessing results of all UAVs to make a centralized transportation
management decision. To alleviate the negative effect of tem-
poral asynchronization on the fusion performance, the control
center would like to simultaneously receive the data processing
results from the UAVs. To this end, an effective method is
required to reduce the total completion time difference among
all employed UAVs. This harmonization also ensures that
the employed UAVs concurrently enter the standby state for
quickly joining the next mission together such that the control
center can always handle sufficient UAVs on demand in each
mission planing period. Thus, the control center have two
objectives G1 and G, that are jointly optimized. Last but not
least, the control center necessitates a set of solutions rather
than a single one to handle different tradeoffs between the
two objectives. We are motivated to study a multi-objective
optimization problem involving with the two objectives such
that a variety of solutions can be provided to satisfy diverse
preferences of the control center. To the best of our knowledge,
such a multi-objective optimization problem has not been
investigated yet in the community of UAV-enabled ITS.

To address the above challenges, we study the joint
optimization of energy consumption and completion time
difference for UAV-enabled ITS from a multi-objective opti-
mization perspective. In a mission planning period, the control
center has a set of standby UAVs for the executions of several
monitoring tasks. UAVs are dispatched to depart from their
start locations and reach to specific monitoring locations to
perform the associated tasks. To facilitate the task processing,
a part of the tasks are offloaded to the nearest edge server
while the residual ones are locally performed. For the above
system model, we investigate a constrained multi-objective
optimization problem (CMOP) that involves the simultaneous
optimization of the two objectives G and G,, which are
presented to achieve the energy-efficient data collection and
processing, and balance time consumption for the employed
UAVs, respectively. In the CMOP, we also consider feasible
constraints regarding UAV association, task offloading, and
resource allocation.

Solving the CMOP requires an efficient algorithm to seek
a set of Pareto optimal solutions by satisfying the constraints,
where a Pareto optimal solution refers to a solution which
no improvement can be made in one objective without wors-
ening the other objectives [10]. In practice, we obtain the
non-dominated solutions to approximate the Pareto optimal
solutions. More details of the above two kinds of solutions
are shown in Section IV. Evolutionary algorithms have been
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widely developed for solving different CMOPs over the
past decades, owing to the inherent characteristics such as
easy implementation without the need for gradient informa-
tion and the capacity of finding global optima [10], [11].
In an evolutionary algorithm, genetic operators and constraint-
handling techniques are two fundamental components that
significantly affect the performance of the algorithm in terms
of obtaining a set of Pareto optimal solutions [12], [13].
To address the studied CMOP, we develop a constrained
multi-objective evolutionary algorithm based on an improved
genetic operator and repairing constraint-handling technique
under the framework of CMOEA/D-CDP [14]. The improved
genetic operator based on the data types of the optimized
decision variables is designed to enhance the search ability
of the proposed algorithm. The repairing constraint-handling
technique is designed to convert infeasible solutions into
feasible ones, accelerating the convergence of the proposed
algorithm towards feasibility. The main contributions of this
paper are summarized as follows:

o« We present a multi-source information fusion system
model for UAV-enabled ITS where the control center
dispatches a set of UAVs to perform the monitoring
tasks. In a mission planning period, the UAVs collect the
surveillance data and collaborate with the edge server to
generate the data processing results. Then the results are
gathered to the control center for the fusion.

e We study a CMOP to achieve the simultaneous opti-
mization on the task and UAV sides. To facilitate the
unified scheduling of the UAVs, UAV association, task
offloading, and resource allocation are jointly optimized
to complete the monitoring tasks in an energy-efficient
manner while achieving the time balancing among all
employed UAVs.

o« We propose a constrained multi-objective evolutionary
algorithm with an improved genetic operator and repair-
ing constraint-handling technique to address the CMOP.
The numerical results demonstrate that compared with
the baseline algorithms, the proposed algorithm has great
advantages in seeking a set of better non-dominated
solutions with the enhanced diversity and convergence
for the CMOP.

The remainder of this paper is organized as follows.
Section II provides a comprehensive overview of recent works.
Section III presents the system model and formulates a CMOP
for UAV-enabled ITS. Section IV introduces the proposed
algorithm based on CMOEA/D-CDP to solve the CMOP.
The simulations and performance evaluations are shown in
Section V. Section VI concludes this paper.

II. RELATED WORK
A. UAV-Enabled ITS

Research efforts have been devoted to a variety of opti-
mization schemes for UAV-enabled ITS. For example, a UAV
can be applied as an aerial base station to assist the ter-
restrial communication and perform computational tasks for
vehicles. UAVs were scheduled to serve mobile vehicles
along an optimal path and enhance the downlink throughput
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of the Internet of Vehicles (IoV). A UAV was assumed to
serve a single vehicle in a time slot, where the association
between the vehicles and UAVs with the power allocations
was optimized to improve the UAV-to-vehicle communica-
tion performance [15]. A stable relay selection problem was
generated when a UAV becomes a relay for IoV routing
protocols. Considering dynamic mobility and reputation values
of all UAVs, the problem was tackled by using a matching
game theoretic approach [16]. UAV-assisted communication
was exploited to provide continuous line-of-sight (LoS) links
to vehicles when they prepared to offload the tasks to other
vehicles or nearby edge servers [17]. UAVs could be employed
as flying base stations with caching capability to improve the
efficiency of data dissemination and facilitate the file sharing
process among the vehicles [18].

Besides, the UAV deployment enables ground vehicles to
gain aerial computing services. Computation-intensive tasks
in ITS environment were first collected by task gathering
nodes, and a UAV flied above the nodes to process the tasks
together [19]. Furthermore, a UAV was assigned with a dual
role, i.e., task performer and mobile relay, where the UAV was
scheduled to process offloading tasks of some vehicles, in the
meantime, played as a mobile relay that helps forward offload-
ing tasks of some vehicles to the nearest edge server [20].
When providing aerial computing for platooning vehicles, the
UAV can receive energy replenishment from the vehicles when
necessary [21]. In UAV-assisted aerial computing networks,
UAVs may harvest available computing resources from the
surrounding entities to enhance the computing capabilities.
In this regard, UAVs served as mobile data collectors in
smart cities can offload the data to proper vehicles for remote
processing. The optimal matching between UAVs and vehi-
cles was investigated by modeling the transaction process of
offloading data as a bargaining game [22]. The similar problem
was studied in a post-disaster rescue scenario [23]. In UAV-
enabled traffic monitoring, network nodes with idle resources
were employed to complete a part of computational tasks from
the UAVs [24].

B. Multi-Objective Optimization for UAV Scheduling

Nowadays, UAV scheduling has been investigated from a
multi-objective optimization perspective in diverse applica-
tions. Multiple UAVs were scheduled for data collection, and
a multi-objective optimization problem of UAV deployment
was studied to optimize the network-wide uplink throughput
while reducing the total energy consumption of all UAVs
[25]. In [26], the UAVs were scheduled for collaborative
beamforming, and the tradeoff between the data transmission
performance and energy consumption was also tackled by
using a multi-objective optimization approach. In [27], a single
UAV was dispatched to charge a set of sensor nodes that
further utilized the harvested energy to submit sensory data to
the UAV. The achievable sum rate of all nodes in the uplink
and the total transmit power of the UAV in the downlink were
simultaneously optimized. Compared with the above works,
the following works consider the mobility of a UAV. In [28],
the UAV was scheduled to successively visit target devices
with the fly-hover-fly trajectory. When staying hovering, the

UAV performed the data collection and wireless charging
tasks. The control policies of the UAV over multiple objec-
tives was addressed by using a deep reinforcement learning
algorithm. The authors considered three objectives for the
UAV but transformed the original multi-objective optimization
problem into a single-objective optimization problem by a
weighting-sum method. With the increasing problem size, it is
difficult to determine the weighting parameters among the
objectives. In [29], the UAV was deployed to sequentially visit
the specific waypoints, and perform offloading tasks for local
users. Subsequently, the joint optimization of energy-efficient
offloading and safe path planning for the UAV was studied by
a multi-objective evolutionary algorithm.

C. Performance Comparison

Compared with the previous works, we aim at schedul-
ing the UAVs to collaboratively perform the tasks in an
energy-efficient manner while minimizing the total completion
time difference among the UAVs using a multi-objective
optimization approach. Most of the previous works study a
UAV-enabled task offloading system where the UAVs perform
the tasks that are completely unassociated with each other,
and output results of the tasks are independently utilized.
Different from the works, our work considers a UAV-enabled
multi-source information fusion system where all data pro-
cessing results of the UAVs need to be integrated together
and be temporally aligned before the fusion. The control
center expects the UAVs to complete the task processing in a
synchronized manner such that the temporal aligning operation
on the data processing results is facilitated to ensure the
fusion performance. As a result, our work formulates a CMOP
to simultaneously minimize the total energy consumption
of the UAVs and total completion time difference among
the employed UAVs. After that, we develop a constrained
multi-objective evolutionary algorithm under the framework
of CMOEA/D-CDP to tackle the CMOP. An improved
genetic operator and repairing constraint-handling technique
are designed to improve the performance of the proposed
algorithm in terms of the convergence and diversity of the
non-dominated solutions.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

As shown in Fig. 1, a control center refers to different
information at the different traffic junctions to make a cen-
tralized transportation management decision. According to
the detection demand, the control center dispatches sufficient
UAVs to hover above a number of interesting ground locations
and collect the surveillance data, e.g., image and video. For
example, camera-equipped UAVs are scheduled to detect free
parking spaces in a parking area, issue an accident report of an
intersection, and predict the dynamic traffic flow in a highway.
The UAVs further collaborate with an edge server to process
the data to acquire available information that is gathered to
the control center for the multi-source data fusion. We provide
more details of the network entities as follows:

o Edge server: The edge server provides service caching
for UAV-enabled ITS. Each monitoring task is associated
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Fig. 1. UAV-enabled ITS.

with a surveillance service, in which the task is run
by a service program, including executable.EXE files,
library, and database. A UAV can be assigned with an
arbitrary task in different mission planning periods. The
UAV with limited storage space is difficult to store all
service programs in advance. As an option, the control
center caches popular service programs on an edge server
co-located with a base station and stores the residual ones
on a remote cloud server. Subsequently, the UAVSs retrieve
the service programs from the edge/cloud servers when
necessary.

o UAV: A UAV is responsible for the data collection and
processing. When the UAV is assigned with a monitoring
task, the UAV flies to the monitoring location at a
constant velocity, and stays hovering to gather sufficient
surveillance data. After that, the UAV can locally process
the collected data by requesting the service program from
the edge server, or directly transmit the data to the edge
server for remote processing. If the data processing task
necessitates heavy workloads, it is more suitable to let the
UAV offload the task to the edge server so as to avoid
the large task execution delay.

o Control center: The control center is a centralized man-
ager that is responsible for the unified scheduling of
the UAVs. The control center holds prior knowledge of
any UAV, e.g., energy consumption profile, to achieve
the energy-efficient task processing by properly assign-
ing the tasks to the UAVs and allocating the available
bandwidth/computing resources among them. In addition,
the control center collects all data processing results
of the UAVs for the fusion and performs the temporal
aligning operation to alleviate the negative effect of
temporal asynchronization on the fusion performance.
This motivates the control center to take into account
the total completion time difference among all employed
UAVs instead of the specific task completion time of any
UAV. As mentioned above, the control center has two
objectives, i.e., G1 and G1. The control center adopts a
multi-objective optimization method to realize the two
objectives according to different preferences between
them.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

B. Mathematical Model

We provide basic mathematical formulations on a UAV and
the edge sever as follows.

The control center has I standby UAVs, where a UAV
is indexed by i, 1 < i < [. There are J monitoring
tasks corresponding to J monitoring locations. A monitoring
task/location is indexed by j, 1 < j < J and I > J in general.
For the UAV scheduling, we introduce two binary decisions
x; and y; j. x; refers to offloading decision of UAV i such that
x; = 1 means UAV i accesses the edge server for computation
offloading, while x; = 0 means UAV i locally processes the
given task. y; ; refers to the association between UAV i and
task j. y;; = 1 means that UAV i is scheduled to reach
monitoring location j, while y; ; = 0 means the UAV is not
scheduled to perform task j. To reach a desired location, UAV
i flies at a constant velocity v;. According to the evaluation
method in [30], flying power of the UAV denoted as Pl.F is
expressed by

PF = e} + 2, (1)
i

where c¢| and c; are two coefficients. Considering the straight-
line flight, flying time of the UAV for reaching monitoring
location j is calculated by tl.’F ;= d; j/vi, where d; ; is the
distance between start location of UAV i and monitoring
location j. We also consider a constant hovering power of
UAV i denoted as PI.H when the UAV stays hovering.

