
国家自然科学基金资助项目批准通知

（包干制项目）

张勇威   先生/女士：

根据《国家自然科学基金条例》、相关项目管理办法规定和专家评审意见，国

家自然科学基金委员会（以下简称自然科学基金委）决定资助您申请的项目。项目

批准号： ，项目名称：  ，资助经62303122 通信约束下多智能体系统自学习云优化控制

费： 万元，项目起止年月： 年 月至 年 月，有关项目的评审意30.00 2024 01 2026 12

见及修改意见附后。

请您尽快登录科学基金网络信息系统（https://grants.nsfc.gov.cn），认真

阅读《国家自然科学基金资助项目计划书填报说明》并按要求填写《国家自然科学

。对于有修改意见的项目，请您按修改基金资助项目计划书》（以下简称计划书）

意见及时调整计划书相关内容；如您对修改意见有异议，须在电子版计划书报送截

止日期前向相关科学处提出。

请您将电子版计划书通过科学基金网络信息系统（https://grants.nsfc.gov.

cn）提交，由依托单位审核后提交至自然科学基金委。自然科学基金委审核未通过

者，将退回的电子版计划书修改后再行提交；审核通过者，打印纸质版计划书（一

式两份，双面打印）并在项目负责人承诺栏签字，由依托单位在承诺栏加盖依托单

位公章，且将申请书纸质签字盖章页订在其中一份计划书之后，一并报送至自然科

学基金委项目材料接收工作组。纸质版计划书应当保证与审核通过的电子版计划书

内容一致。自然科学基金委将对申请书纸质签字盖章页进行审核，对存在问题的，

允许依托单位进行一次修改或补齐。

向自然科学基金委提交电子版计划书、报送纸质版计划书并补交申请书纸质签

字盖章页截止时间节点如下：

1． 提交电子版计划书的截止时间；2023年9月7日16点：

2． 提交修改后电子版计划书的截止时间；2023年9月14日16点：

3． 报送纸质版计划书（一式两份，其中一份包含申请书纸质2023年9月21日：

签字盖章页）的截止时间。

4． 报送修改后的申请书纸质签字盖章页的截止时间。2023年10月7日：
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国家自然科学基金委员会

2023年8月24日

请按照以上规定及时提交电子版计划书，并报送纸质版计划书和申请书纸质签

字盖章页，逾期不报计划书或申请书纸质签字盖章页且未说明理由的，视为自动放

弃接受资助；未按要求修改或逾期提交申请书纸质签字盖章页者，将视情况给予暂

缓拨付经费等处理。

附件：项目评审意见及修改意见表
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广东省基础与应用基础研究基金项目合同书

（广东科技微信公众号） （查看合同书信息）

广东省基础与应用基础研究
基金委员会

二〇二〇年制

（受理纸质材料二维码）（广东科技微信公众号） （查看合同书信息）

广东省基础与应用基础研究
基金委员会

二〇二〇年制

（受理纸质材料二维码）

广东省基础与应用基础研究基金项目

合同书

项目名称： 面向多智能体系统的动态事件触发分布式优化容错控制方法

项目类别： 区域联合基金-青年基金项目

项目起止时间： 2021-10-01  至   2024-09-30

管理单位（甲方）： 广东省基础与应用基础研究基金委员会

依托单位（乙方）： 广东工业大学

通讯地址： 广东省广州市越秀区东风东路729号大院

邮政编码： 510006 单位电话： 020-39322711-000

项目负责人： 张勇威 联系电话： 13247669804

广东省基础与应用基础研究基金项目

合同书

项目名称： 面向多智能体系统的动态事件触发分布式优化容错控制方法

项目类别： 区域联合基金-青年基金项目

项目起止时间： 2021-10-01  至   2024-09-30

管理单位（甲方）： 广东省基础与应用基础研究基金委员会

依托单位（乙方）： 广东工业大学

通讯地址： 广东省广州市越秀区东风东路729号大院

邮政编码： 510006 单位电话： 020-39322711-000

项目负责人： 张勇威 联系电话： 13247669804

受理编号: c212019102400000603

项目编号: 2021A1515110022

文件编号: 粤基金字〔2021〕24号
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广东省基础与应用基础研究基金项目合同书

填写说明

  一、项目合同书/任务书内容原则上要求与申报书相关内容保持一致，不得无故修改。

  二、项目承担单位通过广东省科技业务管理阳光政务平台下载项目合同书/任务书，按要求完成
签名盖章后提交至省科技厅受理窗口。

  三、签名盖章说明。请分别在单位工作分工及经费分配情况页、人员信息页、签约各方页等地方
按要求签字或盖章，签章不合规或错漏将不予受理。其中，人员信息页要求所有参与人员本人亲笔
签名，代签或印章无效，漏签将不予受理。

  四、本合同书/任务书自签字并加盖公章之日起生效，各方均应负本任务书的法律责任，不应受
机构、人事变动影响。
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广东省基础与应用基础研究基金项目合同书

一、主要研究内容和要达到的目标

本项目主要研究带执行器故障和传感器故障的多智能体系统一致性问题以及编队控制问题。首先，本项

目拟采用Schur分解以及线性矩阵不等式技术为每个智能体设计分布式故障观测器，精确的获得每个智能

体执行器和传感器的故障信息，并从理论上分析观测误差动态的稳定性。其次，针对多智能体系统的优

化容错一致性问题和编队控制问题，根据图论、参考的编队动态以及系统转换得出局部领域协同误差方

程。为了处理系统故障，根据分布式故障观测器观测的执行器故障和传感器故障、局部领域协同误差以

及相邻智能体的协同控制律，为每个智能体设计能表征故障模态的局部性能指标函数，从而将容错控制

问题转换为优化控制问题，并从理论上证明问题转换的等价性。为了节省计算和通信资源，设计动态事

件触发条件，并从理论上分析该条件能避免Zeno现象以及能保证闭环系统的稳定性。为了获得优化容错

控制器，本项目将采用单评判网络近似性能指标函数，并设计分布式策略迭代算法求解耦合的HJB方程，

进而得到每个智能体的动态事件触发分布式优化容错控制器。在稳定性分析方面，本项目将从理论上分

析分布式策略迭代算法的收敛性和最优性、神经网络权重误差动态和局部领域协同误差动态的稳定性。

最后，本项目将利用Python、Matlab、C++等软件平台，结合NAO机器人、无人机和智能小车等实物平台

。设计不同的协同任务，如一致性跟踪、编队飞行以及编队驾驶等，对所提出的动态事件触发分布式优

化容错一致性控制方法以及编队控制方法进行实物验证。

2/12
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广东省基础与应用基础研究基金项目合同书

二、项目预期获得的研究成果及形式

论文及专著情
况

国家统计源刊物以上刊物
发表论文（篇）

5 科技报告（篇） 2

其中被SCI/EI/ISTP收录
论文数（篇）

5 培养人才（人）

专著（册） 引进人才（人）

专利情况(项)

发明专利 实用新型专利 外观设计专利 国外专利

申请 授权 申请 授权 申请 授权 申请 授权

2

      其他

3/12
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广东省基础与应用基础研究基金项目合同书

三、项目进度和阶段目标

（一）项目起止时间： 2021-10-01 至 2024-09-30

（二）项目实施进度及阶段主要目标: 

开始日期 结束日期 主要工作内容

2021-10-01 2022-12-01

利用Schur分解技术和线性矩阵不等式技术设计分布式故障观测器，得到每个

智能体精确的故障信息。给出定理详细分析观测误差的稳定性。依据观测器得

出的故障信息，设计能表征故障的性能指标函数，设计分布式策略迭代算法，

得出最优容错控制器实现MASs的一致性控制和编队飞行控制。

2023-01-01 2023-12-01
选取合适的内部变量，设计动态事件触发条件，给出定理详细分析该触发条件

下闭环系统的稳定性以及Zeno行为，进而得出动态事件触发最优容错控制器。

2024-01-01 2024-09-30

对提出的控制方法，利用Python、Matlab语言编写算法程序进行数值仿真，并

利用C++语言编写NAO机器人、无人机和智能小车的接口程序，在实物上验证算

法的有效性。最后整理科研成果，完成总结报告。
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广东省基础与应用基础研究基金项目合同书

四、项目总经费及省基金委经费预算

（一）省基金委经费下达总额： （大写）壹拾万圆整；（小写 ）10万元;

（二）省基金委经费年度下达计划：

年度   年2021   年   年   年   年

经费(万元) 10.00         

（三）总经费及省基金委经费开支预算计划：

经费筹集情况： （单位：万元）

省基金委经费
自筹资金

合计
自有资金 贷款 地方政府投入 其它

10.00 0.00 0.00 0.00 0.00 10.00

政府部门、境外
资金及其他资金
投入情况说明：

    无

与本项目相关的其他经费来源 （单位：万元）

其他计划资助经费： 0.00

单位配套经费： 0.00

其他经费资助： 0.00

其他经费来源合计：

5/12
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广东省基础与应用基础研究基金项目合同书

注：青年基金项目试点实施“包干制”，经费支出不设科目比例限制，由项目研究团队自主调剂
使用，按照省科研项目经费“包干制”管理有关规定执行，同时应符合以下要求：
（1）经费支出应实际用于项目研究支出，使用范围限于设备费、材料费、测试化验加工费、燃
料动力费、差旅/会议/国际合作与交流费、出版/文献/信息传播/知识产权事务费、劳务费、专
家咨询费、依托单位管理费用、绩效支出以及其他合理支出。
（2）经费支出应按照省级财政科研项目资金开支范围和标准使用；
（3）间接经费支出比例按照省级财政科研项目资金管理有关规定执行；
（4）不得列支基建费；
（5）项目验收时应提交经费决算表。
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广东省基础与应用基础研究基金项目合同书

七、合同条款

  第一条 甲方与乙方根据《中华人民共和国民法典》及国家有关法规和规定，按照《广东省科学技术

厅关于广东省基础与应用基础研究基金（省自然科学基金、联合基金等）项目管理的实施细

则（试行）》《广东省省级科技计划项目验收结题工作规程（试行）》等规定，为顺利完成

（ ）年 专项项目（文件编号2021 面向多智能体系统的动态事件触发分布式优化容错控制方法

：  ）经协商一致，特订立本任务书，作为甲乙双方在项目实施管理粤基金字〔2021〕24号

过程中共同遵守的依据。

  第二条 甲方的权利义务：

1.按任务书规定进行经费核拨的有关工作协调。

2.根据甲方需要，在不影响乙方工作的前提下，定期或不定期对乙方项目的实施情况和经费

使用情况进行检查或抽查。

3.根据《广东省科研诚信管理办法(试行)》等规定对乙方进行科技计划信用管理。

9/12
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广东省基础与应用基础研究基金项目合同书

  第三条 乙方的权利义务：

1.确保落实自筹经费及有关保障条件。

2.按任务书规定，对甲方核拨的经费实行专款专用，单独列账，并随时配合甲方进行监督检

查。

3.应按照国家和省有关规定，制定经费使用“包干制”内部管理规定；项目经费支出应实际

用于研发活动相关支出，使用范围限于设备费、材料费、测试化验加工费、燃料动力费、差

旅/会议/国际合作与交流费、出版/文献/信息传播/知识产权事务费、劳务费、专家咨询费

、依托单位管理费用、绩效支出以及其他合理支出；管理费用根据实际管理支出情况与项目

负责人协商确定；绩效支出由项目负责人根据实际科研需要和相关薪酬标准自主确定，单位

按照现行工资制度进行管理；其余用途经费无额度限制，由项目负责人根据实际需要自主决

定使用；项目验收时应提交经费决算表。

4.对项目负责人按计划开展项目研究和规范使用资金进行监督管理，经费使用按照《广东省

财政厅 广东省审计厅关于省级财政科研项目资金的管理监督办法》等规定进行管理。

5.使用财政资金采购设备、原材料等，按照《广东省实施〈中华人民共和国招标投标法〉办

法》有关规定，符合招标条件的须进行招标。

6.项目任务书任务完成后，或任务书规定的任务、指标及经费投入等提前完成的，乙方可提

出验收结题申请，并按甲方要求做好项目验收结题工作。

7.若项目发生需要终止结题的情况，乙方须提出终止结题申请，并按甲方要求做好项目终止

结题工作。

8.在每年规定时间内向甲方如实提交上年度工作情况报告，报告内容包含上年度项目进展情

况、经费决算和取得的成果等。

9.按照国家和省有关规定，提交科技报告及其他材料。

10.利用甲方的经费获得的研究成果，项目负责人和参与者应当注明获得“广东省基础与应

用基础研究基金（英文：Guangdong Basic and Applied Basic Research

Foundation）（项目编号）”资助或作有关说明。

11.乙方要恪守科学道德准则，遵守科研活动规范，践行科研诚信要求，不得抄袭、剽窃他

人科研成果或者伪造、篡改研究数据、研究结论；不得购买、代写、代投论文，虚构同行评

议专家及评议意见；不得违反论文署名规范，擅自标注或虚假标注获得科技计划（专项、基

金等）等资助；不得弄虚作假，骗取科技计划（专项、基金等）项目、科研经费以及奖励、

荣誉等；不得有其他违背科研诚信要求的行为。 

12.确保本项目开展的研究工作符合我国科研伦理管理相关规定。

  第四条 在履行本任务书的过程中，如出现广东省相关政策法规重大改变等不可抗力情况，甲方有权

对所核拨经费的数量和时间进行相应调整。

  第五条 在履行本任务书的过程中，当事人一方发现可能导致项目整体或部分失败的情形时，应及时

通知另一方，并采取适当措施减少损失，没有及时通知并采取适当措施，致使损失扩大的，

应当就扩大的损失承担责任。

  第六条 本项目技术成果的归属、转让和实施技术成果所产生的经济利益的分享，除双方另有约定外

，按国家和广东省有关法规执行。
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广东省基础与应用基础研究基金项目合同书

  第七条 根据项目具体情况，经双方另行协商订立的附加条款，作为本任务书正式内容的一部分，与

本任务书具有同等效力。

    第八条 本任务书一式三份，各份具有同等效力。甲、乙方及项负责人各执一份，三方签字、盖章后

即生效，有效期至项目结题后一年内。各方均应负任务书的法律责任，不应受机构、人事变

动的影响。

    第九条 乙方必须接受甲方聘请的本项目任务书监理单位的监督和管理。监理单位按照甲方赋予的权
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Model-Free Game-Based Dynamic Event-Driven
Safety-Critical Control of Unknown

Nonaffine Systems
Yongwei Zhang , Weifeng Zhong , Guoxu Zhou , Lihua Xie , Fellow, IEEE, and Shengli Xie , Fellow, IEEE

Abstract— In this paper, the model-free dynamic event-driven
safe (MFDEDS) control of unknown nonaffine systems with
state and input constraints is investigated via adaptive dynamic
programming. To begin with, by introducing a dynamic com-
pensator and performing system transformation, the safe control
problem with state and input constraints is transformed into an
optimal regulation problem of an unconstrained system. After-
wards, an integral reinforcement learning algorithm is applied
to the unconstrained system to derive an optimal safe control
policy independent of the original system model, which achieves
model-free approximate optimal control for the original system.
To conserve computing and communication resources, a novel
game-based dynamic event-driven mechanism is established,
which models the control policy and the event-driven error as
players in a zero-sum game, with the aim of obtaining the
worst event-driven error to maximize the triggering interval.
Furthermore, an approximate solution to the Hamilton-Jacobi-
Bellman equation is derived by constructing a single-critic
learning structure, which results in an approximate optimal safe
control policy. Theoretical analysis demonstrates that the pro-
posed MFDEDS control scheme ensures the closed-loop system
is asymptotically stable. Ultimately, the efficacy of the developed
approach is corroborated through two simulation examples.