When y; ; = 1, we introduce the communication and energy
models of UAV i. In the data collection process, sampling
frequency is s; data samples per second, and sensing power
is PiS . The UAV needs to collect «; data samples such that
the sensing time of the UAV is tf ;= /si. When UAV |
keeps the stable hovering state at the monitoring location j,
the communication channel between the UAV and the nearest
base station is dominated by a line-of-sight link. Similar to the
work [31], we neglect the impact of channel impairments such
as shadowing or small-scale fading, and let the channel power
gain between the UAV and the nearest base station follow
a free-space path loss model as godfz, where go denotes the
channel power at the reference distance of 1 meter and d; is the
distance between monitoring location j and the base station.
Furthermore, we adopt frequency division multiple access to
avoid the co-channel interference among multiple UAVs when
they simultaneously communicate with the base station. Using
the Shannon principle, we measure the achievable uplink and
downlink rates of UAV i at the monitoring location j by

TX -2
p; ~8od;
rilf =bilogy(1+ ————) = bk},
pggfggd_—z (2)
rPl = bilogy(1+ —0’) = bikPF.

where b; is the available bandwidth; piT X and pl€§ are the
transmit power of the UAV and base station, respectively;
Np is the noise power spectrum density. After collecting
sufficient data as the input data, the UAV generates a data
processing task with computational workloads W;. It is noted
that compared with the input data size, the output data size
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is much smaller. Both the time and energy consumption of
delivering the output data are neglected.

If x; = 0, we denote this case as “L”. Since the UAV
chooses to locally process the task, it retrieves the service
program from the edge server or the cloud server. When the
UAV downloads the service program, the data transmission
time and energy consumption are

Bj Bj
ICJOM L / -y ]S

l] 3
comL _ rx Dj )
ij =Pi DL’

iJ

where B; is the data size of the service program; y; is a
binary indicator where y; = 1 means the service program
is cached on the edge server, and y; = O means that the
service program is stored on the cloud server; rgg refers to
the data rate between the edge server and cloud server; pRX
is the receive power of the UAV. It is noted that we neglect
the wired data transmission time between the edge server and
base station. In the case “L”, the workload processing time of
UAV i and energy consumption are

cupL _ Wj
lCJMP L fiL’ 2 @
L

€ =k (f;)W;,

where fiL is computing capability of UAV i and «; is a
hardware parameter on the effective switched capacitance
depending on the chip architecture. We calculate the total
time consumption and total energy consumption of UAV i

for completing task j, which are expressed by TL' and ElL i
respectively. They are given as follows:
Th = + T
THL _HCOML_HCMPL
iJ
EL_PlFF_i_PlSS_i_eCOML_i_ICjVIPL_i_PH ’
&)

where TleL refers to the hovering time of the UAV with
respect to x; = 0.

If x;, = 1, we denote this case as “O” where the UAV
chooses to offload the task. When the UAV transmits the input
data, the data transmission time of the UAV and workload
processing time on the edge server are

,COM.0 _ aj

ij = UL
i (6)
(CMPO _ (g, )ﬁ_l_&
i.j PyES T oo
1

where fio is the computing capability of the edge server
allocated to this offloading task. The energy consumption of
the UAV and that of the edge server are

cCoM,0 _ Tx 9j

€i,j =P oo

CMP,0 i 2 @
. 0

i =kes(f;) Wj.

In the case “O”, the total time consumption and energy
consumption of UAV i for completing the task j are expressed
by TZO] and El.o., respectively. They are given as follows:

ng— +Tl] ’

o _ COM,0 , ,CMP,0

Ti’j =l +tC]0M 19) CMP,0 H 0]

EP; = P,”+P”+e +er 100+ PHTHO,
®)

where kgg is the hardware parameter of the edge server and
TlH © refers to the hovering time of the UAV when x; = 1. For
the edge server, we pay attention to the energy consumption

of performing the offloading workloads.

C. Problem Formulation

In this study, we investigate how to schedule the UAVs
to reach all monitoring locations, and further preform the
offloading optimizations to simultaneously minimize the total
energy consumption of the UAVs and the total completion time
difference among the employed UAVs while satisfying the
feasible constraints. As mentioned above, the two objectives
are denoted as G and G, respectively. To achieve the
satisfactory tradeoffs between G and G,, we study the joint
optimization problem of UAV association, task offloading, and
resource allocation problem from a multi-objective optimiza-
tion perspective.

We define a decision variable vector as x =
{xi, yi,j» bi, fio Jvi,j. Given X, we calculate G1 by

> D vl =x)EL +xEPL ()
l<jsJ lsi<I
Let a subset S C {1,2,---, I} represent the set of J selected
UAVs, § = {i|Ziji,j =1, 1 <i<lI}. ForaUAVi €S,
we calculate the completion time by

= > vl —x)TH + 5100 €S
I<j=<J

Gi(x) =

(10)

During each mission planning period, the control center
gathers data processing results from all employed UAVs for
the fusion. The fusion performance at the control center is
influenced by the differences in completion time of different
tasks assigned to different UAVs. Besides, when the total
completion time difference among the employed UAVs is
reduced, the control center can promptly adopt the unified
scheduling of the UAVs for the next mission planning period.
Hence, the control center aims to balance the total completion
time difference among the employed UAVs, which is expressed
by G, as follows:

|5 — %
G0 =D 5
ieS

(1)

where 7 is the average value of {7;}y;es and ¥ is a presetting
reference value.

As a result, we formulate a CMOP for the control center as
follows:

Gi(x),
G (x),

min

Authorized licensed use limited to: Xiamen University. Downloaded c;lerJime 27,2024 at 06:47:10 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

st. Ci: Z yi,j <1, Vi,

Ii<I
Cy: Z yiij=1, Vj,
1=j=<J
Ci: D> D yijbi <B,
1<j<J1<i<I
J
Cs: Z Z yijxi fi5 < F,
I=j=J1=i=I
Cs: > > DyijBj+xia)] <5,
1=j<J1=isI
Co : xi €[0,1],y;,; €[0,11,6; = 0, f =0, Vi,

12)

Feasible solutions are derived when several constraints are
satisfied. The constraint (C1) ensures that a single UAV is
allocated with one task at most. The constraint (C,) ensures
that each task is completed. The constraint (C3) ensures that
the total bandwidth of all selected UAVs is smaller than a
upper bound B, where B is the entire available bandwidth
of the base station. The constraint (C4) ensures that the total
number of computing resources allocated to those UAVs with
offloading requests is smaller than a upper bound F, where F
is the maximal computing capability of the edge server. The
constraint (Cs) ensures that in the worst case, the total data
storage of all the selected UAVs involving with the offloading
input data and requested service programs is smaller than a
upper bound S, where S is the storage capacity of the edge
server. The constraint (C¢) ensures the feasible domain of the
decision variables x;, y; j, b;, and fio, respectively.

It is noted that the above problem is a typical multi-
objective optimization problem. Some previous works about
the UAV networks, e.g., [28], also study the multi-objective
optimization problems and propose to transform them into
single-objective ones by using the weighting method. How-
ever, weighting the objectives is not beneficial to achieve the
simultaneous optimization of multiple conflicted objectives,
since the weighting method is not suitable to seek a set
of distinct Pareto optimal solutions for the multi-objective
optimization problems with non-convex Pareto fronts. The
weighting method is not applied in this paper. Moreover, the
control center as the decision maker necessitates a set of
solutions rather than only one solution to handle different
tradeoffs among the objectives according to different pref-
erences. Thus, we are motivated to apply a multi-objective
optimization approach for the control center.

IV. PROPOSED ALGORITHM
A. Preliminary Study

To tackle the proposed CMOP, we propose a multi-objective
evolutionary algorithm with an improved genetic operator to
seek promising solutions by adaptively disturbing the deci-
sion variables according to their data types and a repairing
constraint-handling technique to convert infeasible solutions
into feasible ones. The proposed algorithm follows the frame-
work of the decomposition-based constrained multi-objective

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

evolutionary algorithm (CMOEA/D-CDP) [14]. Prior to intro-

ducing the proposed algorithm, we present a preliminary study

to show some basic concepts of constrained multi-objective

optimization and give a brief introduction of CMOEA/D-CDP.
A typical CMOP is expressed as follows:

minG(x) = (G1(x), G2(x), - -, Gu(x)7,

SL g <0, i=12 - .q.
hl(X)=07 i=q+17"'7p5
xeD, (13)

where x is a vector in the decision variable space D, G(x)
is an objective vector that consists of m objective functions,
gi(x) <0 and h;(x) = 0 are inequality constraints and equality
constraints, respectively. p is the total number of the inequality
constraints and equality constraints. The degree of constraint
violation CV (x) of an individual x is given by Eq. (14).

P
CV) = 2 euitx), (14)
i=1
cvi (x) = max {0, g;(X)}, i=1,2,--,4q,
ST max {0, |hix)| =8}, i=q+1,---,p,
5)

where § is a small value which means the tolerance value for
equality constraints. It is notable that CV(x) > 0. If CV (x) =
0, x is a feasible solution. Otherwise, X is an infeasible
solution.

The superiority of one solution over another one is defined
by the Pareto dominance, as given in Eq. (16). A solu-
tion is called a Pareto optimal solution when no other
solution can dominate it (see Definition 2). It is worth
noting that the optimal solutions found by multi-objective
optimization algorithms, e.g., evolutionary algorithms, are
the approximae Pareto optimal solutions [14]. In the con-
text of multi-objective optimization, the approximate Pareto
optimal solutions obtained by an algorithm are also called
non-dominated solutions. The set of Pareto optimal solu-
tions in objective space and decision space is called Pareto
front (see Definition 3) and Pareto optimal solution set (see
Definition 4), respectively.

Definition 1 (Pareto dominance): For two solutions X,y €
D, if x and y satisfy the following relation:

i(h(x)sci(y), Vie{l,2,--,m},

16
Jiefl,2,--- (16)

Gix) < Gi(y), ,m},

x is said to dominate y, denotes as X <gy.

Definition 2 (Pareto optimal solution): For a solution x*,
if there is no any solution y € D that y <4 x*, x* is called as
a Pareto optimal solution.

Definition 3 (Pareto optimal solution set): The set of all x*
in D is called Pareto optimal solution set.

Definition 4 (Pareto front): The set of all G(x*) is called
Pareto front.

The decomposition-based multi-objective evolutionary
algorithm (MOEA/D) is a well-known method for addressing
multi-objective optimization problems, due to its capacity
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Fig. 2. Tllustration of CMOEA/D-CDP.

to preserve population diversity and its lower computational
complexity. Furthermore, it has been enhanced with CDP
to tackle different CMOPs, yielding a new algorithm called
CMOEA/D-CDP. CDP is used for the comparison between
two solutions according to the feasibility and fitness. For
any two solutions x,y €D, x is better than y if one of the
conditions holds:

« If x is feasible, and y is infeasible.

o If x and y are feasible, and x has smaller fitness.

o If x and y are infeasible, and x has smaller constraint
violation.

The primary concept behind CMOEA/D-CDP, as demon-
strated in Fig. 2, is to decompose a CMOP into a series
of scalar sub-problems, and solve them collaboratively. This
is achieved by a set of N well-distributed weight vectors
(V) denoted as o, w?, -, oV, where N is the popula-
tion size. In this context, each weight vector corresponds
to a sub-problem. CMOEA/D-CDP utilizes a neighborhood
information mechanism to enhance population evolution.
It establishes neighborhood relationships among the sub-
problems by identifying the T nearest weight vectors to
each sub-problem using Euclidean distance. In the updating
scheme, each new individual updates its neighbors using a
decomposition-based method, e.g., Achievement Scalarizing
Function (ASF), as given in Eq. (17). To preserve population
diversity during evolution process, CMOEA/D-CDP maintains
a manner by selecting the mating parents either from the cor-
responding neighbors of an individual or the entire population
based on the probability §. Additionally, the algorithm updates
the neighbors of each individual at most n, times.

Gi (") — 2}

w}’l

ASF (x"|") =maX( < Sm), (17)
where z* = (ZT, S ,z;‘n) is the ideal point used to shift the
population to the first quadrant, z7 is the minimum value
found so far for objective G;. The main parameter settings
of CMOEA/D-CDP, as suggested in [14], are given in Table I.

B. Representation of Encoding Scheme

The solution to Problem (12) is encoded as a mixed
integer-float individual, as shown in Fig. 3. An individ-
ual is divided into three parts based on their data types,

TABLE I
MAIN PARAMETER SETTINGS IN CMOEA/D-CDP

Parameter Description Suggested value
A\ Set of all the weight vectors Uniformly sampled from a hyperplane
B; Set of the neighbors of w® T closest weight vectors to w*
T Neighborhood size 0.1N
§ Probability of selecting manner for the mating parents 0.9
np Times of updating neighbors 0.01N

Offloading decision of
UAV_pP

Pi| | Py X || X4 b |- b, |
t i t )

Association

The available bandwidth of Computing capability of
UAV_P UAV_A,

Fig. 3. Tllustration of genetic encoding scheme.

i.e., integer or float. The first part (denoted as unit;) is
{p1, 02,---, ps}, where p; is an integer variable representing
the index of a UAV that handles the j-th task. The second
part (denoted as unity) is {xy,x2,---,xy}, where x; is
a binary variable indicating whether the UAV offloads the
task to the edge server or not. The third part (denoted as
unit3) is {b1, b2, --- , by, f1, f2.---, fs}, where b; and f;
are float variable representing the assigned bandwidth and
computing speed to the p;-th UAV, respectively. To this
end, the decision variable to Problem (12) is represented
as X = (P1,..., 07, X1, X5, b1, by, f1,--, f1).
Throughout this study, x; implies the i-th element of x.

Under this genetic encoding scheme, each region is guaran-
teed to assign at least one UAV. The constraints C and C; are
equally transformed to the following constraint:

J
Cy: ZlF,,j =1, (18)
j=1

1, if p; = pj,

. (19)
0, otherwise,

IF; ;=

where I F; ; is equal to 1 when p; = p; holds, and 0 otherwise.
It is clear that the aforementioned constraint is met when each
UAV is assigned to only one region, provided that it is selected
to assist in executing the task associated with that region.
In the context of evolutionary algorithm, the constraint Cg is
taken as the decision variable boundary constraint, meaning
that each solution is ensured to be within the range of the
decision variable boundary.

C. Proposed Algorithm

To improve the solution performance, we revise the con-
ventional CMOEA/D-CDP by exploiting an improved genetic
operator and repairing constraint-handling technique. The
improved genetic operator is beneficial to seek promising
solutions by adaptively disturbing the decision variables
{pi, xi, bi, fi}y; according to their data types. The repairing
constraint-handling technique is beneficial to improve the
convergence performance of the proposed algorithm towards

Authorized licensed use limited to: Xiamen University. Downloaded c;lrjs\l?t)me 27,2024 at 06:47:10 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

feasibility. Our algorithm is executed generation by generation,
as presented in Algorithm 1.

Algorithm 1 The Proposed Algorithm Framework

Input: The population size: N,
the neighborhood size: T,
the probability of selecting manner for the
mating parents: §,
the times of updating neighbors: n,
Qutput: The final population P,
1 Initialize a set of N evenly distributed weight vectors

V{0 o? - oV
2 Initialize B; by finding the T closest vectors to the
weight vector o', i =1,2,---, N;

3 Initialize a population P; with size N;

4 Initialize the ideal point z* based on Py;
51 < 1;

¢ while r < T,,,, do

7 for i < 1to N do

8 if rand < § then

9 o', W', o <« three randomly selected
weight vectors in B;;

10 x'1, x"2, x"3 « three mating individuals
from P;, corresponding to o'l w2, @3

11 else

12 x'1 x"2, x"3 <« three randomly selected
mating individuals from P;;

13 end

14 x* < Algorithm 2 (x', x"!, x"2, x"3);

15 Update z* with x*;

16 v < 0;

17 while v < n, do

18 @' < a randomly selected weight vector in
B;;

19 Update the solution in P; corresponding to
o' with x* in terms of CDP;

20 v<v+1;

21 end

22 (x*,P;) < Algorithm 3 (x*, B;, P,);

23 Py < Py

24 t<—1t+1;

25 end

26 end

27 return P,

At the beginning of the proposed algorithm (see Lines 1 - 5),
it initializes a set of N weight vectors V, where weight vectors
are evenly distributed on the hyperplane, as in [14]. An initial

population P; = {pl/ , xij , bi/ , fl’ }V' _is also produced, where
i, J

p] is the index of the UAV, x] is the offloading decision, b/
is the assigned bandwidth, and fl.] is the assigned computing
speed, all of which pertain to the i-th task of the j-th
individual. The parameters related to CMOEA/D-CDP are
set at the same time. In this study, the maximum generation
number is taken as the stopping criterion.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Subsequently, the proposed algorithm enters the loop.
It maintains a population P, with size N at each generation.
Therein, each individual x' participates in genetic operations
with its mating parents that are chosen either from the
neighbors of x' or from the whole population according to
CMOEA/D-CDP. As a result, a new individual x* is produced
(see Lines 8-13). The detail of the genetic operations is pre-
sented in Algorithm 2. At the same time, x* is used to update
its neighbors at most n, in terms of CDP (see Lines 16-21).
When comparing two individuals via CDP, as described in
Section IV-A, the fitness refers to the ASF value, as defined
in Eq. (17). Subsequently, a repairing constraint-handling
technique is applied to x* when this individual violates the
constraints of Problem (12) (see Line 22). It is worth noting
that the proposed algorithm aims to obtain Pareto optimal
solutions in a greedy manner to fix infeasible solutions to
feasible solutions by utilizing the constraint information in
Problem (12). The detail of the repairing constraint-handling
technique is presented in Algorithm 3.

When the generation number ¢ reaches the maximum gen-
eration number T},,y, the proposed algorithm stops and takes
all the feasible non-dominated solutions in IP; as the Pareto
optimal solutions. Otherwise, it goes back to Line 6.

D. Proposed Improved Genetic Operator

In this subsection, we introduce the detail of the improved
genetic operator. As described in Section IV-B, an individual
consists of three parts where the first two parts, i.e., unit; and
unity, are discrete, while the third part, i.e., unit3, is contin-
uous. An improved genetic operator is designed to deal with
different data types of the decision variables in this study. The
pseudo-code is presented in Algorithm 2.

The differential evolutionary operator (DE) called DE/
current-to-rand/1 [29] and polynomial mutation operator [32]
are adopted due to their effectiveness on solving CMOPs.
When performing DE/current-to-rand/1, as given in Eq. (20),
it requires three mating parents that are randomly chosen
either from the neighbors or from the whole population (see
Lines 8-13 in Algorithm 1) for each individual x'. As a result,
a new individual y = {p;, x;, bi, fi}y; is generated, in which y
has J new assigned UAVs with the corresponding offloading
decisions, assigned bandwidth, and computing speed.

y= Xi + f(Xr] _ Xi) + f(sz o Xr3)’ (20)

where F is the DE control parameter, its value is within [0, 1].
After the DE operation, if an element of y is out of boundary
constraint, it is randomly fixed back to its inside boundary.
Subsequently, a mutation operation is performed on y. Since
the structure of y is composed of three parts, i.e., unity, unity,
and units, three different ways of mutating y are executed
accordingly (see Lines 5-24). Each element of y executes the
mutation operation with a probability C R. For the k-th element
of y, if it is in unit;, either replacing a used UAV with a
unused UAV or swapping two randomly chosen tasks of y
is performed with equal probability (see Lines 5-18). If it
is in unity, the element is a binary variable. The value of
Xk is flipped from 1 to O and vice versa (see Lines 19-21).
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Algorithm 2 The Improved Genetic Operation

Input: A solution: x/,
the three mating individuals: x” L xr 2 3
Output: An offspring: x*
1 'y < a new individual generated by x' with x'1, x2,
and x> according to Eq. (20);
2 y < a solution obtained by fixing it back to the
boundary constraints;
for k < 1 t04J do

3
4 if rand < CR then
5 if xx € unit; then
6 if rand < 0.5 then
7 plfk<— a randomly chosen index of an
unused UAV based on y;
8 X, blfk, fl’k < the values randomly
generated within their domains;
9 /*Replace pj,, Xiy, biy, fi, With ,olfk, xi’k,
bl’.k, le */
10 Pi> Xigs bigs fix < 'Oilk’ xi/k’ b;k’ i;;
11 else
12 P1, p2 < two randomly selected
different indexes in [1, J];
13 /*Swap Pip,» Xip, s bim’ fim and Pip, »
x,-pz, bipz’ fip2 */
14 pFs X5 bE fE < iy Xy biys Sy
15 Pip,» Xips bipys fip <
Pipy i,y iy Jiy, s
16 Pipys Xipys bipys fiy, < ol x5 by I
17 end
18 end
19 if xx € unir, then
20 |k <1 — X
21 end
22 if xi € unitz then
23 Xi¢" < a decision generated by the
polynomial mutation operator on yy;
24 end
25 end
26 end

27 y < a solution obtained by fixing it back to the
boundary constraints;

28 X* < y;

29 return x*

While if it is in unit3, the polynomial mutation is used as it
is a continuous variable. The polynomial mutation is given as
follows:

, U — Ly), if d < CR,
X]:l(,w _ Yk + o (U k) 1 ran. < @1)
Vi, otherwise,
1
2 *rand)n1—1, if rand < 0.5,
o = BN . (22)
1 — (2 —2x%xrand)"', otherwise,

where rand is a uniformly random number from [0, 1], n is the
distribution index, and CR is another DE operator parameter

Algorithm 3 Proposed Repairing Constraint-Handling
Technique

Input: A solution: x*,
the set of the neighbors of w': B;,
the current population: P;
Output: A repaired solution: x*,
an updated population: P,
1 Calculate the constraint violations C7, C3-Cs of x* on
Problem (12);
2 while C7(x*) # 1 do
3 fori <1 to J do

4 I < the UAV indexes regarding the rest of
tasks having the same index with p;;
5 Replace the UAV indexes in I with randomly
selected indexes associated with the unused
UAVs;
6 end
7 end
8 if C3(x*) > 0 then
9 B, < a randomly generated value in (0, B];
10 by, by, - b)Y < a random division of B,
into J parts;
1 bi,by, -+ by < by, b5, - DY
12 end
13 if C4(x™) > O then
14 F, < a random value in (0, F1];
15 S Y, -, f7¢" < arandom division of F,
into J parts;
6 | S fr e F S S
17 end
18 while C5(x*) > 0 do
19 x; < a random decision in x* with the value of 1;
20 xj <05
21 end
22 Update z* with x*;
23 v < 0;
24 while v < n, do
25 ' < a randomly selected weight vector in B;;
26 Update the solution in P, corresponding to @’ with
x* in terms of CDP;
27 v<v+1;
28 end

29 return (x*, ;)

whose value is in [0, 1]. Uy and L are the upper boundary and
lower boundary of the k-th element of y, respectively. After
the mutation operation, if an element of y is out of boundary
constraint, it is randomly replaced with a value from its inside
boundary.

E. Proposed Repairing Constraint-Handling Technique

This subsection introduces the proposed repairing
constraint-handling technique that can convert infeasible
solutions into feasible ones. The pseudo-code is presented in
Algorithm 3.
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TABLE I

COMMONLY UTILIZED SIMULATION PARAMETERS
AMONG THE THREE CMOPs

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE III
SIMULATION PARAMETERS AMONG THE THREE CMOPS

Suggested value

Parameters Description

Parameter Description setting CMOPI CMOP2 CMOP3
I Number of UAVs 10 J Number of monitoring tasks 4 6 8
. . . . i —4
e Coefficient regarding UAV flying power 9.26 x 10 B Maximum bandwidth B 10 MHz 20 MHz 25 MHz
€2 Coefficient regarding UAV flying power 2250 F Maximum computing speed F' 5 GHz 10 GHz 15 GHz
aj Input data size of task j [5.5, 10] Megabytes s Maximum data storage 70 Megab 100 Megab 110
Wi Computational workload of task [1,2] Giga CPU cycles ~ Caching decisions of the service programs  [0,1,0,1]  [0,0,1,0,1,1]  [0,0,1,0,1,0,0,1]
Bj Data size of service program of task j [5.20] Megabyte:
Ui Flying speed of UAV i [10,50] m/s
dij Distance between UAV 7 and monitoring location j [50,100] m TABLE IV
PH Hovering power of UAV i [50,60] W
si Data samples per second of UAV i [3.75,6.25] Megabytes/s COMPUTATIONAL COMPLEXITY OF THE SIX ALGORITHMS
p? Sensing power of UAV ¢ [1.125,6.251 W
kUL Coefficient regarding uplink data rate of UAV ¢ at monitoring location j [1.125,2.5] Megabytes . . .
i clent fegarcing Ut oring foeation ey Algorithm Computational complexity
kP! Coefficient regarding downlink data rate of UAV i at monitoring location j  [1.125.2.5] Megabytes
phx Receive and transmit power of UAV i 0.1,0.2] W 9
pTx Transmit power of UAV i 0.1,02] W CMOPSO O(MmMN*JTmax)
i Hardware parameter of UAV i [1,5] x 10727 W .53
KES Hardware parameter of the edge serve 10726 W.g? M2M-DW O(mNJTmaxzx)
rES Data rate between the edge server and cloud server 1.125 Megabytes/s PPS O (m NnyrJdTmax )
9 Reference value 103
CMOEA/D-CDP O(mNnprJTmax)
ShiP O(mN2JTmaz)
An offspring x* is produced after the genetic operation. Our Algorithm O(mNnyJTmaxzx)

When x* has positive degree of constraint violations, it implies
that it violates some constraints related to Problem (12). For
example, x* is infeasible when one UAV is sent to execute
multiple tasks. A repairing constraint-handling technique is
designed to fix it back to feasibility one by one constraint.
When x* violates the constraint C7, it is apparent that the
constraint can be easily handled by substituting the duplicate
UAVs with the unused UAVSs (see Lines 2-7). When x* violates
the constraint C3, the bandwidth B, is firstly generated, and
is divided into J parts that are used to replace the bandwidth
of x* (see Lines 8-12). When it violates the constraint Cj,
the same mechanism is used to restrict the total usage of
computing speed without exceeding F for the J tasks (see
Lines 13-17). When it violates the constraint Cs, the tasks for
offloading are randomly changed to process the task locally
one by one till the constraint is satisfied (see Lines 18-21).