Index Terms— Adaptive dynamic programming, safe-critical
control, dynamic event-driven control, neural networks.

I. INTRODUCTION

IN MODERN engineering applications, safety-critical sys-
tems (SCSs) are prevalent across various fields such as

aerospace, automotive, healthcare, and industrial automation,
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where the stability and the safety of these systems are directly
linked to the security of human life and property. For instance,
in the aerospace sector, the flight trajectory of a spacecraft
must consistently remain within the designated safe set, and
any deviation from this safety range could potentially result
in a collision with other objects. In the realm of industrial
robotics, robots must constantly avoid entering hazardous
zones while collaborating with human workers to prevent
accidental collisions and personal injuries. However, numerous
SCSs exhibit complex characteristics, such as strong nonlinear-
ity, unknown dynamics, and saturation constraints, which pose
significant challenges for traditional control methodologies to
guarantee the stability and safety of these systems throughout
their operational processes.

In recent years, an increasing number of researchers have
been dedicated to developing effective safety control methods.
Sun et al. [1] addressed the safety-critical control prob-
lem of both continuous and sampled-data systems affected
by time-varying disturbances by developing a composite
controller that includes disturbance compensation and state
feedback components. Lu et al. [2] introduced a universal bar-
rier function to transform the state-constrained system into an
equivalent unconstrained form and developed a switched-type
auxiliary controller to guarantee the tracking performance.
Wang et al. [3] tackled the finite-time tracking control problem
for switched systems with full state constraints by adopting
backstepping technique and barrier Lyapunov functions. Based
on the aforementioned research findings, it is evident that the
introduction of barrier functions can effectively ensure that the
states of SCSs remain within designated safe sets. However,
a growing number of practical systems are now equipped
with microprocessors that possess limited communication and
computational capabilities. Consequently, there is an urgent
need to present efficient and energy-saving control methods
that can guarantee the safety and stability of SCSs while
minimizing computational, communication, and control costs
to the greatest extent possible.

Over the past two decades, adaptive dynamic programming
(ADP) has attracted considerable attention from researchers
as an effective methodology to tackle optimal control prob-
lems for complex nonlinear systems [4], [5], [6], [7]. It has
been successfully applied to a range of challenges, including
optimal regulation [8], [9], trajectory tracking [10], [11], fault-
tolerant control [12], [13], and differential game [14], [15].
By integrating iterative algorithms with neural networks, ADP
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facilitates the online derivation of optimal control policies
for nonlinear system, thereby ensuring system stability while
simultaneously minimizing control costs. For SCSs, early
research predominantly tackled the challenges associated with
state and control input constraints through the utilization of
barrier functions and the design of nonquadratic performance
index functions. For instance, Zhao et al. [16] designed a
feedforward neural network compensator to address optimal
regulation problem for an unknown nonlinear system with
uncertain input constraints. Xue et al. [18] developed a dis-
counted nonquadratic performance index function to handle
the nonzero-sum game problem with asymmetry input con-
straints. Qin et al. [17] introduced a novel barrier function
to address the multiplayer Stackelberg—Nash games problem
subject to time-varying state constraints. The aforementioned
methods primarily focus on a single type of constraint.

It is noteworthy that real-world systems are typically
subjected to both state and control input constraints simultane-
ously. For instance, in autonomous driving systems, the speed
and acceleration of the vehicle, regarded as state variables,
are constrained by road conditions and traffic regulations.
Additionally, control inputs, such as throttle and brake signals,
also encounter limitations due to mechanical characteristics
and safety standards. To date, only a limited number of
researchers have employed the ADP technique to address safe
control issues that encompass both state and control input
constraints. For example, Yang et al. [19] solved the H∞

control problem of SCSs with state and input constraints by
employing the barrier function-based system transformation
method and developing a nonquadratic performance index
function. It is noteworthy that the majority of existing opti-
mal safe control (OSC) methods rely on system models.
In practice, obtaining an accurate system model is often
challenging. Furthermore, even if a model is available, the
prolonged operation of the system in complex environments
inevitably leads to model uncertainties. Therefore, it is essen-
tial to conduct further research on model-free OSC approaches.
Currently, in situations when the system model is unknown,
a neural network-based identifier is constructed to approx-
imate the system model. Nonetheless, the incorporation of
these identifiers introduces additional complexity into the
control methodologies. In addition, researchers have proposed
model-free iterative algorithms, such as Q-learning [20] and
policy gradient [21], which can realize model-free control
since the designed control policy does not contain the control
input function. However, existing methods have not yet taken
safety into account.

It is widely recognized that event-driven control effectively
reduces the update frequency of controllers, which mitigates
the computational and communication burdens [22], [23],
[24]. Currently, researchers have developed ADP-based con-
trol policies that operate under static event-driven, dynamic
event-driven, and self-driven mechanisms to address vari-
ous types of control issues. Peng et al. [25] developed
a reinforcement learning-based event-driven control scheme
to investigate the distributed tracking control of multiagent
systems. Xia et al. [26] explored the input-constrained syn-
chronization problem of heterogeneous multiagent systems

under the dynamic event-driven mechanism. Zhao et al. [27]
developed a self-driven optimal neuro-control approach for
nonlinear systems to avoid continuous monitoring of the
system state. The existing methods typically formulate the
event-driven condition based on Lyapunov stability principle
to determine the instants at which events occur. In practi-
cal applications, to significantly reduce computational and
communication burdens, researchers aspire to maximize the
event-driven error while ensuring system stability and con-
trol performance, thereby achieving a larger triggering time
interval. In order to achieve this requirement, a modest num-
ber of scholars have developed optimal triggering thresholds
within the game framework to obtain the worst-case triggering
interval [28], [29]. However, the exploration of this method is
still in its nascent stages. From the above discussion, it can
be seen that the existing OSC approaches are limited by
considering only a single type of constraint and relying on
precise system models. Moreover, there is a lack of research on
event-triggered safe control methods. In practical applications,
the precise model of the SCS is difficult to obtain and is
prone to being affected by compound constraints. Therefore,
we aim to propose an OSC method that can handle complex
constraints under the event-triggered mechanism, which will
minimize the consumption of computational and communica-
tion resources while ensuring the stability and safety of the
SCS. This also motivates our research.

This article presents an ADP-based model-free dynamic
event-driven safe (MFDEDS) control scheme to address the
OSC problem of unknown SCSs with state and control input
constraints. The innovations and contributions of this paper
are outlined as follows.

1) Compared with existing model-based OSC meth-
ods [16], [17], [18], this paper proposes a model-free
OSC approach by combining the dynamic compen-
sator and the integral reinforcement learning algorithm.
Through appropriate system transformations, the OSC of
unknown SCSs with both state and input constraints is
converted into an optimal regulation of an unconstrained
system.

2) Unlike existing methods [18], [19] that are only applica-
ble to affine SCSs, the proposed ADP-based MFDEDS
approach can be applied to nonaffine forms, which effec-
tively expands the applicability of the control approach
and enhances its practicality.

3) This paper introduces a novel game-based dynamic
event-driven mechanism, wherein the control policy
and the event-driven error are modeled as players in
a zero-sum game, aiming to obtain the worst event-
driven error. In contrast to conventional event-driven
control methods [22], [23], [24], the developed dynamic
event-driven approach endeavors to maximize the trig-
gering time interval while maintaining the stability of
the SCSs, thereby effectively conserving computational
and communication resources.

The structure of the subsequent sections of this paper
is organized as follows. Section II presents the problem
statement. Section III introduces the game-based dynamic

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on July 13,2025 at 11:45:33 UTC from IEEE Xplore.  Restrictions apply. 

第47页



ZHANG et al.: MODEL-FREE GAME-BASED DYNAMIC EVENT-DRIVEN SAFETY-CRITICAL CONTROL 3

event-driven mechanism and outlines the OSC policy derived
from this mechanism. Furthermore, the neural network imple-
mentation process is described in detail, along with a
theoretical analysis of the stability of the SCS and a discussion
of Zeno behavior. Section IV showcases simulation experi-
ments conducted to validate the properties of the ADP-based
MFDEDS control approach. Finally, Section V provides con-
cluding remarks.

II. PROBLEM STATEMENT

Consider the unknown nonaffine SCS as

Ẋ (t) = F
(
X (t), µo(t)

)
, (1)

where X (t) ∈ Xs ⊂ Rn is the constrained system state,
µo(t) ∈ Us ⊂ Rm is the constrained control policy, F(·) ∈ Rn

is an unknown nonlinear system function, Xs and Us denote
the safe sets of the system state and the control policy, which
are defined as

Xs ≜
{
[X1, . . . ,Xn]

T
∈ Rn

|

αx,i ≤ Xi ≤ αx,i , i = 1, 2, . . . , n
}
,

Us ≜
{
[µo,1, . . . , µo,m]

T
∈ Rm

|

αµ, j ≤ µo, j ≤ αµ, j , j = 1, 2, . . . ,m
}
, (2)

where αx,i and αx,i represent the lower and upper bounds of
the system state components, while αµ,i and αµ,i denote the
lower and upper bounds of the control policy components.

Objective 1: This paper aims to propose an ADP-based
MFDEDS control approach to guarantee the stability of the
unknown nonaffine SCS in an efficient and resource-saving
manner, while ensuring that the system state and the control
policy remain within the safe sets.

To relax the requirement for precise system information,
we introduce a dynamic compensator as

µ̇o(t) = G
(
X (t), µo(t)

)
, (3)

where G(·, ·) ∈ Rm is a Lipschitz continuous function and
satisfies G(0, 0) = 0. Let Z = [X , µo]

T
∈ Rn+m be the new

system state, an augmented SCS is constructed as

Ż(t) = Fz(Z)+ Gz(Z)µa, (4)

where µa = µ̇o,

Fz(Z) =

[
F(X , µo)

0m

]
,Gz(Z) =

[
0n×m
Im×m

]
. (5)

Based on the findings presented in [30] and [31], we can infer
that if the augmented SCS (4) is stable, then the stability of
nonaffine SCS (1) can be ensured. Therefore, Objective 1 is
transformed into the following Objective 2.

Objective 2: Devising a control policy µa that not only
preserves the stability of (4) but also ensures that the new
augmented state remains within the designated safe set. Con-
sequently, the stability of the nonaffine SCS (1) is guaranteed,
and both the state and the control policy µo can be maintained
within the safe sets.

To achieve Objective 2, we will introduce the barrier func-
tion to further transform the augmented SCS (4). To begin
with, the definition and properties of the barrier function are
given as follows.

Definition 1: We introduce the barrier function B(z;w,W),
where z ∈ (w,W), w and W are two constants satisfying w <
W . Note that the barrier function has the following properties

B(z;w,W) = ln
(
W
w

w − z
W − z

)
,B(0;w,W) = 0,

lim
z→w+

B(z;w,W) = −∞, lim
z→W−

B(z;w,W) = +∞. (6)

The inverse function and the derivative of the barrier func-
tion are formulated as

B−1(z;w,W) = wW
e

z
2 − e−

z
2

we
z
2 −We−

z
2
, (7)

dB−1(z;w,W)

dz
=

Ww2
− wW2

w2ez − 2wW +W2e−z . (8)

Based on the barrier function, we perform the following
transformation on the augmented SCS state as

Si = B(Zi ;wi ,Wi ), (9)

Zi = B−1(Si ;wi ,Wi ), (10)

where Zi denotes the i th component of the augmented SCS
state, Si refers to the corresponding unconstrained SCS state,
wi and Wi indicate the lower and upper bounds of the safe
set, which satisfy

Wi = αx,i , 1 ≤ i ≤ n, Wi = αµ,i , n + 1 ≤ i ≤ m + n,

wi = αx,i , 1 ≤ i ≤ n, wi = αµ,i , n + 1 ≤ i ≤ m + n.

Subsequently, the dynamics of the unconstrained SCS state is
expressed as

Ṡi =
dZi

dt
/

dZi

dSi

=
Fz,i + Gz,iµa

dB−1(z;wi ,Wi )
dz |z=Si

=
(
Fz,i + Gz,iµa

)
Ei (Si , wi ,Wi ), (11)

where Fz,i and Gz,i represent the i th row of Fz(Z) and Gz(Z),
and

Ei (Si , wi ,Wi ) =
W2

i e−Si − 2wiWi + w2
i eSi

Wiw
2
i − wiW2

i
. (12)

Let S = [S1, . . . ,Sn+m]
T, the unconstrained SCS is estab-

lished as

Ṡ = Fs(S)+ Gs(S)µa, (13)

where

Fs(S) = [E1(S1, w1,W1)Fz,1, . . . ,

En(Sn+m, wn+m,Wn+m)Fz,n+m]
T,

Gs(S) = [E1(S1, w1,W1)Gz,1, . . . ,

En(Sn+m, wn+m,Wn+m)Gz,n+m]
T.

By employing the barrier function-based system transforma-
tion approach, the state-constrained augmented system (4) is
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reformulated as the unconstrained SCS system (13). Therefore,
Objective 2 is further refined into Objective 3 as follows.

Objective 3: Developing a control policy µa that ensures
the unconstrained SCS (13) is stable, thereby guaranteeing the
stability of the augmented SCS system (4), while maintaining
the system state within the designated safe set.

Remark 1: The first system transformation involves incor-
porating a dynamic compensator (3), where the control input
and the original system state are treated as a new state of
the transformed system. This transformation aims to con-
vert a nonaffine system into an affine form. Furthermore,
by applying an integral reinforcement learning algorithm to the
transformed system, an optimal control policy can be obtained
even when the original system model is unknown. The second
system transformation introduces a barrier function, with the
aim of converting the constrained nonlinear system into an
unconstrained form, thereby addressing the system state and
control input constraints simultaneously. Through these two
system transformations, the original optimal safe control prob-
lem of an unknown nonaffine system with state and control
input constraints is transformed into an optimal regulation
problem of an unconstrained affine system.

Remark 2: It is worth mentioning that barrier functions are
typically designed based on the natural logarithm function
ln(·), that is, ln(·) = loge(·). For instance, b1(x, k) =

1
2 ln( k2

k2−x2 ) and b2(x, l, h) = ln[(ex
− el)/(eh

− ex )] in [19],
where x is the system state or control input, k, l, and h
are restricted boundaries. The purpose of barrier functions
is to ensure that the system state or control input remains
within specified bounds. However, traditional methods intro-
duce the barrier function into the Lyapunov function, which
can only handle a single type of constraint. To address both
the constrained system state and control input simultaneously,
this paper adopts a barrier function-based system transfor-
mation approach, which transforms the constrained system
into an unconstrained one. Therefore, in order to ensure the
transformed system conforms to the properties of traditional
nonlinear systems, the designed barrier function needs to
satisfy the following properties. 1) B(0;w,W) = 0, which
ensures that the origin of the transformed system remains a
zero equilibrium point. 2) The inverse function of B(·) exists
and is unique, ensuring that the original system state and the
transformed system state are in a one-to-one correspondence.
3) When the system state or control input approaches the
boundary, the value of the barrier function tends to infinity.
Moreover, when the system state or control input is within the
boundary, the value of the barrier function remains finite. Only
when these two properties are satisfied, the stability of the
closed-loop system can be guaranteed while the system state
or control input is ensured within the specified boundary. It is
worth noting that traditional barrier functions, such as b1(·)

and b2(·), cannot simultaneously satisfy all three properties.
For instance, b1(·) only satisfies Properties 1 and 3, while
b2(·) only satisfies Properties 2 and 3. Consequently, these
traditional barrier functions can only address either a single
system state or control input constraint problem, but not both
at the same time. In contrast, the barrier function designed in
this paper satisfies all three properties, enabling the problem

of system state and control input constraint can be solved
simultaneously by using the barrier function-based system
transformation method.