V. EXPERIMENTAL STUDIES
A. Parameter Settings and Test Instances

We perform extensive simulation experiments to evaluate
the overall performance of the proposed algorithm for UAV-
enabled ITS. We pay attention to an application scenario
of UAV-enabled ITS where UAVs run lightweight object
detection models such as SSD-MobileNet and Yolo-tiny-v3
for traffic surveillance. The current models are of only several
tens of megabytes that are suitable to be deployed on general
embedded devices like UAVs. For example, proper models
are optimized to have rather small model sizes while not
sacrificing the detection accuracy. After that, they are effi-
ciently deployed for vehicle detection [33] and crowd density
detection [34] in the ITS environment. We further consider
three case studies, leading to three CMOPs. The commonly
utilized parameter settings for a UAV i, task j, and the edge
server in the three cases are presented in Table II, while
the distinctive parameter settings are presented in Table III.
In Algorithm 1, three parameters for the genetic operators
are set as follows: F = 0.5, CR = 0.1, and n = 21. During

the comparison experiments, we conduct 30 independent runs
of six algorithms, each with a population size N = 100. The
termination condition 7y, is set to 800.

B. Performance Comparison

Meta-heuristic algorithms, such as particle swarm opti-
mization algorithm [35] and evolutionary algorithm [36],
are the promising methodologies for solving the proposed
CMOP. In this study, we compare the proposed algorithm with
five algorithms particularly designed for CMOPs, i.e., M2M-
DW [37], PPS [32], CMOEAD-CDP [14], ShiP [38], and
CMOPSO [39]. We compare the performance of all algorithms
on the proposed CMOP with the three different parameter
settings, as presented in Table III. The computational com-
plexities of the six algorithms are shown in Table IV, where
m is the number of objectives, N is the size of the population,
J is the number of tasks, n, is the times of updating neighbors,
and T4, is the maximum generation number. As illustrated
in Table IV, the baseline algorithms such as CMOPSO and
ShiP exhibit a computational complexity of O(mN 2] Tax)-
This complexity arises from their utilization of non-dominated
sorting and crowding distance to select individuals during
the evolutionary process. In contrast, the proposed algorithm
leverages the framework of CMOEA/D-CDP, wherein each
offspring is updated a maximum of n, times, leading to a com-
plexity of O(mNn,JTnax). Given that n, is typically smaller
than N, the computational complexities of PPS, CMOEAD-
CDP, and the proposed algorithm are comparatively lower.

To evaluate the performance of the algorithms, we adopt
two commonly utilized performance metrics, i.e., inverted
generational distance (IGD) [29] and hypervolume (HV) [32],
and focus on their mean values and standard deviation (STD).
To calculate the aforementioned performance metrics, we con-
sider 100 feasible non-dominated solutions from the final
population.
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IGD can measure the distance between the approximate
Pareto front generated by an algorithm and the true Pareto
front. It is defined as the average shortest distance from each
solution in the true Pareto front to the approximate Pareto
front. The smaller IGD value implies that the algorithm obtains
a better approximate Pareto front. The calculation of IGD is
shown as follows:

> xepr+ d (x, PFy)

(23)

where PF* represents the true Pareto front, PF, represents
the Pareto front obtained by an algorithm at generation ¢, and
d(x, PF;) is the Euclidean distance between individual x in
PF* and the closest individual in IPF, to x. Given that the true
Pareto front of the CMOPs is unknown, we use the Pareto front
generated by the proposed algorithm as a proxy. The Pareto
front is subsequently adjusted slightly to the bottom-left to
serve as the reference Pareto front for all algorithms.

HV can measure the convergence and diversity of the
population generated by an algorithm. It is defined as the
volume covered by a reference point and the obtained Pareto
front. The larger HV value implies that the algorithm obtains
a better approximate Pareto front. The calculation of HV is
shown as follows:

[P, |
HYV;, = volume U vi |,
i=1

(24)

where v; represents a hypercube associated each individual
x; in PF, and a reference point. The reference point for
the three cases is set to [15000, 25000], [20000, 30000], and
[33000, 65000], respectively.

Table V shows comparison results of the six compared
algorithms on the three CMOPs. The performance of the
algorithms is measured by the mean values and STD of IGD
and HYV, respectively. We find that compared to ShiP, the
proposed algorithm yields an approximate 69% decrease in
the mean value of IGD and approximate 4% increase in the
mean value of HV. The proposed algorithm achieves the best
results among the six algorithms, as highlighted in Table V.
The proposed algorithm obtains the highest mean HV and the
lowest mean IGD on each CMOP. Compared with the baseline
algorithms, the proposed algorithm can seek a set of better
distributed and better converged non-dominated solutions. As a
result, the control center can make a wider choice among
the obtained solutions regarding the preferences on the two
objectives G| and G3.

Figs. 4-6 illustrate the non-dominated solutions of the six
algorithms obtained at the median run in terms of HV. The
vertical axis represents the first objective G while the horizon-
tal axis represents the second objective G;. From the figures,
the proposed algorithm is superior to all baseline algorithms.
As for CMOPI1, we can observe that the proposed algorithm
finds more approximate Pareto front than the compared algo-
rithms with respect to less completion time difference and
energy consumption. Although ShiP achieves a part of similar
approximate Pareto front with the proposed algorithm, the
proposed algorithm finds a wider range of non-dominated
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Fig. 5. Obtained non-dominated solutions of CMOP2.
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Fig. 6. Obtained non-dominated solutions of CMOP3.

solutions. As for CMOP2 and CMOP3, the proposed algorithm
outperforms the baseline algorithms, and consistently finds
better non-dominated solutions for Problem (12). The above
results demonstrate the effectiveness and superiority of the
proposed algorithm on all considered test instances.

Fig. 7 presents the convergence graphs of the six algo-
rithms on the three CMOPs at the median run in terms of
HV. The horizontal axis represents the generation number ¢
while the vertical axis represents the HV. Although a small
number of monitoring tasks are required to handle in CMOPI,
we find that the proposed algorithm works slightly better
than CMOPSO, M2M-DW, CMOEA/D-CDP, and ShiP. The
advantage of the proposed algorithm is further shown by
the results on CMOP2 and CMOP3, where more monitoring
tasks are required, and the constraints in Problem (12) are
more difficult to satisfy compared with CMOPI1. To enhance
solution performance, the proposed algorithm designs an
improved genetic operator for enhancing search capabilities,
along with a repairing constraint-handling technique that uti-
lizes constraint information to transform infeasible solutions
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CMOP1 CMOP2 CMOP3
Algorithm
IGD HV IGD HV IGD HV
CMOPSO 5.21e+02(2.08e+02)  1.28e+08(5.43e+06) 6.70e+03(5.21e+03)  4.19e+07(3.28¢+07)  1.41e+04(1.02e+04) 8.35e+07(6.27e+07)
DW 6.35e+02(2.06e+02)  1.30e+08(5.20e+06)  2.22e+03(9.60e+02)  5.39e+07(2.08¢+07)  6.70e+03(6.82¢+03)  7.86e+07(5.56e+07)
PPS 6.43e+02(3.58e+02)  1.28e+08(8.68e+06)  2.69e+03(2.87e+03)  6.73e+07(1.56e+07)  4.59e+03(2.46e+03)  1.08e+08(4.73e+07)

CMOEA/D-CDP

5.55e+02(2.49¢+02)

1.30e+08(6.41e+06)

1.41e+03(7.47e+02)

7.35e+07(1.72e+07)

3.10e+03(1.66e+03)

1.11e+08(5.11e+07)

ShiP 1.03e+03(7.75e+02)  1.29e+08(1.01e+07)  5.21e+03(0.00e+00)  5.71e+07(0.00e+00)  0.00e+00(0.00e+00)  0.00e+00(0.00e+00)
Our Algorithm  3.18e+02(6.34e+01) 1.36e+08(1.12e+06) 4.24e+02(9.98¢+01) 9.97e+07(2.41e+06) 1.08e+03(2.14e+02) 2.18e+08(8.84e+06)
2 <108 anvergence graph of CMOI?1 ) © «107 Convergence graph ofCMOFZ _ 108 Convergence graph of CMOP3
15 e QU Algorithm e Our Algorithm ‘ ‘ e Our Algrithm
| 2f |
- i |
al
05t il
|
. . | 0 . . )
0 2 4 6 8 0 2 4 6 8
Generation number t %10* Generation number t %10* Generation number t x10*
Fig. 7. Convergence graphs of the six algorithms on the three CMOPs at the median run in terms of HV.
TABLE VI TABLE VII

COMPARISON OF OUR ALGORITHM WITH AND WITHOUT THE IMPROVED
GENETIC OPERATION

IGD HV
Yes 4.24e+02(9.98e+01) 9.97e+07(2.41e+06)
No 9.52e+02(3.97e+02) 8.49e+07(1.12e+07)

into feasible ones, thereby accelerating the convergence of
the proposed algorithm. Unlike the baseline algorithms that
underutilize constraint information, the proposed algorithm
achieves superior results. For example, in CMOP2, our inves-
tigations demonstrate that the proposed algorithm attains a
notably enhanced solution performance, as evidenced by a
reduced mean value of IGD and an augmented mean value
of HV. Specifically, the mean value of HV exhibits a remark-
able increase of approximately 26%, attributing this notable
improvement directly to the utilization of the improved genetic
operator and the repairing constraint-handling technique.

C. Investigation of the Improved Genetic Operator

We study the impact of the improved genetic operator on
the performance improvements of the proposed algorithm.

In this experiment, we consider CMOP2 to investigate the
effectiveness of the improved genetic operator. The proposed
algorithm can adopt the improved genetic operator (denoted as
“Yes”) or the original genetic operator (denoted as “No”). It is
noted that the original genetic operator uses DE/current-to-
rand/1 and the polynomial mutation. The comparative results
are presented in Table VI. The improved genetic operator is

COMPARISON OF OUR ALGORITHM WITH AND WITHOUT PROPOSED
REPAIRING CONSTRAINT-HANDLING TECHNIQUE

IGD HV
Yes 4.24e+02(9.98e+01) 9.97e+07(2.41e+06)
No 5.34e+02(1.60e+02) 9.69e+07(3.79¢+06)

based on our encoding scheme in Section IV-B, in which the
design enables the proposed algorithm to effectively explore
promising regions and seek superior solutions. As a result,
the mean value of IGD decreases by approximately 55%,
and the mean value of HV increases by approximately 15%.
This demonstrates that the improved genetic operator can
enhance the ability of the proposed algorithm for seeking
Pareto optimal solutions.