III. ADP-BASED MODEL-FREE DYNAMIC EVENT-DRIVEN
SAFE CONTROL DESIGN

A. Model-Free Dynamic Event-Driven Safe (MFDEDS)
Control Policy Design

In this section, we aim to develop an OSC policy for
the unconstrained SCS (13) under a novel dynamic event-
driven mechanism. Denote {Tk}

∞

k=0 as a sequence of triggering
moments. The sampled state of the unconstrained SCS is
presented as

S̄k(t) = S(Tk), Tk ≤ t < Tk+1. (14)

Therefore, the sampled control policy is symbolized as µ̄a,k =

µa(Tk). The event-driven error of the system state and the
control policy are defined as

es,k = S̄k(t)− S(t), eµ,k = µ̄a,k(t)− µa(t). (15)

Afterwards, the event-based unconstrained SCS is built as

Ṡ = Fs(S)+ Gs(S)µa + Gs(S)eµ,k . (16)

In practical applications, a larger event-driven error implies
fewer control policy updates, which can save more com-
putational and communication resources. Hence, we aim to
maximize the event-driven error as much as possible. However,
a larger event-driven error may affect the stability of the
unconstrained SCS. In this context, for the unconstrained
SCS (13), µa and eµ,k can be viewed as two players in a
zero-sum game, that is, µa aims to ensure the system stability
while minimizing the performance index function, and eµ,k
attempts to maximize the performance index function.

The performance index function of (16) is formulated as

P(S) =

∫
∞

t
C
(
S(~), µa(~), eµ,k(~)

)
d~

=

∫
∞

t

(
ST(~)M1S(~)+ µT

a (~)M2µa(~)

− γ 2eT
µ,keµ,k

)
d~, (17)

where γ is a positive constant, M1 ∈ Rn×n and M2 ∈ Rm×m

are positive definite matrices.
The Hamiltonian of the system (16) is defined as

H
(
S,∇P(S), µa, eµ,k

)
= C(S, µa)

+ ∇PT(S)
(
Fs(S)+ Gs(S)µa + Gs(S)eµ,k

)
, (18)

Therefore, the optimal performance index function

P∗(S) = min
µa

max
eµ,k

∫
∞

t

(
ST(κ)M1S(κ)+ µ∗T

a (κ)M2µ
∗
a(κ)

− γ 2e∗T
µ,ke∗

µ,k

)
dκ

satisfies

min
µa

max
eµ,k

H
(
S,∇P(S), µa, eµ,k

)
= 0. (19)
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Thus, the OSC policy and the worst event-driven error are
derived as

µ∗
a = −

1
2
M−1

2 GT
s (S)∇P∗(S), (20)

e∗

µ,k =
1

2γ 2G
T
s (S)∇P∗(S). (21)

Based on (20) and (21), the Hamilton-Jacobi-Bellman equation
is given by

0 = STM1S + µ∗T
a M2µ

∗
a − γ e∗T

µ,ke∗

µ,k

+ ∇P∗T(S)
(
Fs(S)+ Gs(S)(µ∗

a + e∗

µ,k)
)
. (22)

It is noteworthy that (22) is a complex partial differen-
tial equation, which poses challenges in obtaining a direct
solution. Furthermore, the primary dynamics Fs(S) of the
unconstrained SCS (13) is necessary to solve the (22), which
means that all information in the nonaffine SCS (1) is required.
To facilitate model-free control, we will employ integral rein-
forcement learning technique on the unconstrained SCS (13),
thereby deriving an OSC policy that relies exclusively on
the constant matrix Gs , thus eliminating the need of system
information of the nonaffine SCS (1).

For a positive interval T, the performance index func-
tion (17) is represented as

P
(
S(t)

)
=

∫ t+T

t
C
(
S(~), µa(~), eµ,k(~)

)
d~

+ P
(
S(t + T)

)
. (23)

Afterwards, the optimal performance index function satisfies

P∗
(
S(t + T)

)
− P∗

(
S(t)

)
+

∫ t+T

t
C
(
S(~), µ∗

a(~), e∗

µ,k(~)
)
d~ = 0. (24)

Guided by [18], we can infer that (22) and (24) are equiv-
alent, which implies that the OSC policy can be derived by
addressing (24), thus the nonaffine SCS information is not
required.

According to the worst event-driven error (21), a novel
dynamic event-driven condition is formulated as

Tk+1 = inf{t > Tk : βDp(t)+Dc(S, eµ,k) ≤ 0}, (25)

where β > 0, Dp(t) is a dynamic variable and

Dc(S, eµ,k) =
1

4γ 4 ∇P∗TGsGT
s ∇P∗

− γ 2eT
µ,keµ,k .

Note that the dynamic variable is generated by

Ḋp(t) = −αDp(t)+Dc(S, eµ,k), (26)

where α is a positive constant and Dp(0) > 0. Inspired
by [33] and [34], if the dynamic variable is gener-
ated in accordance with (26), it will remain strictly
positive.

Remark 3: Note that the zero-sum game and the H∞ prob-
lem are equivalent, that is, finding a control policy that not only

ensures the stability of (13) but also guarantees the existence
of an L2 gain no larger than γ , that is∫

∞

0

(
ST(κ)M1S(κ)+ µT

a (κ)M2µa(κ)
)

dκ

≤ γ 2
∫

∞

0
∥eµ,k∥2dκ. (27)

In other words, if condition (27) holds, we say that the
system (13) has an L2 gain not exceeding γ . Furthermore,
based on the Theorem 16 and the Remark 19 in [32], we can
conclude that P∗(S) is positive definite.

Theorem 1: Consider the unconstrained SCS (13), the OSC
control policy (20) and the worst event-driven error (21), if the
dynamic event-driven condition (25) is valid and the following
inequation holds

λmin(M1) >
1

4γ 4 c2
1Ḡ

2
s , (28)

where c1 and Ḡs are positive constants, then the unconstrained
SCS is guaranteed to be asymptotically stable.

Proof. The candidate function of the Lyapunov’s method
is chosen as

L1 = P∗(S)+Dp(t). (29)

By computing the derivative of (29) and combining it
with (13), we can derive

L̇1 = ∇P∗T(S)
(
Fs(S)+ Gs(S)µa(Tk)

)
+ Ḋp(t)

= ∇P∗T(S)
(
Fs(S)+ Gs(S)µ∗

a + Gs(S)eµ,k
)
+ Ḋp(t)

= ∇P∗T(S)
(
Fs(S)+ Gs(S)µ∗

a + Gs(S)e∗

µ,k

− Gs(S)e∗

µ,k + Gs(S)eµ,k
)

+ Ḋp(t). (30)

In accordance with (21) and (22), the subsequent results can
be derived

∇P∗T(S)
(
Fs(S)+ Gs(S)µ∗

a + Gs(S)e∗

µ,k

)
= −STM1S − µ∗T

a M2µ
∗
a + γ 2e∗T

µ,ke∗

µ,k, (31)

2γ 2e∗

µ,k = GT
s (S)∇P∗(S). (32)

By incorporating (31) and (32) into (30), we additionally
obtain

L̇1 = −STM1S − µ∗T
a M2µ

∗
a + γ 2e∗T

µ,ke∗

µ,k

+ ∇P∗T(S)Gs(S)(eµ,k − e∗

µ,k)+ Ḋp(t)

= −STM1S − µ∗T
a M2µ

∗
a + γ 2e∗T

µ,ke∗

µ,k

+ 2γ 2e∗T
µ,k(eµ,k − e∗

µ,k)+ Ḋp(t)

= −STM1S − µ∗T
a M2µ

∗
a + γ 2e∗T

µ,ke∗

µ,k

+ 2γ 2e∗T
µ,keµ,k − 2γ 2e∗T

µ,ke∗

µ,k + Ḋp(t)

= −STM1S − µ∗T
a M2µ

∗
a − γ 2e∗T

µ,ke∗

µ,k

+ 2γ 2e∗T
µ,keµ,k + Ḋp(t)

≤ −STM1S − µ∗T
a M2µ

∗
a − γ 2e∗T

µ,ke∗

µ,k

+ γ 2e∗T
µ,ke∗

µ,k + γ 2eT
µ,keµ,k + Ḋp(t)

≤ −STM1S − µ∗T
a M2µ

∗
a + γ 2eT

µ,keµ,k + Ḋp(t)
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≤ −STM1S − µ∗T
a M2µ

∗
a + γ 2eT

µ,keµ,k − αDp(t)

+
1

4γ 4 ∇P∗TGsGT
s ∇P∗

− γ 2eT
µ,keµ,k

≤ −STM1S − µ∗T
a M2µ

∗
a − αDp(t)

+
1

4γ 4 ∇P∗TGsGT
s ∇P∗

≤ −STM1S +
1

4γ 4 ∇P∗TGsGT
s ∇P∗

≤ −λmin(M1)∥S∥
2
+

1
4γ 4 Ḡ

2
s c2

1∥S∥
2, (33)

where Ḡs is the norm bound of Gs(S) and ∥∇P∗
∥ ≤ c1∥S∥

with a positive constant c1. Thus, drawing upon the finding
of (33), one can ascertain that if condition (28) is fulfilled,
the unconstrained SCS (13) is assured to exhibit asymptotic
stability. The proof is concluded.

B. Neural Network Implementation

Taking into account that the optimal performance index
function remains unknown, we shall subsequently develop
a single-critic learning framework to derive its approximate
counterpart, concurrently obtaining the approximate OSC pol-
icy and the approximate worst event-driven error. Utilizing the
critic neural network, the optimal performance index function
and its approximate version are established as

P∗(S) = ζ ∗T
c ψc(S)+ ςc(S), (34)

P̂(S) = ζ̂T
c ψc(S), (35)

where ζ ∗
c ∈ Rnc signifies the target weight, ζ̂c represents an

approximate value, ψc(S) ∈ Rnc characterizes the activation
function, ςc(S) ∈ R designates the approximation error, and
nc indicates the quantity of hidden layer neurons.

Synthesizing (20), (21), (34) and (35), the event-driven OSC
policy and the worst event-driven error are reformulated as

µ∗
a(Tk) = −

1
2
M−1

2 GT
s (S̄k)(∇ψ

T
c (S̄k)ζ

∗
c + ∇ςc), (36)

e∗

µ,k(Tk) =
1

2γ 2G
T
s (S̄k)(∇ψ

T
c (S̄k)ζ

∗
c + ∇ςc). (37)

The approximate versions of (36) and (37) are presented as

µ̂a(Tk) = −
1
2
M−1

2 GT
s (S̄k)∇ψ

T
c (S̄k)ζ̂c, (38)

êµ,k(Tk) =
1

2γ 2G
T
s (S̄k)∇ψ

T
c (S̄k)ζ̂c. (39)

The temporal difference error is described as

ec = ζ̂T
c

(
ψc

(
S(t + T)

)
− ψc

(
S(t)

))
+

∫ t+T

t
C
(
S(τ ), µ̂a(τ ), êµ,k(τ )

)
dτ. (40)

By employing gradient descent approach to minimize the
temporal difference error, the weight adjustment rule is derived
as

˙̂
ζc = −

αc2

(1 +2T2)2

(
ζ̂T

c 2+ B
(
S, µ̂a(Tk)

))
, (41)

where αc > 0 is the learning rate, and 2 =

ψc
(
S(t + T)

)
− ψc

(
S(t)

)
and B

(
S, µ̂a(Tk)

)
=∫ t+T

t C
(
S(τ ), µ̂a(τ ), êµ,k(τ )

)
dτ .

Building upon the existing findings [35], [38], the weight
adjustment rule (41) guarantees the weight estimation error
ζ̃c = ζ ∗

c − ζ̂c for the critic neural network remains uniformly
ultimately bounded (UUB), which indicates that the approxi-
mate weight is capable of converging to the target weight.

Within the neural network framework, the dynamic
event-driven condition is turned as

Tk+1 = inf{t > Tk : βDp(t)+ D̂c(S, eµ,k) ≤ 0}, (42)

where

D̂c(S, eµ,k) =
1

4γ 4 ζ̂
T
c ∇ψc(S)GsGT

s ∇ψT
c (S)ζ̂c − γ 2eT

µ,keµ,k .

C. Stability Analysis

Next, we establish a theoretical paradigm to rigorously
examine the stability of the unconstrained SCS (13) in the
context of the dynamic event-driven mechanism (42).

Assumption 1: ζ̃c, ζ ∗
c , ∇ψc(S), and ∇ςc(S) satisfy

∥ζ̃c∥ ≤ ζ̄c, ∥ζ ∗
c ∥ ≤ ζ̄cm, ∥∇ψc(S)∥ ≤ ψ̄c, ∥∇ςc(S)∥ ≤ ς̄c,

where ζ̄c, ζ̄cm , ψ̄c, and ς̄c are positive constants [36],
[37], [38].

Remark 4: In Assumption 1, ζ̃c is the critic neural network
estimation error. According to the existing findings [35], [38],
the weight adjustment rule (41) guarantees the weight estima-
tion error is UUB. Therefore, it is reasonable to assume that
ζ̃c is norm-bounded. Furthermore, ζ ∗

c is the optimal weight,
ψc(S) represents the activation function and ςc(S) denotes
the neural network reconstruction error. Since they cannot be
infinite in practice, the assumption of norm-boundedness is
reasonable.

Theorem 2: For the unconstrained SCS (13), the event-
driven OSC policy (36) and the worst event-driven error (37),
and Assumption 1, if the dynamic event-driven condition (42)
is met, then the unconstrained SCS is guaranteed to be stable.

Proof. The Lyapunov function candidate is chosen as

L2T = L2T 1 + L2T 2 = P∗(S)+ P∗(S̄k)+Dp(t). (43)

Part 1: The event is not taken, specifically, t ∈ [Tk, Tk+1).
By performing the time differentiation of equation (43) and
adopting (13), one obtains

L̇2T = ∇P∗T(S)(Fs(S)+ Gs(S)µ̂a(Tk))+ Ḋp(t)

= ∇P∗T(S)(Fs(S)+ Gs(S)µ̂a + Gs(S)eµ,k)+ Ḋp(t)

= ∇P∗T(S)Fs(S)+ ∇P∗T(S)Gs(S)µ̂a

+ ∇P∗T(S)Gs(S)eµ,k + ∇P∗T(S)Gs(S)µ∗
a

+ ∇P∗T(S)Gs(S)e∗

µ,k − ∇P∗T(S)Gs(S)µ∗
a

− ∇P∗T(S)Gs(S)e∗

µ,k + Ḋp(t)

= −STM1S − µ∗T
a M2µ

∗
a + γ 2e∗T

µ,ke∗

µ,k

+ ∇P∗T(S)Gs(S)µ̂a + ∇P∗T(S)Gs(S)eµ,k
− ∇P∗T(S)Gs(S)µ∗

a − ∇P∗T(S)Gs(S)e∗

µ,k + Ḋp(t)
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= −STM1S − µ∗T
a M2µ

∗
a + γ 2e∗T

µ,ke∗

µ,k

+ ∇P∗T(S)Gs(S)(µ̂a − µ∗
a)

+ ∇P∗T(S)Gs(S)(eµ,k − e∗

µ,k)+ Ḋp(t)

= −STM1S − µ∗T
a M2µ

∗
a + γ 2e∗T

µ,ke∗

µ,k

− 2µ∗T
a M2(µ̂a − µ∗

a)+ 2γ 2e∗T
µ,k(eµ,k − e∗

µ,k)+ Ḋp(t)

= − STM1S − µ∗T
a M2µ

∗
a + γ 2e∗T

µ,ke∗

µ,k − 2µ∗T
a M2µ̂a

+ 2µ∗T
a M2µ

∗
a + 2γ 2e∗T

µ,keµ,k − 2γ 2e∗T
µ,ke∗

µ,k + Ḋp(t)

= −STM1S − 2µ∗T
a M2µ̂a + µ∗T

a M2µ
∗
a

+ 2γ 2e∗T
µ,keµ,k − γ 2e∗T

µ,ke∗

µ,k + Ḋp(t). (44)

By applying a straightforward transformation to the second
and third terms in (44), we can get

µ∗T
a M2µ

∗
a − 2µ∗T

a M2µ̂a = (µ∗
a − µ̂a)

TM2(µ
∗
a − µ̂a)

− µ̂T
aM2µ̂a . (45)

By synthesizing (44) and (45), we can further deduce

L̇2T = − STM1S + (µ∗
a − µ̂a)

TM2(µ
∗
a − µ̂a)

− µ̂T
aM2µ̂a − γ e∗T

µ,ke∗

µ,k

+ 2γ 2e∗T
µ,keµ,k + Ḋp(t)

≤ −STM1S + (µ∗
a − µ̂a)

TM2(µ
∗
a − µ̂a)

+ γ 2e∗T
µ,ke∗

µ,k + γ 2eT
µ,keµ,k + Ḋp(t)

≤ −STM1S + (µ∗
a − µ̂a)

TM2(µ
∗
a − µ̂a)

+ γ 2e∗T
µ,pe∗

µ,k + γ 2eT
µ,peµ,k − αDp(t)

+
1

4γ 4 ∇P̂TGsGT
s ∇P̂ − γ 2eT

µ,keµ,k

≤ −STM1S + (µ∗
a − µ̂a)

TM2(µ
∗
a − µ̂a)

+ γ 2e∗T
µ,ke∗

µ,k +
1

4γ 4 ∇P̂TGsGT
s ∇P̂

≤ −STM1S + ∥M2∥∥µ
∗
a − µ̂a∥

2

+ γ 2 1
4γ 4 ∇P∗TGsGT

s ∇P∗

+
1

4γ 4 ∇P̂TGsGT
s ∇P̂. (46)

Utilizing (36) and (38), the second term in (46) is extended
as

∥µ∗
a − µ̂a∥

2
=

∥∥∥ −
1
2
M−1

2 GT
s (S)∇P∗(S)

+
1
2
M−1

2 GT
s (S)∇P̂(S)

∥∥∥2

=

∥∥∥ −
1
2
M−1

2 GT
s (S)(∇ψT

c (S)ζ ∗
c + ∇ςc)

+
1
2
M−1

2 GT
s (S)∇ψT

c (S)ζ̂c

∥∥∥2

=

∥∥∥ −
1
2
M−1

2 GT
s (S)∇ςc

−
1
2
M−1

2 GT
s (S)∇ψT

c (S)ζ̃c

∥∥∥2

= λ1 + λ2. (47)

where λ1 =
1
2∥M−1

2 ∥
2Ḡ2

s ς̄
2
c and λ2 =

1
2∥M−1

2 ∥
2Ḡ2

s ψ̄
2
c ζ̄c.

By incorporating (47) into (46), L̇2T is transformed into

L̇2T ≤ −STM1S + ∥M2∥(λ2 + λ1)

+
1

4γ 2 Ḡ
2
s ∥∇P∗(S)∥2

+
1

4γ 4 Ḡ
2
s ∥∇P̂(S)∥2

≤ −STM1S + ∥M2∥(λ2 + λ1)

+
1

4γ 2 Ḡ
2
s ∥∇ψT

c (S)ζ ∗
c + ∇ςc∥

2

+
1

4γ 4 Ḡ
2
s ∥∇ψT

c (S)ζ̂c∥
2

≤ −STM1S + ∥M2∥(λ2 + λ1)+
1

2γ 2 Ḡ
2
s ψ̄

2
c ζ̄

2
cm

+
1

2γ 2 Ḡ
2
s ς̄

2
c +

1
4γ 4 Ḡ

2
s ψ̄

2
c ζ̄

2
c

≤ −η2
1λmin(M1)∥S∥

2
− (1 − η2

1)λmin(M1)∥S∥
2

+91, (48)

where η1 > 0 and 91 = ∥M2∥(λ2 + λ1) +
1

2γ 2 Ḡ2
s ψ̄

2
c ζ̄

2
cm +

1
2γ 2 Ḡ2

s ς̄
2
c +

1
4γ 4 Ḡ2

s ψ̄
2
c ζ̄

2
c . Hence, L̇2T < 0 if the system state

S lies outside the compact set

�S =

{
S : ∥S∥ ≤

√
91

(1 − η2
1)λmin(M1)

}
. (49)

Part 2: The moment of event occurrence, that is, t = Tk .
Building upon the findings presented in Part 1 and Theorem 2
in [33], we can readily deduce that when the event transpires,
L̇2T persists in being less than 0. The proof is concluded.

In the following, we will demonstrate that under the novel
dynamic event-driven mechanism, the Zeno behavior will be
precluded.

Theorem 3: For the unconstrained SCS (13), the event-
driven OSC policy given by (36), and the dynamic event-driven
condition specified in (42), then the minimum interval between
adjacent triggering moments is greater than zero.

Proof. According to (15), we have

ės,k =
˙̄Sk − Ṡ = −Ṡ. (50)

By taking the norm on both sides of the equation, we get

∥ės,k∥ = ∥Ṡ∥

= ∥Fs(S)+ Gs(S)µ̂a∥

≤ ∥Fs(S)∥ + ∥Gs(S)µ̂a∥

≤ K f ∥S∥ +Kg

≤ K f ∥S̄k − es,k∥ +Kg

≤ K f ∥S̄k∥ +K f ∥es,k∥ +Kg, (51)

where Fs(S) is bounded by the norm as Fs(S) ≤ K f ∥S∥ with
K f > 0, and ∥Gs(S)µ̂a∥ is bounded by a positive constant
Kg . In light of [29], it can be inferred that ∥eµ,k∥ ≤ Lµ∥es,k∥,
where Lµ is a positive constant. By leveraging the comparison
lemma, we are able to further deduce that

∥eµ,k∥ ≤ Lµ∥es,k∥

≤ Lµ
K f ∥S̄k∥ +Kg

K f

(
eK f (t−Tk ) − 1

)
. (52)
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When t = Tk+1, based on the dynamic event-driven condi-
tion (42), one has

∥eµ,k∥ ≥

√√√√ 1
4γ 4 ∇P̂TGsGT

s ∇P̂ +
Dp(t)
β

γ 2 . (53)

Combining (52) and (53), we can get

Tk+1 − Tk ≥
1
K f

ln
(

1 +
1
φ

√√√√ 1
4γ 4 ∇P̂TGsGT

s ∇P̂ +
Dp(t)
β

γ 2

)
,

where φ = Lµ
K f ∥S̄k∥+Kg

K f
. Therefore, we can deduce

that the disparity between any two triggering intervals is
greater than 0, which implies that Zeno behavior will not
manifest.

Remark 5: 1) Different from traditional safe control meth-
ods [16], [17], [18], which handled a single type of
constraint only. This paper designs a dynamic compensator
and employs a barrier function-based system transformation
method, enabling the simultaneous handling of complex situ-
ations involving both state and input constraints. Furthermore,
existing results [16], [17], [18], [19] are applicable only to
affine nonlinear systems and rely on precise system models.
However, this paper uses the dynamic compensator and the
integral reinforcement learning technique to achieve optimal
safe control for nonaffine nonlinear systems in a model-free
manner. Therefore, the developed approach is more practi-
cal and applicable to a broader class of nonlinear systems.
2) Unlike the existing results [33], [34], [38], this paper
proposes a novel dynamic event-driven mechanism within the
framework of zero-sum games. Specifically, the event-driven
error and the control input are regarded as two players in
the zero-sum game. The control input aims to ensure system
stability and minimize the performance index function, while
the event-driven error tends to maximize the performance
index function, potentially leading to the destabilization of
the closed-loop system. By employing the ADP technique,
the Nash equilibrium solution of the zero-sum game can
be obtained, which ensures the stability of the closed-loop
system even under the worst-case event-driven error. In fact,
the worst-case event-driven error implies a larger interval
between adjacent triggering times, thus minimizing the num-
ber of control policy updates and conserving computational
and communication resources. Therefore, compared with tra-
ditional dynamic event-driven control methods [33], [34],
[38], the proposed approach can maintain the stability of
the closed-loop system while significantly reducing the fre-
quency of control policy adjustments, which further conserves
resources.

IV. SIMULATION

In this section, we will elucidate the efficacy of the
ADP-based MFDEDS control method in both a Van der Pol
circuit and a nonaffine system.

Fig. 1. Critic neural network weights in case 1.

Fig. 2. Control policy µa in case 1.

A. Case 1

The system model of the Van der Pol circuit system is
articulated as

Ẋ1 = X2,

Ẋ2 = −2X1 + 3X2(1 − X 2
1 )µo.

Next, we detail the parameter settings during the simulation
process. The upper and lower bounds for the state compo-
nents and the control policy of the nonaffine SCS (1) are
defined as αx,1 = −2, αx,2 = −2, αx,1 = 2, αx,2 = 2,
αµ = −4, and αµ = 4. The parameters in performance
index function are selected as M1 = 20I3, M2 = I,
and γ = 10. The parameters of the dynamic event-driven
condition are set to β = 1 and α = 1. Additionally, the
activation function of the critic neural network is configured
as ψc(S) = [S2

1 ,S
2
2 ,S

2
3 ,S1S2,S1S3,S2S3]

T, and the learning
rate is chosen as αc = 2.

Fig. 1 illustrates the evolution curve of the neural
network weights during the training process. It is evi-
dent that, guided by the weight updating rule (41), the
neural network weights ultimately converge to ζc =

[3.01, 4.59, 0.51, 7.61, 5.24, 5.63]
T. Fig. 2 presents the con-

trol policy of the unconstrained SCS, which shows that it
ultimately converges, and the staircase-like nature of the curve
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Fig. 3. Control policy µo in case 1.

Fig. 4. System states of the unconstrained SCS in case 1.

Fig. 5. System states of the nonaffine SCS in case 1.

means that the control policy remains unchanged between
adjacent triggering instants. By integrating the control policy

Fig. 6. The number of control policy adjustments in case 1.

Fig. 7. Dynamic variable in case 1.

Fig. 8. Triggering intervals in case 1.

µa , we can derive the control policy µo for the nonaffine SCS,
as shown in Fig. 3. It can be observed that the trajectory of
the µo can consistently remain within the safe set. However,
the traditional control method in [40] cannot guarantee that the
control policy lies within the specified bounds. Figs. 4 and 5
display the system state trajectories of the unconstrained SCS
and the nonaffine SCS respectively, and the results illustrate
that under the influence of the control policies µa and µo,
the system states eventually tend to a region close to 0,
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Fig. 9. Performance index function in case 1.

Fig. 10. System states of the unconstrained SCS under different constrained
boundaries in case 1.

which means that the stability of both systems is guaranteed.
Moreover, Fig. 5 exhibits the system state trajectories under
different control methods. It can be observed that the proposed
method ensures that the system states remain within the
predefined boundaries, whereas the system states exceed these
boundaries under the traditional control method in [40]. This
means that the safety of the nonaffine SCS can be guaranteed
with the developed approach in this paper. Fig. 6 compares the
number of control policy adjustments under time-driven (TD)
[36], event-driven (ED) [10], traditional dynamic event-driven
(TDED) [33], and the developed novel dynamic event-driven
(DED) mechanisms. It can be observed that the novel dynamic
event-driven mechanism significantly reduces the adjustment
frequency of the control policy, thereby effectively saving
computational and communication resources. Fig. 7 reveals the
evolution curve of the dynamic variable, which remains greater
than 0 and eventually converges. Fig. 8 illustrates that the time

Fig. 11. Critic neural network weights in case 2.

Fig. 12. Control policy µa in case 2.

intervals between any two adjacent triggering moments under
the novel dynamic event-driven mechanism are greater than 0,
and this indicates that Zeno behavior does not occur. Fig. 9
presents the convergence values of the performance index
function under different control methods. We can find that the
proposed method in this paper achieves a smaller convergence
value compared to the traditional control method in [39].
Therefore, the developed method can ensure the stability of
the closed-loop system with lower control cost, demonstrating
its optimization characteristics. Fig. 10 illustrates the system
state curves when the constrained boundaries are set as αx,1 =

αx,2 = −1 and αx,1 = αx,2 = 1, from which it can be
concluded that the proposed method can still ensure that the
system state remains within the preset boundaries.

B. Case 2

Next, we will further assess the efficacy of the ADP-based
MFDEDS control approach on the following nonaffine system.

Ẋ1 = −X1 + X2,

Ẋ2 = −2X2 + X3,

Ẋ3 = −X2 −
(
1 − sin2(X2)

)
X3 + sin(X2)µo + µ2

o.

Initially, the simulation parameters pertinent to
Case 2 are delineated in Table I. The activation function
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Fig. 13. Control policy µo in case 2.

Fig. 14. System states of the unconstrained SCS in case 2.

TABLE I
SIMULATION PARAMETERS IN CASE 2

of the critic neural network is designated as ϕc(S) =

[S2
1 ,S

2
2 ,S

2
3 ,S

2
4 ,S1S2,S1S3,S1S4,S2S3,S2S4,S3S4]

T. Com-
prehensive simulation results are elucidated in Figs. 11–19.
Fig. 11 elucidates the progression of the neural network
weights, from which it is discernible that the ultimate
convergence value is ζc = [16.50, 4.23, 13.43, 14.53, 6.24,
10.42, 2.42, 1.39, 11.27, 16.01]T. Figs. 12 and 13 depict the
evolution curves of the control policies of the unconstrained
SCS and the nonaffine SCS, respectively. It can be seen from
the experimental results that the control policy µa of the
unconstrained SCS manifests a stepped characteristic, while
the control policy µo of the nonaffine SCS is always kept
in the safe set. Figs. 14 and 15 show the variation curves of

Fig. 15. System states of the nonaffine SCS in case 2.

Fig. 16. The number of control policy adjustments in case 2.

Fig. 17. Dynamic variable in case 2.

the system states under two control policies µa and µo. It is
clear that both of them converge to zero, and the trajectories
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Fig. 18. Triggering intervals in case 2.