D. Investigation of the Repairing Constraint-Handling
Technique

In this experiment, we also consider CMOP?2 to investigate
the effectiveness of the proposed repairing constraint handling
technique. This design enables the proposed algorithm to
effectively convert infeasible solutions into feasible ones. From
Table VII, we observe that the mean value of IGD decreases
by approximately 20% while the mean value of HV increases
by approximately 2%. This demonstrates that the repairing
constraint-handling technique can enhance the ability of the
proposed algorithm in handling constraints.
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VI. CONCLUSION

We investigated the joint minimization of energy consump-
tion and completion time difference for UAV-enabled ITS
by using a constrained multi-objective optimization approach.
UAVs were employed to collect and process the surveillance
data with the help of the edge server. In the formulated
CMOP, we aimed at simultaneously achieving the energy-
efficient data collection and processing, and reducing the
total completion time difference among the employed UAVs.
We jointly optimized the UAV association, task offloading,
and resource allocation. To tackle the CMOP, we adopted a
constrained decomposition-based multi-objective evolutionary
algorithm. To obtain high-quality solutions, we designed the
improved genetic operator to seek more promising solutions
and repairing constraint-handling technique to accelerate the
proposed algorithm convergence towards feasibility. Extensive
numerical results demonstrated that compared with the base-
line algorithms, the proposed algorithm achieved the better
non-dominated solutions on different test instances. In the
future, we will consider the real implementation of UAV-
enabled ITS applications such as road traffic monitoring,
and discuss the joint optimization of trajectory planning and
computation offloading.
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Code Multiview Hypergraph Representation
Learning for Software Defect Prediction

Shaojian Qiu"”, Member, IEEE, Mengyang Huang

, Yun Liang *“, Chaoda Peng“, Member, IEEE,

and Yuan Yuan

Abstract—Software defect prediction technology aids the
reliability assurance team in identifying defect-prone code and
assists the team in reasonably allocating limited testing resources.
Recently, researchers assumed that the topological associations
among code fragments could be harnessed to construct defect pre-
diction models. Nevertheless, existing graph-based methods only
concentrate on features of single-view association, which fail to
fully capture the rich information hidden in the code. In addition,
software defects may involve multiple code fragments simultane-
ously, but traditional binary graph structures are insufficient for
representing these multivariate associations. To address these two
challenges, this article proposes a multiview hypergraph represen-
tation learning approach (MVHR-DP) to amplify the potency of
code features in defect prediction. MVHR-DP initiates by creating
hypergraph structures for each code view, which are then amalga-
mated into a comprehensive fusion hypergraph. Following this, a
hypergraph neural network is established to extract code features
from multiple views and intricate associations, thereby enhancing
the comprehensiveness of representation in the modeling data.
Empirical study shows that the prediction model utilizing features
generated by MVHR-DP exhibits superior area under the curve
(AUC), F-measure, and matthews correlation coefficient (MCC)
results compared to baseline approaches across within-project,
cross-version, and cross-project prediction tasks.

Index Terms—Code multiview fusion, code representation
learning, hypergraph construction, software defect prediction,
software reliability.

1. INTRODUCTION

HE difficulty of reliability assurance is increasing with the
T continuous growth of software scale and complexity [1].
In response, software defect prediction emerges as a technology
to assess the predisposition of new files and modules toward
defects. This facilitates judicious resource allocation by the
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reliability assurance team and aids in determining if the software
aligns with delivery standards [2].

In the defect prediction task, finding out the defect-related
features of the code is the key to building a high-quality pre-
diction model [3]. When delving into code representation, di-
verse features can be derived in accordance with distinct code
metrics. For instance, Halstead features are rooted in operands
and operators, McCabe features stem from code dependencies,
chidamber-kemerer (CK) features are rooted in object-oriented
concepts, and structural-semantics features are based on abstract
syntax trees (AST) [4]. These code feature representations pre-
dominantly encapsulate the intricacies and structural insights in
the code and have gained widespread traction in constructing
defect prediction models [5], [6].

Recently, researchers have focused on intricate linkages
among code fragments. They attempt to extract information from
the correlations between codes (e.g., dependency and similarity
associations) to enhance the comprehensiveness of modeling
data [7], [8], [9]. Qu et al. [10] applied a node2vec embed-
ding technique to encode program dependency structures into a
low-dimensional vector space. Then, these vectors enriched with
code context information were harnessed for constructing a de-
fect prediction model. The literature [11] has explored the anal-
ysis of software defect distributions through class-dependent
networks, using k-core decomposition to further augment the
performance of predictive models. Moreover, Zeng et al. [12]
combined node2vec features with traditional handcrafted fea-
tures to construct data for a graph convolutional network to
obtain a more profound representation of code associations.

In practice, the preceding graph-association-based method-
ologies encounter two challenges. First, intricate multiview as-
sociations exist within the realm of code fragments. However,
the abovementioned methods predominantly concentrate on cap-
turing code dependencies, neglecting the valuable contextual
insights offered by other code views. Second, software defects
may be caused by the collaborative work of multiple (three or
more) code fragments. Nevertheless, the traditional simplistic
graph is tailored solely to representing binary associations rather
than multivariate associations [13], [14], so it is challenging to
discover the interrelationships between multiple code fragments.

To elucidate the context of multivariate associations among
codes, we present a motivation case (an abridged multithreaded
scenario within an actual project) in Fig. 1. On the left side
of Fig. 1, three classes denoted as 7, M, and P, are defined.
The T class inherits from the Thread class and overrides the

1558-1721 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Tjava
public class T extends Thread {
LocalDate date - LocalDate.now():
public void run() {
for (inti=0;i<50;i++) {
P.method (date.toString()):

M.java
public class M {
public static void main(String[] args) {
T thread1 = new T()
T thread2 = new T()
thread1.start()
thread2.start()
}

}

o>

Pjava
public class P {
private static DateFormat format = new SimpleDateFormat("yyyy-MM-dd");
public static Date parse (String date) {
try{
return format.parse(date);
} catch (ParseException e) {
throw new RuntimeException(e);

}
}
)\—//

Fig. 1.

Motivation case of multivariate association between codes.

run method. Within this run method, the parse function of the P
class is executed. Notably, due to the static access modifier of the
variable format, all instances of the P class share this variable.
However, the variable’s data type, DateFormat, is thread-unsafe.
In our scenario, the main method of class M generates two T
threads, each of which executes the run method. Consequently,
multiple instances of P are invoked by diverse threads within
the project concurrently, thereby potentially triggering thread
exceptions. On the right side of Fig. 1, a simplified graph is
employed to depict the dependencies among classes M, T, and
P. Suppose we exclusively consider the dependency between M
and 7 (i.e., the section encompassed by the green dashed line) or
solely focus on the calling relationship between T'and P (i.e., the
portion enclosed by the blue dashed line), the aforementioned
thread-unsafe exception cannot be identified. In this context, the
properties of code multivariate correlations should be exploited
in the defect prediction process.

In summary, code representation learning with the charac-
teristics of both multiple view and multivariate associations
remains an area that has not yet been fully explored. To address
these challenges, we propose an innovative code multiview
hypergraph representation learning method for software defect
prediction (MVHR-DP). This method leverages the capabilities
of hypergraphs to model multivariate associations and extends
its functionality to encompass multiple views for defect informa-
tion mining. First, MVHR-DP constructs the hypergraph struc-
tures of each view in accordance with different feature perspec-
tives. Second, MVHR-DP melds this multiview information into
an adaptable-dimensional hypergraph representation. Finally,
we design a hypergraph neural network with hyperedge convo-
lution operation to mine the multiview and multivar-association
information between the codes, thereby improving the features’
completeness of modeling data and the effect of the defect
prediction model.

The main contributions of this article are as follows.

1) We introduce a novel hypergraph structure tailored to cap-
ture the intricacies of multivariate associations between
codes. Specifically, we put forth a hypergraph-based rep-
resentation learning approach that enhances the efficacy
of the extracted code features.

2) We design a code multiview fusion method to strengthen
the completeness of code features and construct a defect
prediction framework based on multiview and multivar-
association code features.

IEEE TRANSACTIONS ON RELIABILITY

3) We conduct comprehensive experiments involving 29
pairs of within-project, 19 pairs of cross-version, and 90
pairs of cross-project defect prediction (CPDP) tasks. The
empirical outcomes substantiate our claims, demonstrat-
ing that the prediction model constructed using MVHR-
DP-generated features yields superior area under the curve
(AUC), F-measure, and matthews correlation coefficient
(MCC) results compared to other state-of-the-art defect
prediction techniques.

The rest of this article is organized as follows. Section II
presents related work. Section III presents preliminary knowl-
edge for MVHR-DP. Section IV presents the technical spec-
ification of MVHR-DP. Sections V and VI elaborate on the
experimental design and results. Section VII discusses some ad-
ditional experiments and threats to validity. Finally, Section VIII
concludes this article.

II. RELATED WORK

The key to constructing an effective defect prediction model
is finding the code’s defect-related feature representations. Cur-
rently, the mainstream code features used in software defect
prediction are static and process features. Notably, static fea-
tures revolve around metrics concerning code size and inher-
ent complexity [6], [15]. For instance, the Halstead features
rely on operand and operator counts, McCabe features derive
from control flow complexity, while CK features are rooted
in object-oriented principles. Guided by the assumption that
“greater program complexity correlates with heightened defect
likelihood,” researchers have employed these static features to
construct training data for defect prediction models. However,
static features cannot contain information about code changes.
Consequently, researchers have delved into the realm of code
process features. For instance, Pornprasit et al. [16] quantified
code change content using fine-grained alterations and main-
tainer insights drawn from commit logs. Kondo et al. [17]
conducted defect prediction based on features extracted from
code change paths and context metrics. Similarly, Zeng et al. [ 18]
extracted attributes from commit messages and code changes,
subsequently employing these features to predict defects.

The utilization of static and process features (referred to
as handcrafted features) in the aforementioned studies can be
influenced by subjective human choices. It might fail to capture
the code’s full structural and semantic intricacies. Consequently,
some researchers have turned to deep learning techniques to
extract defect-related attributes from the internal architecture of
the code. For instance, Wang et al. [19], Li et al. [20], and Dam
et al. [21] have endeavored to derive semantic features from
the code’s AST using deep belief networks (DBNs), convolu-
tional neural networks (CNNs), and long short-term memory
neural networks, respectively. In a different approach, Phan
et al. [22] transformed the source code into a program control
flow graph (CFG) and employed CNNs to conduct convolution
operations on the CFG’s topological sequence. This facilitated
the extraction of more profound semantic features from the code.
In addition, Chen et al. [23] introduced defect prediction using
the software visualization and deep transfer learning (DTL-
DP) method. DTL-DP leveraged a more visualization program
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representation, enhancing the efficiency of defect-related feature
extraction.

The code features employed in constructing defect predic-
tion models above mainly capture intrinsic aspects of code
instances, such as complexity features or structural-semantic
characteristics. However, it should be noted that there is valuable
association information embedded within the programs [7],
[24]. Extracting code features from associated data can signifi-
cantly augment the comprehensiveness of code representation.
Currently, several researchers [10], [11], [12] have ventured
into utilizing network embedding techniques to glean pertinent
insights from the code contextual associations. Qu et al. [10] em-
ployed the node2vec network embedding approach to translate
class-dependent structures into low-dimensional vector repre-
sentations while preserving the code’s topological information.
These vector representations were then harnessed to construct
a defect prediction model. Building upon this, Zeng et al. [12],
[25] fused node2vec features with traditional static attributes
and semantic features derived from ASTs. This amalgamation
was subjected to graph convolution operations to draw out
more intricate association information, thereby enhancing the
comprehensiveness of code feature representation. In addition,
Gong et al. [9] introduced self-ego metrics and global metrics
from social network analysis to further enrich the feature repre-
sentation obtained from the code dependency network.

Despite the advances achieved by these code association-
based feature extraction methods, they often focus solely on
dependencies between codes, inadvertently disregarding the
contextual information encapsulated within other code views. In
addition, defects in the code may involve multiple pieces of code
simultaneously, and such defects cannot be effectively expressed
with a simple graph structure. To address these challenges, this
article proposes the MVHR-DP approach to enhance defect
prediction performance.

III. PRELIMINARIES

A. Software Defect Prediction

Software defect prediction assesses whether new code carries
defects, thereby judiciously aiding developers and the reliability
assurance team in allocating testing resources. A defect pre-
diction task typically unfolds in several stages. First, historical
source code files are gathered from software repositories, and
these files are labeled as either defective or clean based on
released data. Subsequently, corresponding data features are
extracted from the code. These instances and their labels are
then employed to train classifiers (e.g., logistic regression and
random forests). Ultimately, new instances are input into the
trained model to predict whether they possess defects [26].

The set of instances used to construct the classifier model is
known as the training set, while the set of instances employed to
evaluate the trained classifier’s performance is termed the testing
set. This study concentrates on the following three primary
scenarios: within-project defect prediction (WPDP), where both
training and testing sets originate from the same version of the
same project; cross-version defect prediction (CVDP), where
the training and testing sets emerge from consecutive versions
of the same project; and CPDP, where one project is employed as

€1 €2 €3 €4 !