Fig. 19. Performance index function in case 2.

of the nonaffine SCS does not exceed the boundaries of
the safe set in contrast to the traditional control method
in [40]. Fig. 16 shows that under different mechanisms, the
adjustment times of the control policy are 567, 971, 1433,
and 2000, respectively. Therefore, this indicates that the
developed dynamic event-driven mechanism performs well
in reducing the burden of computational and communication.
Fig. 17 demonstrates that the dynamic variable remains
consistently greater than zero and ultimately converges.
Meanwhile, Fig. 18 illustrates all adjacent triggering time
intervals, with the results indicating that these intervals are
positive, which effectively mitigates the occurrence of Zeno
behavior. Fig. 19 shows that compared with the existing
method [39], the proposed scheme can guarantee the stability
of the closed-loop system with less control cost.

Remark 6: In fact, the design of activation functions and the
number of neurons in the hidden layers significantly influence
the approximation performance of neural networks. However,
to date, there is no unified method to guide the selection of
these parameters. In this paper and most existing results [10],
[15], [16], [33], a trial-and-error approach is adopted, that is,
performing repeated experiments and observing the results to
determine the appropriate activation function and the number
of hidden layer neurons. In future research, we will care-
fully consider this challenge and attempt to use optimization

algorithms (such as particle swarm optimization) to find the
appropriate combination.

V. CONCLUSION

This paper develops an ADP-based MFDEDS control
approach for unknown nonaffine SCSs subject to state and
input constraints. By establishing a dynamic compensator and
implementing system transformation, the OSC problem of the
nonaffine SCS with state and input constraints is converted into
the optimal regulation problem of the unconstrained SCS. The
designed OSC policy does not depend on the system dynamics
of the nonaffine SCS, which achieves model-free near OSC
control of the original system. Moreover, a novel game-based
dynamic event-driven mechanism is proposed to ensure the
stability of the unconstrained SCS and maximize the triggering
interval, which significantly reduces the computational and
communication burdens. Subsequently, a single-critic learning
framework is constructed to obtain the approximately OSC
policy online, and the Lyapunov’s direct method is employed
to demonstrate that this control policy can ensure that the SCS
and the neural network weight errors are UUB. Finally, sim-
ulation results show that the designed ADP-based MFDEDS
control method can ensure that the system state and the control
input of nonaffine SCSs remain within their safe sets, and the
implementation of the novel dynamic event-driven mechanism
significantly reduces the frequency of control policy updates,
thereby saving computational and communication resources.
In future work, we will consider relaxing Assumption 1
to further enhance the practicality of the proposed method.
Additionally, since constraints are typically time-varying in
practical applications, we aim to explore novel safe control
methods that can handle time-varying constraints.
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Abstract—In this article, the reinforcement learning-
based distributed robust bipartite consensus control of
multispacecraft systems with dynamic uncertainties is in-
vestigated. The developed control structure includes two
parts, i.e., integral sliding mode control and distributed op-
timal bipartite consensus control. In the first step, an inte-
gral sliding mode controller is designed for each following
spacecraft to address matched uncertainties such that the
dynamics of nominal spacecraft is obtained. In the second
step, a novel performance index function, which contains
consensus errors and their derivatives, is designed for
each nominal spacecraft. As a result, the system assump-
tion of zero equilibrium and the discount factor in perfor-
mance index function are not required, which simplifies
the controller design process and improves the practica-
bility of the developed control method. Moreover, in order
to solve the coupled Hamilton–Jacobi–Bellman equation of
each following spacecraft, a novel policy iteration algorithm
is designed and its properties are analyzed. Finally, a group
of spacecraft is employed to verify the effectiveness of the
present control scheme.

Index Terms—Bipartite consensus control, integral slid-
ing mode (ISM) control, multispacecraft systems, neural
networks (NNs), reinforcement learning (RL).
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I. INTRODUCTION

S PACECRAFT control is an essential and interdisci-
plinary field of research within aerospace engineering that

encompasses a range of vital technologies, including naviga-
tion, attitude control, energy management, communication, and
satellite formation control. The development and advancement
of these technologies are integral to ensuring the safety, stabil-
ity, and effectiveness of space exploration missions. As space
exploration missions increase in complexity and heterogeneity,
the need for interaction and collaboration between spacecraft
has grown significantly. Consequently, multispacecraft consen-
sus control has gained interest within the aerospace research
community. This research area has demonstrated practical ap-
plications, including cooperative control of spacecraft, such as
the Tiangong-2 space lab and Shenzhou-11 spacecraft, NASA’s
drag-enhanced navigation technology, and constellation control
of the Fengyun-4 A satellite, among others. It is widely acknowl-
edged that the conventional consensus control involves mainly
two types, namely, leader–follower consensus and leaderless
consensus, which rely on the mutual cooperation among multi-
ple intelligent agents to achieve a shared state or output variable.
However, in practical scenarios, agents may not only have co-
operative relationships, but also competitive relationships. For
example, in Earth observation satellite formation systems, each
satellite may possess different data collection tasks, requiring co-
ordination among them to enhance overall mission performance.
Furthermore, resource allocation and balance also need to be
considered, leading to data rivalry between satellites, which calls
for negotiation and competition among them. To capture this
phenomenon, some scholars have proposed bipartite consensus
control, where collaborating agents converge to the same state,
while competitors converge to opposite states. In recent years,
a number of academics have been making significant strides in
the field of bipartite consensus control of multiagent systems.
Liang et al. [1] investigated an asymmetric bipartite consensus
problem of nonlinear multiagent systems by developing an
event-triggered model-free adaptive control approach. Shahvali
et al. [2] presented a novel fully distributed control scheme to
address bipartite consensus control of fractional-order multia-
gent systems by adopting the backstepping technique and the
neuro-adaptive update mechanism. Zhao et al. [3] addressed the

1551-3203 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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bipartite consensus control problem of heterogeneous nonaffine
discrete-time multiagent systems by employing neural network
(NN) and pseudopartial derivative techniques. Nevertheless, the
abovementioned method only considers the stability of mul-
tiagent systems, neglecting the issue of control cost, and has
not been actually applied to spacecraft control. As precision
components are assembled on spacecraft, communication and
execution capabilities are limited. Therefore, it is utmost signif-
icance to design efficient and energy-saving control strategies
that can reduce control costs while ensuring that the spacecraft
completes collaborative control tasks.

In recent years, reinforcement learning (RL) has emerged as
a promising approach to solving control problems. RL-based
control methods leverage the feedback loop between the control
agent and its environment, enabling the agent to learn the opti-
mal control strategy through trial-and-error interactions while
ensuring system stability and minimizing control costs [4],
[5], [6], [7], [8], [9], [10]. These methods are characterized
by their adaptability, model-free operation, and good control
performance, and have been deployed extensively to tackle
a range of challenging problems in control theory, including
optimal control [11], [12], trajectory tracking control [13],
[14], robust control [15], [16], differential game [17], [18],
and so on. Moreover, RL-based control approaches have been
adopted to address control problems of practical systems. For
example, Zhang et al. [19] developed an RL-based resilient
event-triggered control approach to address the tracking control
problem for rear-wheel-drive autonomous vehicles. In the area
of spacecraft control, several scholars and experts considered the
trajectory tracking or consensus control problems. Shi et al. [20]
investigated the leader–follower spacecraft formation control
problem by using RL-based event-triggered control approach.
Yang et al. [21] tackled the attitude control problem for space-
craft with actuator misalignment and pointing constraints by
using RL technique. Zhou et al. [22] suggested an online adaptive
nonlinear control method based on heuristic dynamic program-
ming to address the trajectory tracking control problem for
spacecrafts. However, existing research on spacecraft consensus
only considers cases where mutual cooperation exists, and con-
currency of cooperation and competition in bipartite consensus
control problems remains an open research issue in the field.
In addition, spacecraft working for an extended period in outer
space is exposed to numerous hostile factors, such as high and
low temperatures, radiation, vacuum, and microgravity, which
can severely impact the system components of the spacecraft.
Therefore, the occurrence of model uncertainty is challenging to
avoid, leading to an adverse effect on the control performance.

The direct acquisition of an optimal controller for uncertain
systems remains a challenge in the field of control engineering.
Consequently, researchers utilize robust control techniques in
conjunction with optimal control methods to develop controllers
that guarantee the robustness and the optimal performance of
closed-loop systems. In recent years, RL-based robust control
methods have been extensively investigated as a possible so-
lution to this challenge. For example, Wang et al. [23] tackled
the robust control problem of continuous-time (CT) systems.

By formulating a specific performance index function, the ro-
bust control problem can be transformed into an optimal con-
trol problem. In addition, an online policy iteration algorithm
and an actor–critic framework were established as means of
obtaining the approximate solution of the Hamilton–Jacobi–
Bellman (HJB) equation. Afterward, Wang et al. [24] stud-
ied the robust control problem in the context of an event-
triggering mechanism, and an RL-based event-triggered robust
control scheme was established. Yang and He [25] addressed
the event-triggered robust control problem of CT systems with
mismatched uncertainties and input constraints by designing an
auxiliary system. Although the abovementioned methods can
deal with dynamic uncertainties effectively, they have some
deficiencies. On the one hand, the existing results need to add
an upper bounding function for the uncertain part into the
performance index function, which increases the controller’s
conservatism and cannot obtain the desired metrics. On the
other hand, the assumption of zero equilibrium is necessary in
existing results since it guarantees that the performance index
function is finite. Moreover, when dealing with the tracking
problem, the control input fails to approach zero, resulting in
the nonconvergence of the performance index function. Most of
existing approaches add a discount factor on the performance
index function, which increase the complexity of the RL algo-
rithm and even lead to algorithm nonconvergence. In conclusion,
the abovementioned approaches are suitable for single-agent
systems only and do not apply to spacecrafts. Furthermore,
the existing results have shortcomings in dealing with dynamic
uncertainties. Due to the extensive application of spacecraft in
space exploration, satellite navigation, and aerospace loading,
and its susceptibility to dynamic uncertainty, investigating the
distributed robust bipartite consensus (DRBC) control problem
of spacecrafts is crucial.

In this article, an integral sliding mode (ISM)-based DRBC
control approach for spacecrafts is presented. The innovations
and contributions of this article are outlined as follows.

1) This article extends the RL-based distributed control
method to spacecrafts. By designing an ISM-based DRBC
control scheme, the cooperative spacecrafts in the same
group can achieve consensus, while the competing space-
crafts in different groups converge to the opposite state.

2) Unlike the existing approaches [23], [24] that tackled
robust control problems by introducing an upper bound
function in the performance index function, this arti-
cle employs ISM technique to mitigate the influence
of matched uncertainties of each following spacecraft.
Moreover, different from the work in [26], which required
the bounded assumption of the matched uncertainties, an
adaptive term is designed in ISM control laws to remove
the bound assumption.

3) By developing a novel performance index function, which
includes bipartite consensus errors and their derivatives
for each following spacecraft, the assumption of zero
equilibrium is removed and the discount factor is not
required, which simplifies RL algorithm design and im-
proves the practicability of the control method.
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Fig. 1. Multispacecraft systems.

The rest of this article is organized as follows. In Section II,
the graph theory and the problem statement are presented. In
Section III, the ISM control law is developed for each following
spacecraft to handle the matched uncertainties. Moreover, the
distributed optimal bipartite consensus controller design of the
nominal spacecraft, the novel policy iteration algorithm design
and its properties analysis, and the NN implementation are
provided. Section IV showcases the efficacy of the ISM-based
DRBC control scheme through simulation experiments. Finally,
Section V concludes this article.

II. PRELIMINARIES

A. Signed Graph Theory

Consider a signed graph denoted as Sg = (Sv,Se,Sa),
where Sv = {v1, v2, . . ., vN} is a node set, Se =
{(vi, vj)|vi, vj ∈ Sv} ⊆ Sv ×Sv is an edge set, and
Sa = [aij ]N×N is a weighted adjacency matrix. Note that
if and only if the agent i and the agent j are directly connected,
then (vi, vj) ∈ Se. Furthermore, aij > 0 represents that
the agent i and the agent j are cooperative, and aij < 0
denotes the agent i and the agent j are competitive. Define
Ni = {j : (vi, vj) ∈ Se, j �= i} is a set of neighbors of the
agent i, and N̄i be a set of the agent i and its neighbors. The
degree matrix of Sg is denoted as D = diag{ν1, . . ., νN},
where νi =

∑
j∈Ni
|aij |. The Laplacian matrix is defined as

L = D−Sa.
Definition 1: A signed graph is said to be structurally bal-

anced if there exists a partition of its signed edges into two sets
Sv1 and Sv2 such that the following conditions are satisfied.

1) Sv = Sv1 ∪Sv2, Sv1 ∩Sv2 = ∅.
2) ∀i, j ∈ Sv,l(l ∈ {1, 2}), aij > 0.
3) ∀i ∈ Sv,l, j ∈ Sv,q, l �= q(l, q ∈ {1, 2}), aij < 0.

B. Problem Statement

Fig. 1 portrays a schematic diagram of a multispacecraft
system, where Le = {X,Y, Z} denotes the Earth center inertial
coordinate frame and Lc = {xs, ys, zs} represents the local
vertical local horizontal frame. The virtual leader spacecraft can
provide the information of position and velocity for the follower
spacecraft [29]. The dynamics of the ith following spacecraft is

described as

ṗi = ζi

miζ̇i + Ciζi +Dipi +Mi +Ψi(ζ̇i) = ui

where pi = [pi,x, pi,y, pi,z] ∈ R3 is the position vector of the
ith spacecraft relative to the virtual leader spacecraft, ζi ∈ R3

is velocity vector, mi is the mass of the ith spacecraft, Mi =
miχ[Rc/r

3
i − 1/R2

c, 0, 0]T is the gravity vector, Ψi(ζ̇i) ∈ R3

is the dynamic uncertainty, ui ∈ R3 is the control input, and
Ci ∈ R3×3 andDi ∈ R3×3 are system matrices, which are given
as

Di = mi

⎡
⎣χ/r3

i − ϕ̇2 −ϕ̈ 0
ϕ̈ χ/r3

i − ϕ̇2 0
0 0 χ/r3

i

⎤
⎦

Ci = 2mi

⎡
⎣0 −ϕ̇ 0
ϕ̇ 0 0
0 0 0

⎤
⎦ , nc =

√
χ/a3

c

ri =
√

(Rc + pi,x)2 + p2
i,y + p2

i,z

Rc = ac(1− σ2
c)/ (1 + σccos(ϕ))

ϕ̇ = nc (1− σccos(ϕ))2 /(1− σ2
c)

3/2 (1)

where ϕ, ac, and σc represent the true anomaly, semimajor axis,
and eccentricity of the orbit, respectively. χ is the Earth’s grav-
itational constant. Let zi = [zi,1, zi,2, zi,3, zi,4, zi,5, zi,6]

T =
[pTi , ζ

T
i ]

T ∈ R6, the dynamic of the ith spacecraft can be ex-
pressed as

żi = Fi(zi) + Gi(zi) (ui +Ψi(zi)) (2)

where

Fi(zi) =

[
ζi

m−1
i (−Ciζi −Dipi −Mi)

]

Gi(zi) =
[

0
m−1

i I

]
.

The dynamics model of the leader is provided as

ż0 = F0(z0) (3)

where z0 ∈ R6 is the state vector and F0(·) ∈ R6 is a differen-
tiable function.

Assumption 1: The time derivative of the dynamic uncertain-
ties Ψi(zi) evolves slowly, i.e., Ψ̇i(zi) ≈ 0.