V2
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vs0|0]0]1

Fig. 2. Process of hypergraph expansion.

the testing data while another is selected as the training set [27].
In CVDP and CPDP tasks, the training and testing sets are also
called source and target projects, respectively.

B. Multiview Fusion

In reality, objects often possess multiple facets that can
be perceived from diverse angles or approaches. Drawing an
analogy to code representation, the features inherent to code can
be encapsulated through complexity measurements or the view
derived from topological structures. A more comprehensive and
robust information representation can be achieved by fusing
these various views.

Leveraging the benefits offered by knowledge from multi-
ple perspectives, researchers have introduced multiview fusion
methods [28]. This approach entails modeling a specific view
while leveraging insights from other views pertaining to the
same data. This synergistic optimization of data representation
is proven to be beneficial.

In multiview code representation, we denote X to signify
data from the ith view. Within this framework, ¢, represents the
nth code instance from the ith view. The ¢th view of the code
can, thus, be succinctly expressed as X* = (z¢, %, ...,z¢). By
extending the process of extracting code features to encompass
the multiview fusion paradigm, we can bolster the comprehen-
siveness of features in the modeling data.

C. Hypergraph Construction

In general, simple graphs are commonly employed to model
data and their interrelations. Illustrated on the left side of
Fig. 2, nodes within a simple graph symbolize data points, while
edges connecting nodes denote associations. Represented by
adjacency matrices, simple graphs are characterized by edges
linking only two vertices—constrained to a degree of 2 per edge.
Nonetheless, in practical situations, multivariate associations
can often exist between nodes. Take the defect prediction task as
an example: a defect might arise from multiple code fragments.
Consequently, finding a more fitting graph structure to depict
such multivariate associations becomes imperative.

To handle the abovementioned case, researchers have intro-
duced the concept of a hypergraph structure [13]. Depicted on the
middle and right side of Fig. 2, hyperedges within a hypergraph
link two or more vertices. Hypergraphs excel in portraying and
mining nonlinear high-order data dependencies. In the con-
text of this article, a hypergraph is defined as G = (V, E, W),
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Fig. 3. Domain adaptation for software defect prediction.

encompassing a vertex set V, a hyperedge set F/, and a diagonal
matrix W that captures hyperedge weights. A hypergraph can
be articulated using a hyperedge matrix H, where H is sized
|V| x |E, and the h in H can be delineated as

Lif vee

hv,€) = 0,if v ¢ e. W

For a vertex v € V, its degree is defined as

d(v) = cepw(e)h(v,e). 2)

For an edge e € F, its degree is defined as

E(e) = Zvevh(v,e). 3)

According to this, the degree matrix D,, of the hypergraph vertex
and the hyperedge degree matrix D, can be obtained.

In our approach, hypergraphs are adopted to represent multi-
variate associations among codes. A comprehensive explanation
of this methodology will be presented in the forthcoming method
section.

D. Domain Adaptation

Ilustrated on the left side of Fig. 3, inherent differences
in personnel, functionalities, and coding conventions across
distinct projects give rise to variations in data distribution.
Consequently, a discrepancy emerges between the source project
(P* = {X?*|Y*}) and the unlabeled target project (P* = {X*}).
Thus, a software defect prediction model fashioned using the
source project often encounters challenges when directly applied
to the target project. To handle this dilemma, domain adaptation
is frequently employed. The primary aim of domain adaptation
is to alleviate the impact of data shift that occurs during the
transference of knowledge from a source domain to a target do-
main [29]. Within the general domain adaptation process, a fea-
ture extractor, denoted as a generator f,, is fine-tuned to acquire
data representations from both the source and target domains.
Concurrently, adomain classifier, functioning as a discriminator,
is trained to differentiate between data representations of the
source domain f,(X*) and the target domain f,(X"). This is
achieved by minimizing the domain classification loss £;. The
overarching objective of the domain adaptation process can be
encapsulated within the following loss function L:

L= Lo(fo(X°),Y°) + La(fo(X?), [o(X"). @
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Domain invariant representations can be obtained when the
model converges loss £. and domain divergence £, is mini-
mized [30].

In recent years, graph representation learning has garnered
extensive utilization within the software engineering area.
Demonstrated in Fig. 3, the application of domain adaptation
to the defect prediction task, grounded in graph representation
learning, holds the potential to enhance both the transfer capa-
bility of generated association features and the overall general-
izability of the prediction model. Within our proposed approach,
we apply domain adaptation in code multiview hypergraph
representation learning to improve the performance of CVDP
and CPDP tasks.

IV. METHOD

This article introduces the MVHR-DP approach, a multiview
hypergraph representation learning method, which centers on
amalgamating multiple code views and incorporating multi-
variate associations. Fig. 4 offers a comprehensive view of the
framework of MVHR-DP. The representation learning process
encompasses four pivotal steps, as follows.

1) We extract three distinct categories of metric sets from
files as the basis for building code views. These views
encompass traditional static code metrics (TSM), complex
network metrics (CNM), and low-dimensional network
embedding metrics (NEM).

2) For each code view, we meticulously construct the cor-
responding hypergraph employing the nearest /K neigh-
bor algorithm. Subsequently, we amalgamate the hyper-
graph associations gleaned from the three distinct code
views into a multiview hypergraph with an adjustable-
dimensional structure.

3) We introduce a hypergraph neural network that facilitates
the hyperedge convolution operation. By constructing a
hidden layer, we efficiently mine the multivariate associ-
ations amidst code instances.

4) To corroborate the effectiveness of our proposed approach,
we build defect prediction models catering to WPDP,
CVDP, and CPDP scenarios.

Each of these steps is meticulously detailed as follows.

A. Code Multiview Feature Generation

In this step, we introduce three types of code metrics [10],
[12], [25] as the basis for code views. The details are as follows.

TSM: TSM provides a quantitative evaluation by analyzing
various static structures and characteristics of software code.
Compared to alternative metrics, TSM is formulated based
on rules derived from human analysis, thereby encapsulating
specific intrinsic logical information within the code. Notably,
it operates independently of historical software data, enabling
the detection of defects in new software versions that may
have yet to undergo multiple iterations. This study introduces
a comprehensive set of TSM comprising 20 metrics covering
diverse aspects, including the measure of function abstraction,
average method complexity, number of public methods, etc.
We derive these TSM metrics utilizing the widely recognized
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Fig. 4. Framework of MVHR-DP.

tool Understand.' These metrics are extensively used within
software defect prediction studies [25], [31], [32].

CNM: This category is obtained by analyzing the network of
code dependencies, which implies the information regarding the
three types of connections in code files. The first type pertains to
inherit: when class vy inherits from class vy or implements the
interface vo, a directed edge e12 = (v1,v2) is established. The
second type involves aggregation: when class vy incorporates the
attributes of class vs, a directed edge e12 = (v1, v2) is formed.
The third type revolves around parameter: if the method of class
vy invokes the method of class vo, a directed edge 12 = (v1,v3)
is created. The category encompasses 17 metrics, including mea-
surements like the number of weak components, neighborhood,
and degree within the code class dependency network. These
code network metrics have also been integral to software defect
detection tasks [12], [33], [34]. The code network and requisite
metrics for generating CNM can be acquired via the publicly
available API Dependencyfinder.”

NEM: NEM arises from class-dependent networks of codes
through network embedding learning. In this context, we lever-
age the node2vec method to map each class node onto a low-
dimensional vector [10], [35]. While there may exist a certain
degree of information overlap with the CNM, NEM goes beyond
by incorporating additional topological insights extracted from
the code network. This incorporation significantly enriches the
comprehensiveness of code feature representation, providing a
more nuanced understanding of the intricate relationships within
the codebase. By leveraging these supplementary insights, NEM
aims to enhance the precision and effectiveness of code defect
prediction models.”

Distinct code metrics inherently carry complementary infor-
mation. To extract code features more comprehensively and
precisely, thereby enhancing the overall effectiveness of the
modeling data, we leverage the three aforementioned feature sets

L Understand:https://scitools.com
2 Dependencyfinder: https://depfind.sourceforge.io/

as the foundation for generating nodes and hyperedges within
the multiview hypergraph representation.

B. Multiview Hypergraph Construction of Code

During this phase, we initiate the construction of a hyper-
graph for each distinct view, culminating in the integration of
these individual hypergraphs into a versatile multidimensional
hypergraph, facilitating multiview representation learning.

In our approach, the ¢th view of each code instance is encap-
sulated by the notation X* = (z%,z%, ..., z!). At this juncture,
each instance is treated as a node within the graph structure. We
proceed by crafting dedicated hyperedges for each view based
on the similarity distances observed between code instances.
Constructing a hypergraph structure based on code similarity
allows us to establish connections among corresponding feature
views, enabling the identification of code fragments with similar
characteristics and the discovery of differences between codes.
We iteratively designate a node as a centroid and employ the
Euclidean distance metric to identify its K nearest neighbors.
Consequently, each hyperedge takes shape by connecting a node
with its closest K nodes. Following traversal of all nodes within
a specific view, we compile the hyperedge correlation matrix
H boasting dimensions n x n, wherein a cumulative total of
n x (K + 1) elements equate to 1, while the remainder adopts
a value of 0.

Subsequently, we amalgamate the hypergraph associations
derived from the three code views into an encompassing multi-
view hypergraph and concatenate the hyperedge matrices across
all views. Furthermore, since the preceding method of con-
structing a hypergraph disregards class dependencies, poten-
tially resulting in the omission of pertinent association infor-
mation, we introduce class dependencies as supplementary data
to initialize the hyperedge set E [10], [14]. We then employ
TSM+NEM+CNM as the collective node features, effectively
constituting the hypergraph vertex set V. Ultimately, we con-
struct a fusion hypergraph G = (V, E,W) that incorporates
multiview information.
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Fig. 5. Illustration of the hyperedge convolution.

C. Code Feature Extraction

We construct a hypergraph neural network to extract high-
order code association information. Given the code multiview
hypergraph G = (V, E, W) constructed in the previous step,
where the matrix W is regarded as the weight of the hyperedge.
Let § =D, /> HWD:'HTD,"? and A=1-0, I is the
identity matrix. Since this A is a semipositive definite matrix, we
can use eigen decomposition A = $AP to obtain orthonormal
eigenvectors @ = diag(¢1, . . ., ¢, ) and nonnegative eigenvalue
diagonal matrix A = diag(A1, ..., A,). Then, the Fourier trans-
form for the instance feature X = (21, - - -, &, ) in hypergraph is
definedas X = &7 X, where the eigenvectors are regarded as the
Fourier bases, and the eigenvalues are interpreted as frequencies.
The spectral convolution of instance feature X and filter f can
be denoted as

[+ X =8 (d"f)o (8"X))=df ()" X (5

where © denotes the element-wise Hadamard product and
f(A) =diag(f(*1),..., f(Ayn)) is a function of the Fourier
coefficients. However, the time complexity of the inverse for-
ward Fourier transform is O(n?). To solve the problem of the
high time complexity, we follow the K -order polynomial pa-
rameterization f(A) used by [36]. Finally, we get the hyperedge
convolution operation as follows:

f*X =aoX —oyDV?HWD'H"D;'?X  (6)

where a( and o are filter parameters on all hypergraph nodes.
We further use a single parameter o to avoid the overfitting
problem, defined as

o =~ ()
ao = taD 2HWD;'H"D,""”.
The hyperedge convolution operation can be simplified to the
following expression:

f*X =aD,”Y* HWD.'H"D,;'/?X. (8)

When we have n instance features of dimension C1, X €
R™ €1 in hypergraph, our hyperedge convolution can be

expressed as follows:

Z =relu(D,”Y? HWD_'H"D,;'/*Xa). )

As illustrated in Fig. 5, @ € R1*¢2 constitutes a parameter
that is learned during the training process. The filter « is applied
across the nodes within the hypergraph to extract features.
Following the hypergraph convolution module, we obtain the
refined high-order code information Z € R™*“2. Notably, the
hypergraph convolution layer facilitates an information transfor-
mation between node-edge-node, significantly enhancing code
features using the hypergraph structure and effectively extract-
ing high-order association information among code fragments.
In our approach, the weight matrix W is set as the unit matrix
I, implying that the weights of all hyperedges are uniform, and
C1 = C2. Multiple hyperedge convolution operations are per-
formed, and the rectified linear unit (ReLU) activation function is
employed to construct a hypergraph CNN module. This module
assists in capturing the multivariate association information
between codes, leading to an enhanced representation of code
features.