Definition 2: In the bipartite consensus control problem, the
system state of the ith spacecraft satisfies

lim
t→∞(zi − siz0) = 0 (4)

where si = 1 for i ∈ Sv1, and si = −1 for i ∈ Sv2.
Our goal is to develop ISM-based DRBC controllers to

achieve bipartite consensus among uncertain spacecrafts, that
is, cooperative spacecrafts converge on a common objective,
while competing spacecrafts reach to a different objective.
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III. ISM-BASED DRBC CONTROL OF SPACECRAFTS

The ISM-based DRBC controller of the ith following space-
craft is developed as follows:

ui(t) = μi(t) + μic(t) (5)

where μi(t) ∈ R3 refers to a continuous distributed optimal
bipartite consensus control law, while μic(t) ∈ R3 is a discon-
tinuous ISM control law, which is utilized to handle the matched
uncertainties of each following spacecraft.

A. ISM Controller Design

For the sake of designing the discontinuous ISM control law
μic(t), the integral sliding function is chosen as follows:

Si (zi(t), t) = −
∫ t

0
Pi(zi) (Fi(zi) + Gi(zi)μi) dτ

+Ki(zi)−Ki (zi(0)) (6)

where Ki(zi) ∈ R3 and Pi(zi) =
∂Ki(zi)

zi
∈ R3×6 are designed

functions. It is noteworthy that the initial system state starts
at sliding mode surface since that Si(zi(0), 0) = 0 when t = 0.
Therefore, the approaching condition of the sliding mode surface
is not required [30]. The derivative of (6) with respect to time is
calculated by

Ṡi(zi, t) = Pi(zi)żi − Pi(zi) (Fi(zi) + Gi(zi)μi) . (7)

In order to guarantee that the system state remains on the sliding
surface, the discontinuous ISM control law μic(t) of the ith
following spacecraft is designed as

μic(t) = −Aisgn
(GTi (zi)PT

i (zi)Si
)− Ψ̂i(zi) (8)

whereAi is a positive constant, Ψ̂i(zi) is the estimate of Ψi(zi),
sgn(A) = [sgn(A1), . . ., sgn(An)], where A = [A1, . . .,An],
and sgn(·) is a sign function.

Theorem 1: Consider the ith spacecraft with matched un-
certainty (2), the integral sliding function given by (6), and
Assumption 1, the discontinuous ISM control law (8) guarantees
that the system state stay on the sliding mode surface with the
adaptive update law

˙̂
Ψi(zi) = βiGTi (zi)PT

i (zi)Si (9)

where βi is a positive constant.
Proof: Select the Lyapunov function candidate as

LT 1 =
1
2
STi Si +

1
2βi

Ψ̃T
i (zi)Ψ̃i(zi) (10)

where Ψ̃i(zi) = Ψi(zi)− Ψ̂i(zi) is the estimation error. Cal-
culating the time derivative of (10) and adopting the system
dynamics (2), it yields that

L̇T 1 = STi (Pi(zi) (Fi(zi) + Gi(zi) (ui +Ψi(zi))

−Pi(zi) (Fi(zi) + Gi(zi)μi))− 1
βi

Ψ̃T
i (zi)

˙̂
Ψi(zi)

= STi (Pi(zi)Gi(zi)ui + Pi(zi)Gi(zi)Ψi(zi)

−Pi(zi)Gi(zi)μi)− 1
βi

Ψ̃T
i (zi)

˙̂
Ψi(zi)

= −AiSTi Pi(zi)Gi(zi)sgn
(GTi (zi)PT

i (zi)Si
)

+ STi Pi(zi)Gi(zi)
(
Ψi(zi)− Ψ̂i(zi)

)

− 1
βi

Ψ̃T
i (zi)

˙̂
Ψi(zi)

= −Ai

∣∣∣STi Pi(zi)Gi(zi)
∣∣∣+ STi Pi(zi)Gi(zi)Ψ̃i(zi)

− 1
βi

Ψ̃T
i (zi)

˙̂
Ψi(zi). (11)

Letting Pi(zi) = G+i (zi). Since |STi Pi(zi)Gi(zi)| ≥ ‖STi
Pi(zi)Gi(zi)‖ is held and according to (9), we further have

L̇T 1 ≤ − ‖Si‖Ai + Ψ̃T
i (zi)

(
GTi (zi)PT

i (zi)Si −
1
βi

˙̂
Ψi(zi)

)

≤ − ‖Si‖Ai. (12)

Therefore, L̇T 1 ≤ 0 is held. This signifies that the system state
remains on the sliding mode surface when applying the ISM
control law (8). The proof is finished.

According to (5) and (7), and letting Ṡi(zi, t) = 0, the equiv-
alent control μiceq of the ith spacecraft is calculated by

μiceq = −Ψi(zi). (13)

Substituting (13) into (2), the ith spacecraft without dynamic
uncertainties is formulated as

żi = Fi(zi) + Gi(zi)μi. (14)

Remark 1: The adaptive updating law (9) is designed based
on the Lyapunov stability principle, as illustrated in Theorem 1.
To ensure that the system state remains on the sliding surface, it
is required that (12) be negative. Therefore, when the adaptive
updating law is formulated as in (9), (12) being negative holds. It
is noted that the introduction of the adaptive updating term aims
to relax the assumption of the upper bound function of uncertain
term, which enhances the practicality of the control method.

B. Distributed Optimal Bipartite Consensus Controller
Design

In the following, the distributed optimal bipartite consensus
control law is designed for each spacecraft. The local neighbor-
hood bipartite consensus error of the ith spacecraft is defined as

δi =
∑
j∈Ni

|aij | (zi − sgn(aij)zj) + bi(zi − siz0) (15)

where bi ≥ 0 is a pinning gain. Thus, the dynamics of the local
neighborhood bipartite consensus error is obtained by

δ̇i =
∑
j∈Ni

|aij | (żi − sgn(aij)żj) + bi(żi − siż0)

= (νi + bi) (Fi(zi) + Gi(zi)μi)− bisiF0(z0)
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−
∑
j∈Ni

aij (Fj(zj) + Gj(zj)μj) . (16)

The performance index function of the ith spacecraft is designed
as

Ji(δi, δ̇i) =
∫ ∞
t

Ci
(
δi(ν), δ̇i(ν)

)
dν

=

∫ ∞
t

(
δTi (ν)Qiδi(ν) + δ̇Ti (ν)Riδ̇i(ν)

)
dν (17)

whereQi ∈ R6×6 andRi ∈ R6×6 are positive definite matrices.
The Hamiltonian of the ith spacecraft is given as

Hi

(
δi, δ̇i,∇Ji(δi, δ̇i)

)

= ∇J T
i (δi, δ̇i)

(
(νi + bi) (Fi(zi) + Gi(zi)μi)

−
∑
j∈Ni

aij (Fj(zj) + Gj(zj)μj)− bisiF0(z0)

)

+ Ci(δi, δ̇i). (18)

Thus, the optimal performance index function satisfies

J ∗i (δi, δ̇i) = min
μi∈�(Ω)

∫ ∞
t

Ci
(
δi(ν), δ̇i(ν)

)
dν (19)

where �(Ω) is a set of admissible controls. The distributed
optimal bipartite consensus control law of the ith spacecraft is
given by

μ∗i = − 1
2(νi + bi)

(GTi (zi)RiGi(zi)
)−1

×
(

2GTi (zi)RiΓi + GTi (zi)∇Ji(δi, δ̇i)
)

(20)

where Γi = (νi + bi)Fi(zi)−
∑

j∈Ni
aij(Fj(zj) + Gj(zj)μj)

− bisiF0(z0). According to (18) and (20), the coupled HJB
equation is provided as

0 = Hi

(
δi, δ̇i,∇J ∗i (δi, δ̇i)

)

= ∇J ∗Ti (δi)

(
(νi + bi) (Fi(zi) + Gi(zi)μ∗i )

−
∑
j∈Ni

aij
(Fj(zj) + Gj(zj)μ∗j

)− bisiF0(z0)

)

+ Ci
(
δi, δ̇i

)
. (21)

From (20) and (21), we can find that the distributed optimal
bipartite consensus control law μ∗i depends on the optimal
performance index function J ∗i (δi, δ̇i). However, it is awkward
to obtain the J ∗i (δi, δ̇i) from (21) directly. In the following, a
novel policy iteration algorithm is established to cope with this
issue.

Remark 2: Traditional performance index functions are typ-
ically quadratic with respect to system states and control in-
puts. However, in tracking control problems, control inputs

Algorithm 1: Novel Policy Iteration Algorithm.
Step 1: Let k = 0 and select initial admissible control law

μ0
i ∈ �(Ω). Choose a computation precision ξ.

Step 2: (Policy evaluation) Calculate the iterative
performance index function J (k)

i (δi, δ̇i) by

0 = Ci
(
δi, δ̇i, μ

(k−1)
i , μ

(k−1)
−i

)

+∇J (k)T
i (δi, δ̇i)

⎛
⎝(νi + bi)Qi − bisiF0(z0)

−
∑
j∈Ni

aijQj

⎞
⎠ . (22)

where Qi = Fi(zi) + Gi(zi)μ(k−1)
i and

Qj = Fj(zj) + Gj(zj)μ(k−1)
j .

Step 3: (Policy improvement) Update the control law by

μ
(k)
i (δi) = − 1

2(νi + bi)

(GTi (zi)RiGi(zi)
)−1

×
(

2GTi (zi)RiTi + GTi (zi)∇J (k)
i (δi, δ̇i)

)
,

(23)

where Ti = (νi + bi)Fi(zi)−
∑

j∈Ni
aij(Fj(zj) +

Gj(zj)μ(k−1)
j )− bisiF0(z0).

Step 4: If |J (k+1)
i (δi, δ̇i)− J (k)

i (δi, δ̇i)| < ξ, goto Step 5;
else, let k = k + 1, go back to Step 2 and continue.

Step 5: Stop Algorithm.

do not tend toward zero. To prevent the divergence of the
performance index function, a discount factor is commonly
included. However, the choice of the discount factor will impact
the convergence of the adaptive dynamic programming (ADP)
algorithm and even the stability of the closed-loop system. In
order to address this challenge, this article introduces a new
performance index function that incorporates consensus errors
and their derivatives, which eliminates the need of the discount
factor. As a result, the process of controller design is simplified
and the effectiveness of the control method is enhanced.

Remark 3: The developed ISM-based DRBC controller con-
tains two parts, that is, the distributed optimal bipartite consensus
control lawμi and the ISM control lawμic. It is noted that for the
ith nominal spacecraft (14) without dynamic uncertainties, only
μi is required and it can guarantee that the ith nominal spacecraft
achieves optimal bipartite consensus control. However, the ith
spacecraft contains the dynamic uncertainty Ψi(ζ̇i). Therefore,
in order to eliminate the effect of the dynamic uncertainty,
the ISM control law μic is developed. In fact, if the dynamic
uncertainty does not exist, according to (7), one can know that
the derivative of the integral sliding function Ṡ is equal to 0.
Since the initial value of S is 0, then S will remain at 0, which
leads the ISM control lawμic being 0 as well. Therefore, the ISM
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control law will not have any impact on the nominal spacecraft.
Only in the presence of uncertainties, the ISM control law μic

will generate corresponding responses to counteract the effect of
the dynamic uncertainty. In general, these two control laws each
have their own responsibilities and will not lead to excessive
control.

C. Novel Policy Iteration Algorithm

In order to obtain the optimal performance index function
J ∗i (δi, δ̇i) and the distributed optimal bipartite consensus con-
trol lawμ∗i , inspired by the results in [11] and [27], a novel policy
iteration algorithm is designed in Algorithm 1. Moreover, the
properties of the novel policy iteration algorithm are analyzed in
Theorems 2 and 3. It is demonstrated that iterative performance
index functions exhibit a monotonic decrease and converge to
the optimal value, while iterative control laws ensure the stability
of the local neighborhood bipartite consensus error.

Theorem 2: Consider the ith following spacecraft (14), the
iterative performance index function and the iterative distributed
bipartite consensus control law are given by (22) and (23),
respectively, ifμ(k)

i ∈ �(Ω), then the following conditions hold.

1) μ
(k+1)
i ∈ �(Ω).

2) J (k+1)
i (δi, δ̇i) ≤ J (k)

i (δi, δ̇i).

Proof: 1) In light of J (k)
i (δi, δ̇i) ≥ 0, the Lyapunov function

candidate is chosen as

L2T = J (k)
i (δi, δ̇i). (24)

Taking the time derivative of L2T and adopting the following
system dynamics:

δ̇i = (νi + bi)
(
Fi(zi) + Gi(zi)μ(k+1)

i

)
− bisiF0(z0)

−
∑
j∈Ni

aij

(
Fj(zj) + Gj(zj)μ(k)

j

)

we have

J̇ (k)
i (δi, δ̇i)

= ∇J (k)T
i (δi, δ̇i)

(
(νi + bi)

(
Fi(zi) + Gi(zi)μ(k+1)

i

)

− bisiF0(z0)−
∑
j∈Ni

aij

(
Fj(zj) + Gj(zj)μ(k)

j

))
.

(25)

According to (20), we can get

∇J (k)
i (δi, δ̇i) = − 1

2(νi + bi)
Ri

(
(νi + bi)Fi(zi)

−
∑
j∈Ni

aij

(
Fj(zj) + Gj(zj)μ(k)

j

)

− bisiF0(z0) + (νi + bi)Gi(zi)μ(k+1)
i

)
.

(26)

By using (25) and (26), it holds that

J̇ (k)
i (δi, δ̇i)

= − 1
2(νi + bi)

(
(νi + bi)Fi(zi)

−
∑
j∈Ni

aij

(
Fj(zj) + Gj(zj)μ(k)

j

)

− bisiF0(z0) + (νi + bi)Gi(zi)μ(k+1)
i

)T

Ri

×
(
(νi + bi)

(
Fi(zi) + Gi(zi)μ(k+1)

i

)

− bisiF0(z0)−
∑
j∈Ni

aij

(
Fj(zj) + Gj(zj)μ(k)

j

))

≤ 0.

Therefore, μ(k+1)
i is an admissible control law.

2) Based on (22), it is easy to infer that if μ
(k)
i and μ

(k)
−i

are admissible control laws, the iterative performance index
function J (k)

i (δi, δ̇i) satisfies

0 = Ci
(
δi, δ̇i, μ

(k)
i , μ

(k)
−i
)

+∇J (k)T
i (δi, δ̇i)

(
(νi + bi)

(
Fi(zi) + Gi(zi)μ(k)

i

)

− bisiF0(z0)−
∑
j∈Ni

aij

(
Fj(zj) + Gj(zj)μ(k)

j

))
.

(27)

Considering (23), we can get

Ci
(
δi, δ̇i, μ

(k+1)
i , μ

(k)
−i
)

+∇J (k)T
i (δi, δ̇i)

(
(νi + bi)

(
Fi(zi) + Gi(zi)μ(k+1)

i

)

− bisiF0(z0)−
∑
j∈Ni

aij

(
Fj(zj) + Gj(zj)μ(k)

j

))

≤ 0. (28)

According to (28), we can get

J̇ (k)T
i (δi, δ̇i)

= ∇J (k)T
i (δi, δ̇i)

(
(νi + bi)

(
Fi(zi) + Gi(zi)μ(k+1)

i

)

− bisiF0(z0)−
∑
j∈Ni

aij

(
Fj(zj) + Gj(zj)μ(k)

j

))

≤ − Ci
(
δi, δ̇i, μ

(k+1)
i , μ

(k)
−i
)
. (29)

Integrate both sides of (29), it follows that:

J (k)
i (δi, δ̇i) ≥ J (k+1)

i (δi, δ̇i). (30)
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The proof is concluded.
Theorem 3: Let J (k)

i (δi, δ̇i) and μ
(k)
i (δi) be obtained by

(22) and (23), respectively. Then, the iterative performance
index functionJ (k)

i (δi, δ̇i) and the iterative control lawμ
(k)
i (δi)

converge to J ∗i (δi, δ̇i) and μ∗i (δi), respectively, as k →∞, i.e.,

lim
k→∞

J (k)
i (δi, δ̇i) = J ∗i (δi, δ̇i)

lim
k→∞

μ
(k)
i (δi) = μ∗i (δi).

Proof: The proof of Theorem 3 closely resembles that pre-
sented in [27] and [28], and hence, the details are omitted in this
context.

D. NN Implementation

In the following, critic NNs are built to acquire the approxi-
mate solution of the coupled HJB equation. By utilizing the NN,
the optimal performance index J ∗i (δi, δ̇i) is represented by

J ∗i (δi, δ̇i) = �∗Tic �ic(δi) + εic(δi) (31)

where �∗ic ∈ Rhic is the ideal weight vector, �ic(δi) ∈ Rhic

is the activation function, hic is the number of hidden layer
neurons, and εic(δi) ∈ R is the approximation error. Then, the
partial derivative ofJ ∗i (δi, δ̇i) with respect to δi is calculated by

∇J ∗i (δi, δ̇i) = ∇�Tic(δi)�∗ic +∇εic(δi). (32)

The approximate performance index function is formulated as

Ĵi(δi, δ̇i) = �̂T
ic�ic(δi) (33)

where �̂ic is the estimate of �∗ic. Similarly, we can get

∇Ĵi(δi, δ̇i) = ∇�Tic(δi)�̂ic. (34)

According to (20) and (32), the distributed optimal bipartite
consensus control law of the ith following spacecraft is rewritten
as follows:

μ∗i = − 1
2(νi + bi)

(GTi (zi)RiGi(zi)
)−1

× (GTi (zi) (∇�Tic(δi)�∗ic +∇εic(δi))+ 2GTi (zi)RiΓi

)
(35)

where Γi = (νi + bi)Fi(zi)−
∑

j∈Ni
aij(Fj(zj) + Gj(zj)μj)

− bisiF0(z0). Based on (33), the approximate distributed bipar-
tite consensus control law is provided as follows:

μ̂i = − 1
2(νi + bi)

(GTi (zi)RiGi(zi)
)−1

× (GTi (zi)∇�Tic(δi)�̂ic + 2GTi (zi)RiΓi

)
. (36)

Combining (21) and (36), the approximate Hamiltonian is given
as follows:

Ĥi

(
δi, δ̇i, �̂ic

)

= Ci
(
δi, δ̇i

)
+ �̂T

ic∇�ic(δi)
(
(νi + bi) (Fi(zi) + Gi(zi)μ̂i)

−
∑
j∈Ni

aij (Fj(zj) + Gj(zj)μ̂j)− bisiF0(z0)

)

� eic. (37)

By employing gradient descent algorithm on Eic =
1
2e

T
iceic, the

weight tuning law is designed as follows:

˙̂�ic = − αc
1

(1 +ΔT
i Δi)2

(
∂Eic

∂�̂ic

)

= − αcΔi

(1 +ΔT
i Δi)2

(
�̂T

icΔi + Ci
(
δi, δ̇i

))
(38)

where αc > 0 denotes the learning rate and

Δi = ∇�ic(δi)
(
(νi + bi) (Fi(zi) + Gi(zi)μ̂i)

−
∑
j∈Ni

aij (Fj(zj) + Gj(zj)μ̂j)− bisiF0(z0)

)
.

Let the critic NN weight estimation error be �̃ic = �∗ic − �̂ic.
Inspired by Yang and He [25], we have

˙̃�ic = − ˙̂�ic

= − αc�i�
T
i �̃ic +

αc�i

1 +ΔT
i Δi

ςi (39)

where �i =
Δi

1+ΔT
iΔi

, and ςi = −∇εTic(δi)((νi + bi)(Fi(zi) +

Gi(zi)μ̂i)−
∑

j∈Ni
aij(Fj(zj) + Gj(zj)μ̂j)− bisiF0(z0)) is

the residual error.
Theorem 4: Consider the ith spacecraft (14) and the critic NN

weight tuning law provided by (38), then the critic NN weight
estimation error is ensured to be uniform ultimate boundedness
(UUB).

Proof: Due to space limitation, the proof of Theorem 4 is
provided in the Supplementary Material.

Remark 4: Algorithm 1 provides a specific procedure of the
policy iteration. By iteratively alternating between the policy
evaluation and the policy improvement, we can obtain the op-
timal performance index function and the distributed optimal
bipartite consensus control law. However, since the performance
index function is unknown at each iteration, we employ the critic
NN to implement Algorithm 1. The detailed process is explained
as follows. In the kth policy (22), our objective is to find the
performance index function J (k)

i (·) such that (22) holds. Since

the J (k)
i (·) is unknown, we utilize the critic NN to approximate

its value, which can be represented as J (k)
i (·) = �̂T

ic�ic(δi).
As the weight �̂ic is not the ideal one, the right-hand side of
(22) is not equal to 0. To make the approximate weight �̂ic

closer to the ideal weight, we define the right-hand side of (22)
as the error function in critic NN learning, as shown in (37).
Subsequently, by using the gradient descent approach, the critic
NN weight updating law (38) is obtained, which guides the
approximate weight toward the ideal weight. Upon obtaining the
ideal weight, the right-hand side of (22) becomes 0, indicating
the completion of the kth policy evaluation. Following this, the
control law for the kth iteration can be obtained through policy
improvement. By iterating a certain number of times, we can
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ultimately obtain the optimal performance index function and
the distributed optimal bipartite consensus control law.

E. Stability Analysis

This section will provide proof that the developed approxi-
mate distributed bipartite consensus control law (36) guarantees
the local neighborhood bipartite consensus error to be UUB.

Assumption 2: Gi(·), �̃ic, �∗ic, ∇�ic(·), and ∇εic(·) are
norm-bounded, i.e.,

‖Gi(·)‖ ≤ Ḡi, ‖�̃ic‖ ≤ �̄ic, ‖�∗ic‖ ≤ �̄icM

‖∇�ic(·)‖ ≤ �̄ic, ‖∇εic(·)‖ ≤ ε̄ic

where Ḡi, �̄ic, �̄icM , �̄ic, and ε̄ic are positive constants.
Theorem 5: Consider the ith spacecraft (14), the approximate

distributed optimal bipartite consensus control law provided by
(36), the critic NN weight renovating law given by (38), and
Assumption 2. Then, the bipartite consensus error is ensured to
be UUB.

Proof: Due to space limitation, the proof of Theorem 5 is
provided in the Supplementary Material.

Remark 5: 1) Different from the existing ADP-based control
approaches [14] and [17], this article considers the bipartite
consensus control for multispacecraft systems, which has a
more practical application background. Moreover, this article
designs a novel optimal performance index function, which
contains bipartite consensus error and its derivative. Therefore,
the discount factor is not required and the practicability of the
control method is improved. 2) For traditional ADP-based robust
control approaches [16] and [25], it is a common practice to
add an upper bound function of the uncertain term into the per-
formance index function. In other words, during the controller
design process, the impact of uncertainties is taken into account
in advance to derive the optimal robust controller. However,
this approach requires the prior knowledge of the upper bound
function of uncertainties, which increases the conservatism of
the control method. To tackle this challenge, this article intro-
duces the ISM technique to alleviate the impact of the uncertain
term. Moreover, by integrating an adaptive term into the ISM
control law, the assumption of the upper bound function of
the uncertain term is not required. As a result, the developed
ISM-based DRBC control method reduces the conservatism
of the controller and improves the practicality of the control
approach.

IV. SIMULATION

In this section, four spacecrafts are adopted to demon-
strate the validity of the developed ISM-based DRBC control
scheme. The communication topology is shown in Fig. 2, where
Fi(i = 1, 2, 3, 4) denotes the ith follower and A1 represents
the leader. The communication topology parameters are se-
lected as: a12 = a13 = a21 = a24 = a31 = a34 = a42 = a43 =
1, and b1 = 1. The system parameters of the spacecraft are
chosen as: ac = 7178, σc = 0.01, χ = 3.986× 1014 m3/s2,
and mi = 100 kg. The dynamics of the leader is given as

Fig. 2. Structure of the communication topology.

follows:

F0 = [cos(t), sin(t), cos(t),−sin(t), cos(t),−sin(t)]T.
The dynamic uncertainties of all following spacecrafts are pre-
sented as follows:

Ψ1(z1) =

[
8sin(z1,1)cos2(z1,3)

10sin(z1,2)cos2(z1,4)

]
,

Ψ2(z2) =

⎡
⎣ 5sin(z2,1)

6cos(z2,4)
3sin(z2,2)cos2(z2,3)

⎤
⎦ ,

Ψ3(z3) =

⎡
⎣ 6cos2(z3,3)

3sin(z3,1)
10sin(z3,2)cos2(z3,3)

⎤
⎦ ,Ψ4(z4) =

⎡
⎣6sin2(z4,1)

9cos2(z4,2)
3sin2(z4,3)

⎤
⎦ .

In the first stage, an ISM controller is developed
for each following spacecraft to deal with matched
uncertainties. The integral sliding function is selected
as (6), where Ki(zi) = [zi,4, zi,5, zi,6]

T and Pi(zi) =
[0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 1]. Therefore, the
ISM control law of the each following spacecraft is designed as
follows:

μic = Aitanh
(GTi (zi)PT

i (zi)Si/κ
)− Ψ̂i(zi) (40)

where Ai = 20, κ = 0.05, and sgn(·) is replaced by tanh(·) for
reducing the chattering phenomenon. According to the presented
Fig. 3, the evolution curve of the ISM control law of each
spacecraft can be perceptibly discerned, thereby providing an
insightful glimpse into its response toward dynamic uncertain-
ties. With the help of the ISM control law μic, the influence
of matched uncertainties can be eliminated and the nominal
spacecraft system is obtained. Fig. 4 shows the variation curves
of the sliding mode functions for all following spacecrafts. It
can be observed that the sliding mode functions are maintained
within a small neighborhood of zero, which implies that the
system state can be sustained on the sliding surface.

In the following, the distributed optimal bipartite consensus
controllers are designed for nominal spacecrafts. The control
parameters are chosen asQii = I6,Rii = 0.01I6, and βi = 20.
The activation function of the critic NN is chosen as �ic(δi) =
[δ2

i,1, δ
2
i,2, δ

2
i,3, δ

2
i,4, δ

2
i,5, δ

2
i,6, δi,1δi,4, δi,2δi,5, δi,3δi,6].

The simulation results are shown in Figs. 5–10. Fig. 5 provides
the weight updating curves. It can be observed that the weight
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Fig. 3. ISM control laws.

Fig. 4. Integral sliding functions.

Fig. 5. Critic NN weights of all followers.

Fig. 6. Distributed optimal bipartite consensus control laws.

Fig. 7. Bipartite consensus errors.

vectors of critic NNs will converge to

�̂1c = [12.84, 10.76, 93.13, 37.07, 60.79, 41.36,

91.14, 72.14, 85.59]T

�̂2c = [59.89, 68.95, 39.09, 21.39, 11.53, 17.06,

92.71, 2.10, 86.96]T

�̂3c = [45.39, 74.90, 37.34, 28.90, 73.70, 28.39,

61.93, 92.32, 91.62]T

�̂4c = [19.42, 38.28, 77.37, 7.54, 75.09, 86.37,

56.23, 58.95, 87.79]T.

Fig. 6 shows the evolution of distributed optimal bipartite con-
sensus control laws. Fig. 7 demonstrates that with the help of
the developed control law, the bipartite consensus error of each
following spacecraft can converge to a vicinity of 0. The state tra-
jectories of the leader and the followers are illustrated in Fig. 8. It
is evident that spacecrafts that belong to the same group converge
to a common trajectory, while spacecrafts from different groups
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Fig. 8. System states of all agents.

Fig. 9. State trajectories under different control methods.

converge to opposite trajectories. Fig. 9 compares the system
state trajectories under the developed ISM-based DRBC con-
trol scheme and the traditional ADP-based distributed control
method in [12].It can be observed that the traditional control
method fails to separate the state trajectories of spacecrafts
into two clusters. Next, we selected different leader trajectories
to further validate the performance of the proposed control
approach. The dynamics of the leader is selected as follows:

F0 = [ sin(t), sin(t) + cos(2t), cos(t)− sin(t),

cos(t), cos(t)− 2sin(2t),−sin(t)− cos(t)]T.

Fig. 10. System states of all agents.

Fig. 10 presents the state trajectories of all following spacecrafts.
It can be observed that the spacecraft trajectories are divided
into two groups, where followers 1 and 3 converge to the same
group as the leader, and followers 2 and 4 converge to the group
opposite to the leader trajectory. Based on the simulation results
above, it can be inferred that the developed ISM-based DRBC
control scheme realizes the bipartite consensus of the spacecraft
cluster.

V. CONCLUSION

In this article, an ISM-based DRBC control approach is devel-
oped for spacecrafts with matched uncertainties. To begin with,
the ISM controller is designed for each following spacecraft
to cope with matched uncertainties, and the dynamics of the
nominal spacecraft is obtained. Subsequently, by designing a
novel performance index function of each following spacecraft,
the distributed optimal bipartite consensus control problem is
addressed. To acquire the approximate solutions for the coupled
HJB equations, a new policy iteration algorithm is introduced,
and a critic-only structure is built. Theoretical analysis shows
that iterative performance index functions exhibit monotonic
decrease and converge to the optimal value, and the iterative
control laws ensure the local neighborhood bipartite consensus
error asymptotically stable. Finally, simulation results indicate
the validity of the proposed ISM-based DRBC control scheme.
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Abstract
This article develops an event-triggered cooperative robust formation control scheme for nonlinear multi-agent systems with
dynamic uncertainties via reinforcement learning. By formulating a modified value function for each agent, the cooperative
robust formation control problem of uncertainmulti-agent systems is transformed into a cooperative optimal formation control
problem of its nominal plant. To save communication and computing resources, a novel triggering condition is developed for
each agent, and the controller is renovated only when an event occurs. Subsequently, the event-triggered optimal formation
control law of each agent is derived by solving the coupled Hamilton-Jacobi-Bellman equation via single-critic structure.
Furthermore, theoretical analysis indicates that the developed event-triggered cooperative robust formation control approach
ensures the asymptotic stability of the formation error for each uncertain agent. Eventually, two simulation cases are adopted
to confirm the effectiveness of the developed control approach.