D. Defect Prediction

To bolster the generality and efficacy of our proposed
approach, we formulate prediction models for WPDP, CVDP,
and CPDP tasks, respectively. Addressing the class imbalance
issue within the dataset, we employ the SMOTETomek algo-
rithm, as outlined in the literature [37], to enhance the training
effectiveness of the classifier.

1) Prediction Model for WPDP: WPDP technique is instru-
mental in identifying potential defects, enabling development
teams to effect timely improvements and elevate software reli-
ability. Employing the developed multiview hypergraph repre-
sentation, we construct a dedicated model tailored to the WPDP
task. The model’s schematic is depicted in Fig. 6.

This WPDP process unfolds in two primary stages. First, we
employ the methodology elucidated in the preceding section
to generate modeling data by the multiview hypergraph con-
struction. Second, employing cross-validation, we partition the
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Fig. 6. Prediction model for WPDP task.
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Fig. 7. Prediction model for CVDP and CPDP tasks.

dataset into distinct training and testing subsets, with 80% of
code instances allocated to the training set and the remaining
20% to the testing set.

Within the hypergraph CNN module, node h signifies
the updated hidden layer representation of node v, while a
denotes the parameter steering node updates. Consequently, the
high-order hidden layer features of the code are extracted and
denoted as Z. The crux of the feature extraction procedure
unfolds as shown in (9).

The code instance set and hypergraph adjacency matrix are
X, H, and project labels Y. D., D,, respectively, represent
the hyperedge degree matrix and node degree matrix of the
multiview hypergraph structure of the code.

The extracted features are passed through a classifier to predict
whether the file is defective. The classifier and its parameters
are f. and 6.. We use logistic regression as the classifier and
classification cross-entropy loss L& (f+(Z;0.),Y) is as follows:

N
Lo (1. (2:6).Y) =~ Y ylos(fe(Z:6)  (10)
=1

where N represents the number of project files and y; denotes
the label of the ith node in the label set Y.

@ Feature Extraction for Source and Target Projects
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2) Prediction Model for CVDP and CPDP: In practical sce-
narios, commencing a new project often entails a dearth of
labeled data. Consequently, other projects or historical versions
are frequently employed as the training set (source project) to
train the prediction model. Subsequently, this model is harnessed
to forecast software defects in novel projects, which serve as the
testing set (target project). Nonetheless, such a methodology
encounters challenges rooted in the discordances of structural
information and data distribution across different projects.

To address this quandary while concurrently extracting code
association features, we introduce an inventive joint adaptation
loss during constructing prediction models for CVDP and CPDP
tasks. The model architecture is depicted in Fig. 7.

Leveraging the proposed code multiview fusion representa-
tion learning approach, we construct hypergraph structures for
both the source project (P* = {X*|Y*}) and the target project
(P! = {X t}). Perform feature extraction on them, respectively,
and the extraction process is shown in (9). The source and target
projects share a parameter a of the update code instances. The
high-order hidden layer features of the code extracted by the
hypergraph CNN module are denoted as Z* and Z°.

To better learn knowledge and improve the transfer ability of
code-associated features to assist in the CVDP and CPDP task.
We proposed a joint adaptation loss consisting of an adversarial
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module, a source classifier, a domain discriminator, and a tar-
get classifier working together to learn domain invariant code
representations. The overall objective is as follows:

L;=Lc(fc(Z%:6.),Y7)
+1Lp (Z2°,2") + v Ly (fe (2%6.)) (11)

where v, and ~y, are the balance parameters. The L, Lp, and
L represent the source classification loss, the domain adap-
tation loss, and the target entropy loss, respectively. Also, use
regression as classifier f. with parameter 6. for source and target
projects classification. The details are introduced as follows.

1) Source classification loss: The classification loss
Lc(fe(Z%;0.),Y*) is to minimize the cross-entropy loss for
the labeled data in the source project

.
Lo(fo(25:0.),Y") = —— 3 yilog(f. (Z:6.))  (12)
=1

N
where N* represents the number of source project files and y;
denotes the label of the ith node in the source project label set
Y?.

2) Domain adaptation loss: The domain adaptation loss
Lp(Z*,Z") ensure the similarity of code representations Z*
and Z' obtained through hypergraph CNN feature extraction,
thereby mitigating the impact of data distribution differences.
To achieve this, we use gradient reversal layer [38] as a dis-
criminator to differentiate code representations

1 Ns+Nt?
ACD (ZS,Zt) — m Z m; log (mi)
i=1

+ (1 —m;)log (1 —my) (13)

where m; € {0, 1} denotes the ground truth of the file project
and m,; denotes the domain prediction for the 7th file in the source
and target projects, respectively.

3) Target entropy loss: To utilize valuable information in the
target project. We employ an entropy loss for the target classifier

Nt

Lr (£ (240.)) = —x7 D dislos (6).

i=1

(14)

In other words, it serves to enforce that the decision boundary
does not cross data-dense regions and will prevent information
loss of the target project [39], where ¢; are the classification
prediction for the sth file in the target project.

Lc, Lp, L7 are jointly optimized via our objective function
in (11), and all parameters are optimized using the standard
backpropagation algorithms.

Algorithm 1 provides a pseudocode representation to enhance
the clarity of the MVHR-DP process and details. As depicted in
Step 1, we extract three distinct categories of metric sets, serving
as the foundation for constructing a multiview hypergraph. Sub-
sequently, MVHR-DP commences by establishing hypergraph
structures for each code view, which are then amalgamated into a
comprehensive fusion hypergraph. Following this, a hypergraph
neural network is utilized in Step 2 to extract code features and
intricate associations. Ultimately, as delineated in Step 3, we
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Algorithm 1: MVHR-DP.
Input:

The source code of project files P.

The number of code views M.
Output:

Prediction models fWPDPs fC’PDP» fCVDP~
Step 1: Multi-View hypergraph construction
1: Initialize the hypergraph G, which to be fused;
2: for all iteration ¢ from 1 to M do
3: Initialize the hypergraph G for the i-th view;
4: for j-th file in P do

5: Generate metric m; to collection X?;
6
7
8

end for
for 2 in X* do
Create hyperedge e; from top-k neighbors;
9: Add e; to i-th code hypergraph G;
10:  end for
11:  Fuse multi-view hypergraph by appending G' to G;
12: end for
Step 2: Code feature extraction
13: Construct hypergraph neural network by G;
14: if perform WPDP task then
15: Train network by loss L, as (10);
16: else if perform CVDP or CPDP tasks then
17:  Train network by loss £ 7, as (11);
18: end if
19: Generate feature Z through trained network, as (9);
Step 3: Defect Prediction
20: Build fwppp, focppp, fovpp by extracted feature
representation Z.

build a defect prediction model tailored to specific defect tasks
to perform defect prediction.

V. EXPERIMENT DESIGN
A. Datasets

We carried out experiments on 10 Java open-source projects (a
total of 29 project versions) released on the PROMISE database,
which is widely used in software defect prediction research [12],
[25], [40]. Based on this data repository, a total of 29 pairs of
WPDP tasks, 19 pairs of CVDP tasks, and 90 pairs of CPDP
tasks can be formed. We download the corresponding code
version from each project’s official website for our experiments.
Table I shows detailed information about these projects, includ-
ing project name, version, description, number of files, defect
file number, and defect rate. The dataset consists of projects with
different sizes (the number of project files ranges from 103 to
919) and defect rates (lowest 6.67% and highest 92.89%).

B. Experimental Setup

To verify the effectiveness of MVHR-DP, we focus on the
following three research questions (RQs).
RQI1: How much improvement can MVHR-DP achieve in
WPDP tasks?
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TABLE I 7) Unsupervised domain adaptation for defective prediction
DATASETS . .
(UDA-DP): A method to adopt the unsupervised domain
P——" Deseription Veion  Nodes Bug fle Defective adaptation using pseudqlabels to learn defective features
e o1 - o0 from source programs directly [43].
A cross-plat : : . .
ant o e o] 16 347 92 26.51% 8) Graph convolutional network for defect prediction
1.7 738 164 22.22% . . .
> o e e (GCNZ2defect): The graph convolution operation is per-
. B B o .
camel . Enterprise 14 820 145 17.68% formed on the class-dependent network to obtain a code
integration framework 16 919 188 20.46% L. N
: : association representation [12]. The node features are
M gentonmager 20 3al 4o o combined with node2vec and handcrafted software code
o Text editor 32.1 269 89 33.00% features. o )
JEdit developed in Java 441 2(1)} ;g g‘s‘igg For RQI: In the WPDP task, training and testing data are
. ~ V70 . . .
extracted from the same version of each project. Five-fold cross-
A Java-based 1.0 128 33 25.78% e . . .
logdj versatile logging L1 103 37 35.92% validation is used in WPDP. Specifically, the dataset is randomly
framework 1.2 197 183 92.89% coe .
split into five folds. Here, 80% of the instances are used for
2.0 192 91 47.40% .. .. .
lucene An ‘1155;1;;urce 22 244 144 59.02% training a prediction model, and 20% of instances are used to
24 37 202 39.94% evaluate the model. We repeated the experiment 20 times and
o Java library to access 4] o pesy finally took the average result.
Microsoft format fil > : .
erosoft format files 3.0 431 279 64.73% For RQ2 and RQ3: In the CVDP task, we conduct experiments
o Java-based }‘51 ;’g iig 22?33 involving two consecutive versions of the same project. The
velocity . . .67% . .. . .
template engine 16 28 78 3421% older version serves as the training set or source project, while
A library for 24 714 110 15.41% the subsequent new versions constitute the testing set or target
xalan . 2.5 794 383 48.24% : : C
transforming XML files 37 20 pio) 45.61% project (e.g., using ant-1.5 as the training set and ant-1.6 as
A opensounce Jova e 71 ) 16.01% the testing set). We carried out a total of 19 pairs of CVDP
XEICes i ary for parsing XML 11434 ;“g 261(; éﬁéf; tasks. Shifting to the CPDP task, our experimental dataset
comprises the latest versions of the projects. Each project is
utilized for training a prediction model, leaving the remaining
nine projects for testing (e.g., ant-1.7 serves as the training
set, and the latest versions of the remaining nine projects are
RQ2: Is the proposed MVHR-DP method better than the utilized as the testing set). Notably, all models undergo nine

comparative methods in CVDP?
Do code features learned from MVHR-DP outperform
related methods in CPDP?

In our work, we conduct experiments on three RQs separately.
To evaluate the performance of our end-to-end model MVHR-
DP, we compared eight related defect prediction methods. The
experimental setup and comparison methods for each RQ are as
follows.

1) Traditional: Software defect prediction on traditional

handcrafted code features.

2) DBN: A defect prediction method uses DBN to automat-
ically learn semantic features of code from AST [41].

3) Defect prediction via convolutional neural network
(DPCNN): A method that applies standard CNN to extract
features from source code and combine CNN-learned
features with traditional handcrafted features [20].

4) Code bidirectional encoder representations from trans-
formers (CodeBERT): Recently, bidirectional encoder
representations from transformers (BERT)-based technol-
ogy has been widely used in code representation learning.
We selected the representative method CodeBERT as a
comparison method, a bimodal pretrained model for pro-
gramming language and natural language [42].
Node2defect: A network embedding method that adopts
the node2vec technology to extract features from the class-
dependent network of the code [10].

6) DTL-DP: A method that visualizes the program as an
image and applies AlexNet and a self-attention mechanism
to extract semantic features of code [23].

RQ3:

5

~

rounds of testing, resulting in 90 pairs of CPDP tasks. To verify
the effectiveness of proposed domain adaptation in CVDP and
CPDP tasks, we introduced a new comparison, MVHR-CVDP,
and MVHR-CPDP represent training with a joint adaptation
loss, while MVHR-DP does not include this modification.

Parameter Setting of MVHR-DP: The hyperparameters of the
MVHR-DP model proposed in this article include the number
of neighbor nodes K for constructing the hyperedge, the feature
dimension extracted by the hyperedge convolution, the threshold
of SMOTETomek, joint adaptation loss balance parameters,
and the network training parameters. Specifically, the K is
set to 5, and the output feature dimension is set to 64. The
SMOTETomek threshold is set to 0.4. Regarding the learning
parameters, the epoch is set to 200, and the learning rate is set
to 0.01. Adam is used as the optimizer, the gamma is set to 0.9,
and the weight decay is set to 5 x 10~%. Joint adaptation loss
balance parameters y; and v are set to 0.6 and 0.8, respectively.
Except for the traditional method, all other methods involve
some randomness. Therefore, we execute these random methods
20 times and record the average results.

C. Evaluation Indicator

To evaluate the prediction performance, we use evaluation
indicators AUC, F-measure, and MCC, which are widely used
in software defect prediction research [1], [44].

In a defect prediction task, four results can be obtained:
predict the truly defective instance as defective (true positive,
TP); predict the truly clean instance as defective (false positive,
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FP); predict the truly defective instance as clean (false negative,
FN); predict the truly clean instance as clean (true negative, TN).
Then, the evaluation indicator AUC, F-measure, and MCC are
calculated as follows:

1
AUC = / TP(FP)dFP (15)
0
2 x TP
F-measure = a (16)
2 x TP + FP 4+ FN
TP x TN — FP x FN
MCC — ~ ~ (17)

\/(TP+FP) (TP+FN) (TN+FP) (TN+FN)

AUC measures the model’s performance across all possible
classification thresholds. It represents the model’s ability to
distinguish between positive and negative classes, with higher
values indicating better performance. An AUC of 50 denotes
random guessing, while 100 represents perfect performance.

F-measure is the harmonic mean of precision and recall. It
is beneficial in dealing with imbalanced datasets as it takes into
account both the correct identification of the positive class and
the erroneous labeling of negative instances. The best value of
F-measure is 100, and the worst is 0.

MCC is a balanced indicator that provides useful information
even in situations of class imbalance. It ranges from —100
(entirely incorrect predictions) to 100 (perfect predictions), with
0 denoting random guess performance.

D. Statistical Test

In our comparative experiments, we apply the Scott-Knott
ESD test [45] to examine the performance of MVHR-DP. The
Scott-Knott ESD test is a means-comparison method that uses
hierarchical clustering to divide a set of measurements (e.g.,
AUC) into statistically different pairs with non-negligible differ-
ences. The Scott-Knott ESD test consists of two steps: 1) Finding
a partition that maximizes the measurement between pairs;
2) dividing the results into two pairs or combining them into
one pair. For a detailed process description of the Scott-Knott
ESD test, please refer to [45].

VI. EXPERIMENTAL RESULTS

In this section, we will analyze the experimental results of
MVHR-DP for three RQs. The Scott-Knott ESD test results are
shown in Figs. 8—10, which comprehensively demonstrates the
performance and ranking of each method. The horizontal line
in the middle of the box plot represents the median and the blue
diamond indicates the average value of our examined method.

A. RQI: How Much Improvement Can MVHR-DP Achieve in
WPDP Tasks?

The results of the experimental analysis are concisely depicted
in Fig. 8, which illustrates the performance ranking of nine
distinct methods through the Scott-Knott ESD test across 29
pairs of WPDP tasks under the three evaluation indicators.
Significantly, MVHR-DP stands out as the most effective ap-
proach, demonstrating superior performance with the highest
average values for AUC, F-measure, and MCC. Specifically,
MVHR-DP achieves noteworthy results across all three evalu-
ation indicators, with respective values of 85.0, 68.0, and 50.0.
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Fig. 8. Scott-Knott ESD test of 29 pairs WPDP tasks on nine methods (for
RQ1).

The values are improved by 6.92%-26.49%, 6.75%—19.93%,
and 16.28%-87.27% compared to the other eight methods.
Furthermore, the median of MVHR-DP was also higher than all
other methods. Asillustrated in Fig. 8, the gap between the upper
and lower edges of our method is smaller than that of the most
compared methods, indicating that MVHR-DP has more robust
stability.
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Fig. 9. Scott-Knott ESD test of 19 pairs CVDP tasks on ten methods (for

RQ2).

Answer to RQ1: The above statistical test results show
that MVHR-DP is better than the baseline methods in WPDP.
The average AUC, F-measure, and MCC are all in the first
echelon, reflecting the superiority and stability of MVHR-DP.
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Fig. 10.  Scott-Knott ESD test of 90 pairs CPDP tasks on ten methods (for
RQ3).

B. RQ2: Is the Proposed MVHR-DP Method Better Than the
Comparative Methods in CVDP?

We form a pair of CVDP tasks using successive versions of
the same project. A total of 29 versions of ten projects can form
19 pairs of CVDP tasks. Fig. 9 shows the performance ranking
of ten different methods by the Scott-Knott ESD test. Our
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MVHR-CVDP method performs stronger than the remaining
nine methods under AUC, F-measure, and MCC. MVHR-DP
achieves the best average results are 69.9, 59.3, and 23.8,
exhibiting improvements of 8.89%—18.27%, 11.26%-21.77%,
27.96%—66.43% compared to the other nine methods, respec-
tively. It is discernible that the MVHR-CVDP is positioned
among the best-performance echelons based on the Scott-Knott
ESD test ranking. Notably, the experimental results comparing
MVHR-DP and MVHR-CVDP confirm that the performance is
further improved by adding the joint adaptation loss.

Answer to RQ2: The experimental results illustrate that
the code features learned from MVHR-CVDP outperform
compared methods in 19 pairs of CVDP tasks. The code fea-
ture representation learned by MVHR-CVDP has advantages
and performs excellently in most CVDP tasks.

C. RQ3: Do Code Features Learned From MVHR-DP
Outperform Related Methods in CPDP?

In total, the ten latest projects in our dataset can be composed
of 90 pairs of CPDP tasks. As can be seen from Figure, in
the CPDP tasks, our MVHR-CPDP outperforms the other nine
methods under AUC, F-measure, and MCC. In the 90 pairs
of CPDP tasks, MVHR-DP achieves the best average result.
The best results under the three evaluation indicators are 72.5,
56.7, and 23.2, reflecting improvements ranging from 13.46%
to 32.06%, 9.88% to 22.46%, and 20.83% to 357% compared
to the other nine methods, respectively. It can be seen that
the MVHR-CPDP method belongs to the first echelon in the
Scott-Knott ESD test ranking. Simultaneously, it validates that
joint adaptation loss can further enhance model performance,
improving its effectiveness in CPDP tasks.

Answer to RQ3: The experimental results reflect that the
defect prediction model built with MVHR-CPDP outperforms
compared methods in 90 pairs of CPDP tasks. In summary,
MVHR-DP is the preferred method for software reliability
assurance teams performing defect prediction tasks in most
cases.

VII. DISCUSSION

A. Can Mining of Multivariate Associations Help Enhance
MVHR-DP?

In MVHR-DP, we construct the hypergraph for each distinct
view to mine the multivariate association properties of the code.
In this section, we discuss the effectiveness of utilizing multi-
variate association features in defect prediction tasks through an
ablation experiment. We initially considered one of the original
metrics (Ori). Then, we expanded upon it by integrating binary
association data from code dependencies, employing graph con-
volution for feature extraction (+Dep). Lastly, we heightened the
approach by incorporating multivariate associations and utiliz-
ing our constructed hypergraph framework for feature extraction
(+HG).
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TABLE II
ABLATION EXPERIMENT OF MULTIVARIATE ASSOCIATION USING AUC

] TSM | CNM | NEM
metrics
m Ori +Dep +HG | Ori +Dep +HG | Ori +Dep +HG
ant 80.1 73.6 82.6 746 746 737|728 718 767
camel 67.6 71.1 720|734 729 799|769 779 783
ivy 662 70.0 705|687 736 753|705 651 749
jEdit 813 819 853 (79.1 817 837|798 797 844
log4 749 749 758|785 769 785 | 687 637 794
lucene 720 720 752|697 713 684 | 688 724 709
poi 766 79.0 779|735 799 794 |827 78.6 793
velocity 76.5 847 809 | 741 733 83.6 | 824 823 83.1
xalan 744 768 783|696 731 779|733 771 774
xerces 80.4 87.5 853 (823 866 91.8| 902 882 919
AVG [750 77.1 784 |743 764 792 | 766 757 79.6

The bold values represent the best AUC results in the ablation experiment.

As shown in Table II, we conducted 29 pairs of WPDP ex-
periments by employing the three mentioned feature extraction
methods separately on three different metrics (TSM, CNM, and
NEM) across ten different projects. Considering space limita-
tions, we only listed the average AUC value of the projects. The
results indicate that in most cases, +HG achieved the best results,
demonstrating that capturing code properties of multivariate
associations can improve the effectiveness of code features
learned from MVHR-DP.

B. What is the Improvement Made by the Code Multiview
Features Learned From MVHR-DP?

To verify the effectiveness of multiview association for code
feature extraction, we perform various combinations of the three
code views: TSM (T), CNM (C), and NEM (N). The three
views can be combined to form seven different combinations.
Besides, the abovementioned views do not consider code class
dependencies, so we added code class dependencies based on the
combination of T+C+N views as supplements (MVHR-DP). We
construct a code multiview hypergraph structure for each com-
bination of code views and perform feature extraction for defect
prediction. To ensure fairness, the experimental parameters for
all views are maintained consistently.

Fig. 11 presents the heatmap with different view combinations
based on AUC, illustrating the results for eight view combina-
tions across 29 WPDP tasks. Due to space limitations, we have
calculated the average of the prediction results for all versions of
each project. This manifestation of heatmap effectively shows
the variations in prediction results that arise from different
view combinations [46]. It can be seen that the T+C+N view
combination demonstrates superior performance compared to
the other seven combinations. On this basis, MVHR-DP, which
adds class dependencies on the T+N+C view, has achieved
excellent results. MVHR-DP achieves significant results across
AUC; the average value is 85.0. In general, the effectiveness
of code multiview features learned from MVHR-DP can be
improved by combining code multiview features.
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C. How Does Parameter K Used to Construct the Hyperedge
Affect the Experiment?

This section discusses the K parameter setting of the number
of neighbor nodes used to construct hyperedges in the MVHR-
DP method to achieve the best results. Since we focus on the
effect of K parameters on model performance, we only use
K as a variable for this experiment. Other network parameters
remain unchanged. We conduct WPDP experiments on 29 pairs
of defect prediction tasks for ten projects, recording the average
value of each project with the evaluation metric AUC. Fig. 12
shows the performance of MVHR-DP at different K's. We set
K between 2 and 11. As shown in Fig. 12, when K = 5, the
F-measure values of most WPDP tasks peak. In addition, for
the remaining WPDP tasks, when K is set to 5, the F-measure
value is not much different from the maximum value. Based
on the abovementioned experimental results, the optimal K is
about 5 in our experiments.

D. Threats to Validity

1) Implementation of Compared Methods: We implement
some of the compared methods in the experiments (e.g., DTL-
DP and GCN2defect) using the source code available online.
For baseline methods that do not provide source code, we try
to ensure implementation by strictly following the responding
details in the original paper. Our implementation may not reflect
all the details in the compared methods.

2) Experimental Results Might not be Generalizable:
We conduct experiments using open-source software defect
datasets, which vary in project scale and the number of defects,
to facilitate the generalization of our method. However, we
cannot guarantee that MVHR-DP will also achieve the same
improvement on other software datasets. To reduce external
validity, more software defect datasets need to be investigated
in our future work.

3) AUC, F-Measure, and MCC Might not be the Only Ap-
propriate Indicators: We selected AUC, F-measure, and MCC,
which are commonly used in software defect prediction studies,
as evaluation indicators. Different metrics may lead to different
results. This article does not compare other performance metrics
(e.g., G-mean and balanced accuracy) and more evaluation
indicators that need to be used in the future.

4) Parameter Selection of Network Does not Take all Op-
tions Into Account: In our experiments, we tried to adjust the
parameters of the network to get better prediction performance.
However, it is impractical to evaluate all possible combinations
of parameters. We evaluated several combinations of parameters
within a specific range based on previous research experience.
There may be a more appropriate combination of parameters for
better predictive performance.

VIII. CONCLUSION

To overcome the challenges of underutilized code multiview
information and the need to uncover multivariate association
code features, this article proposes MVHR-DP to enhance the
effectiveness of extracted code features for defect prediction.
MVHR-DP fuses code multiview information into an adjustable-
dimensional hypergraph, and a hypergraph neural network is
constructed to mine the multiple-view and multivariate asso-
ciation information for improving the feature completeness of
modeling data. Empirical study shows that the prediction model
built with the MVHR-DP-generated features can achieve better
AUC, F-measure, and MCC results in both WPDP, CVDP, and
CPDP tasks. In most cases, we believe that MVHR-DP can be
a good option for reliability assurance teams to perform defect
prediction tasks. The data, source code, and detailed experimen-
tal results supporting this study’s findings are openly available
on GitHub at https://github.com/insoft-lab/MVHR-DP.

Several problems remain to be investigated in future work.
First, we will incorporate more software code data, both open-
source and business projects, to further validate the performance
of our method. Second, we will combine more code views to
improve the effectiveness of MVHR-DP, i.e., the structure-based
and code-visualization-based views.
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