Keywords Reinforcement learning · Multi-agent systems · Formation control · Robust control · Neural networks

1 Introduction

Cooperative control of multi-agent systems (MASs) has
garnered significant research interest owing to its versatile
utilization in diverse domains, for example, distributed sen-
sor networks, aerospace systems, unmanned swarm systems,
and so on. Compared with single-agent systems,MASs com-
plete complex tasks in an efficient and robust way through
the cooperation between each agent [1]. As is known to
all, the formation control is one of the common and basic
issues in MASs, which endeavors to prompt multiple agents
to form a predetermined geometric pattern with their states
or outputs. Currently, a significant number of scholars are
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dedicated to addressing the challenge of formation con-
trol. Cao et al. [2] proposed a neural network (NN)-based
composite dynamic surface control approach to address the
fixed-time formation control problem of MASs. Pang et al.
[3] addressed the time-varying formation control problem
of MASs with communication delays and packet dropouts
by developing a cloud-based predictive control method. Yao
et al. [4] developed a sliding mode control method to handle
the leader-follower formation control problem ofMASswith
uncertain perturbations under event-triggered mechanism.
The previously mentioned researches primarily concentrate
on the stability of MASs. Nevertheless, the attainment of
green and high efficiency in MASs necessitates the care-
ful consideration of control cost. To achieve this goal, it is
essential to present an optimal formation control method to
accomplish the cooperative task of MASs while minimizing
the control cost of each agent.

It is widely acknowledged that reinforcement learning
(RL) is a highly effective method for addressing the opti-
mal control problem of nonlinear systems [5–11]. To achieve
optimal solutions for consensus, formation, and containment
control problems in MASs, numerous researchers have put
forward RL-based cooperative control methods. At consen-
sus control aspect, Guo et al. [12] tackled the distributed
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optimal attitude consensus control issue of unmanned aerial
vehicle cluster by using RL technique. Xia et al. [13] devel-
oped an off-policy RLmethod to tackle the optimal synchro-
nization issue of MASs with asymmetric input constraints.
For formation control, Mu et al. [14] developed a multistep
generalized policy iteration algorithm to settle the hierarchi-
cal leader-follower formation control problem of large-scale
MASs. Wen et al. [15] investigated the leader-follower for-
mation control of unknown MASs by employing a modified
RL technique. For containment control, Xiao et al. [16] con-
fronted the distributed optimal containment control problem
of mobile robots by combining optimal backstepping and
RL techniques. Yang et al. [17] adopted off-policy RL tech-
nique to handle the model-free optimal containment control
problem of heterogeneous MASs with unknown dynam-
ics. In general, aforementioned results develop appropriate
iterative RL algorithms to acquire the approximate solu-
tions of coupledHamilton–Jacobi–Bellman (HJB) equations,
and corresponding optimal cooperative controllers are devel-
oped to accomplish the cooperative control tasks of MASs.
However, the above mentioned control methods require to
update controllers at each sampling time, which consume
a lot of communication and computing resources. More-
over, in MASs, each agent transmits information through a
communication network, but its computing and communica-
tion capabilities are limited since agent is usually equipped
with a microprocessor, such as unmanned aerial vehicles
and unmanned surface vehicles, etc. To solve this problem,
scholars turn to develop event-triggered cooperative control
approaches for MASs, that is, agents only communicate or
update controllers at necessary times to alleviate computing
and communication burdens.

In recent years, several researchers have proposed event-
triggered cooperative control schemes for MASs. For exam-
ple, Zhao et al. [18] explored the optimal coordination control
of MASs under the event-triggered framework. Chen et al.
[19] presented an adaptive distributed observer-based RL
algorithm to tackle the event-triggered H∞ consensus prob-
lem. Wang et al. [20] combined integral sliding-mode and
local RL techniques to address the robust optimal consen-
sus control problem of MASs. Ren et al. [21] addressed
the security distributed consensus estimation problem of
nonlinear systems with deception attacks by developing an
event-triggered extended Kalman filter. On the whole, all
of existing researches handle the consensus control prob-
lem only, the formation control problem is not investigated.
Furthermore, in practice, agents need to perform various
complex tasks in harsh environments, such as unmanned
aerial vehicle rescue and unmanned surface vehicle deep sea
exploration. It means that the emergence of model uncer-
tainty is inevitable. Actually, plenty of RL-based robust

control methodologies have been formulated for nonlinear
systems to handle model uncertainties. Nevertheless, most
of them consider single agent systems [22, 23] or large-
scale systems [24, 25], the research for MASs is still in its
infancy. Based on the aforementioned discussion and analy-
sis, the paramount importance lies in effectively addressing
the robust formation control problem of MASs within the
event-triggered framework.

This paper introduces an innovative RL-based event-
triggered cooperative robust formation (ETCRF) control
scheme for uncertain MASs. The innovations and contribu-
tions of this paper are outlined in the following manner.

1. Unlike the exsiting optimal cooperative control results
[12] and [13] that adopted time-triggered mechanism,
this paper develops a novel triggering condition for each
agent and the developed RL-based ETCRF controller is
renewed at triggering instant only such that the comput-
ing and the communication resources are conserved.

2. Different from existing cooperative formation control
approaches [14] and [15], which are applicable to ideal
system model only, this paper considered MASs with
dynamic uncertainties. Through the development of a
novel value function for each agent, the ETCRF control
problem is converted into an event-triggered coopera-
tive optimal formation (ETCOF) control problem and
the developed controllers guarantee all followers catch up
with the leader in a specified geometric pattern even in the
presence of dynamic uncertainties. Therefore, the devel-
oped RL-based ETCRF control method ismore practical.

The subsequent sections of this paper are organized as fol-
lows. Section 2 introduces the graph theory and presents the
problem statement. Section 3 provides a detailed explanation
of the ETCRF controller design, theNN implementation, and
the stability analysis. The simulation results of the RL-based
ETCRF control scheme are displayed in Section 4. Finally,
Section 5 provides the corresponding conclusion.

2 Preliminaries

2.1 Graph theory

Consider a MAS characterized by the presence of a solitary
leader andM followers. LetMi represents the neighbor set
of the agent i and M̄i denotes a set that contains the agent i
and its neighbors. The communication topology graph of the
MAS is given by Tg = {P,E,A}, where P = {P1, ...,PM}
is a node set, E = {(Pi ,P j ) : Pi ,P j ∈ P} is a edge set,
and A = [αi j ] is a weighted adjacency matrix. Note that
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(Pi ,P j ) ∈ E if and only if the agent i and the agent j are
directly connected. Furthermore, if (Pi ,P j ) ∈ E, then αi j >

0, otherwise, αi j = 0, and αi i = 0 for all i = 1, ...,M. The
degree matrix of Tg is defined asD = diag{d1, ..., dM} with
di = ∑

j∈Mi
αi j and the Laplacian matrix is calculated as

L = D − A.

2.2 Problem statement

The system dynamics of the i th follower is expressed as

żi = A f ,i (zi ) + Ag,i (zi )
(
μi + �i (zi )

)
, (1)

where zi ∈ R
si and μi ∈ R

ki are the system state and the
control input of the i th follower,�i (zi ) ∈ R

ki is the matched
uncertainty, and A f ,i (zi ) ∈ R

si and Ag,i (zi ) ∈ R
si×ki are

nonlinear system functions.

Assumption 1 The system functions A f ,i (zi ) and Ag,i (zi )
are Lipschitz continuous on a compact set � and the system
(1) is stabilizable on � [5, 6].

Assumption 2 The dynamic uncertainty�i (zi ) satisfies ‖�i

(zi )‖ ≤ �̄i (zi ), where �̄i (zi ) is a known function and
�̄i (0) = 0 [22, 23].

The dynamics of the leader is provided as

ż0 = A f ,0(z0), (2)

where z0 ∈ R
s0 and A f ,0(·) ∈ R

s0 is a differential function.
The objective of this paper is to introduce a RL-based

ETCRF control method that ensures all uncertain followers
accurately track the leader’s trajectory within a specified for-
mation. We will show that this objective can be achieved by
addressing the ETCOF control problem of nominal MASs.

The nominal form of (1) is given as

żi = A f ,i (zi ) + Ag,i (zi )μi . (3)

The formation error of the i th follower is provided as

Ei =
∑

j∈Mi

αi j (zi − ηi − z j + η j ) + ci (zi − z0 − ηi ), (4)

where ηi ∈ R
si is the formation pattern between the follower

i and the leader and ci > 0 is the connection coefficient
between the follower i and the leader. Then, the dynamics of
the formation error is calculated as

Ėi =
∑

j∈Mi

αi j (żi − ż j ) + ci (żi − ż0)

=
∑

j∈Mi

αi j
(A f ,i (zi )+ Ag,i (zi )μi − A f , j (z j )− Ag, j (z j )μ j

)

+ ci
(A f ,i (zi ) + Ag,i (zi )μi − A f ,0(z0)

)

= (di + ci )
(A f ,i (zi ) + Ag,i (zi )μi

) − ciA f ,0(z0)

−
∑

j∈Mi

αi j
(A f , j (z j ) + Ag, j (z j )μ j

)
. (5)

The novel value function of the i th follower is formulated
as

Ji (Ei ) =
∫ ∞

t
e−γ (ς−t)Ui

(
Ei (ς), μi (ς), μ−i (ς)

)
dς, (6)

where γ is a positive constant,μ−i = {μ j : j ∈ Mi , j �= i},
and Ui (·) is the utility function that is formulated as

Ui (Ei , μi , μ−i )=
∑

j∈M̄i

(
θ�̄2

j (z j )+ E T
j Q jE j + μT

jR jμ j

)
,

where θ is a positive constant,Q j ∈ R
s j×s j andR j ∈ R

k j×k j

are positive definite matrices. The Hamiltonian of the i th
follower is given as

Hi
(
Ei ,∇Ji (Ei ), μi , μ−i

)

= ∇J T
i (Ei )

(

(di + ci )
(
A f ,i (zi ) + Ag,i (zi )μi

)

− ciA f ,0(z0)−
∑

j∈Mi

αi j
(
A f , j (z j )+ Ag, j (z j )μ j

)
)

+ Ui (Ei , μi , μ−i ) − γJi (Ei ). (7)

The discounted optimal value function of the i th follower

J ∗
i (Ei )= min

μi∈	(�)

∫ ∞
t

e−γ (ς−t)Ui
(
Ei (ς), μi (ς), μ−i (ς)

)
dς

fulfills the following HJB equation as

min
μi∈	(�)

Hi
(
Ei ,∇J ∗

i (Ei ), μi , μ−i
) = 0, (8)

where 	(�) represents the admissible control law. Subse-
quently, the optimal formation control law is obtained by

μ∗
i = −di + ci

2
R−1

i AT
g,i (zi )∇J ∗

i (Ei ). (9)

By utilizing (8) and (9), we can derive the coupled HJB
equation as

0 = ∇J ∗T
i (Ei )

(

(di + ci )
(
A f ,i (zi ) + Ag,i (zi )μ

∗
i

)
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− ciA f ,0(z0) −
∑

j∈Mi

αi j
(
A f , j (z j ) + Ag, j (z j )μ

∗
j

)
)

+ Ui
(
Ei , μ

∗
i , μ

∗−i

) − γJ ∗
i (Ei ). (10)

In the following, a RL-based ETCRF control scheme is put
forward to approximate the solution of the coupledHJBequa-
tion.

Remark 1 It is worth noting that the HJB equation is a com-
plex partial differential equation, and it is difficult to obtain
its analytical solution directly. In order to solve this prob-
lem, the policy iteration algorithm is adopted to obtain the
approximate solution. The algorithm pseudo-code is given
as follows.

Algorithm 1 Policy iteration algorithm.

Step 1: Let k = 1 and select initial admissible control law μ0
i ∈ 	(�).

Choose a computation precision ξ .
Step 2: (Policy evaluation) Calculate the iterative value function
J (k)
i (Ei ) by

0 = Ui
(
Ei , μ

(k−1)
i , μ

(k−1)
−i

) − γJ (k)
i (Ei )

+∇J (k)T
i (Ei )

(

(di + ci )
(A f ,i (zi ) + Ag,i (zi )μ

(k−1)
i

)

−ciA f ,0(z0) −
∑

j∈Mi

αi j
(A f , j (z j ) + Ag, j (z j )μ

(k−1)
j

)
)

.

Step 3: (Policy improvement) Update the control law by

μ
(k)
i = −di + ci

2
R−1

i AT
g,i (zi )∇J (k)

i (Ei ).

Step 4: If |J (k)
i (Ei )−J (k−1)

i (Ei )| < ξ , goto Step 5; else, let k = k+1,
go back to Step 2 and continue.
Step 5: Stop Algorithm.

It is worthmentioning that several researchers have estab-
lished theoretical analysis frameworks to show that, through
continuous policy evaluation and policy improvement, the
iterated value function can converge to the optimal value
function and the optimal control policy is obtainedafter itera-
tion completion [5, 6, 8]. Therefore, we can ultimately obtain
the approximate solution of the HJB equation.

Remark 2 This paper adopts the policy iteration, that is
value-based RL algorithm, to derive the optimal value func-
tion and the optimal formation control law for MASs. In the
field of control, prevalent RL algorithms include policy itera-
tion, value iteration, and policy gradient. The former two are
value-based RL algorithms, while the latter is policy-based.
Typically, value-based RL algorithms are extensively applied
and have proven effective in addressing classical control
problems such as the optimal regulation and the trajectory

tracking. Scholars have rigorously analyzed the convergence
and the optimality of policy iteration or value iteration algo-
rithms, ensuring the attainment of optimal control laws for
closed-loop systems [5, 6]. Recently, several researchers
have begun investigating the policy gradient-based RL algo-
rithm to address the control problems of nonlinear systems.
It is noteworthy that each of these algorithms has its own
strengths and limitations. For example, value iteration algo-
rithm easily determines its initial condition, but the stability
of the closed-loop system is not guaranteed at each itera-
tion. Policy iteration algorithm necessitates the admissible
control law as initial condition, yet the stability of the closed-
loop system is assured at each iteration. Since the stability
is paramount in closed-loop systems, the policy iteration
algorithm becomes the prevalent approach in control appli-
cations. In addition, the policy gradient algorithm does not
require the system function information, making it suitable
for closed-loop systems with unknown dynamics. In conclu-
sion, the selection of RL algorithms should be tailored to
specific problems. This paper employs the classic policy iter-
ation algorithm to tackle the cooperative robust formation
control problem for MASs and introduces an event-triggered
mechanism to mitigate computational and communication
burdens. In the future work, we will explore event-triggered
control methods based on value iteration or policy gradient
algorithms to address cooperative control problems ofMASs.

Remark 3 Compared with traditional control methods, the
advantage of the RL-based control approach lies in its ability
to guarantee the stability of the closed-loop systemwhilemin-
imizing the performance index function, thereby reducing the
control cost and enhancing the control performance. More-
over, by utilizing a model-free RL algorithm, it is possible to
design a controller without the need of system functions. As
a result, model-free control can be achieved for closed-loop
systems with unknown system dynamics. Nevertheless, the
design of the RL-based control method faces the following
challenges. 1) Most RL algorithms, such as value iteration
and policy iteration, require a certain number of iterations
to obtain the optimal control policy. As the system stability
is crucial in the field of control, it is essential to establish
a rigorous theoretical analysis framework to guarantee the
stability of the closed-loop system during the iteration pro-
cess and the optimality of the control policy upon completion
of the iteration. 2) When implementing RL algorithms, NNs
need to be introduced. Therefore, one of the challenges lies
in designing the appropriate NN weight updating law to
ensure the optimal weights are obtained, thus deriving the
optimal control policy. Additionally, the NN structure, acti-
vation functions, and control parameters all impact control
performance. Therefore, selecting these parameters presents
another challenge.
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3 RL-based event-triggered robust
formation control scheme

3.1 Event-triggered robust formation controller
design

In event-triggered mechanism, the sampled state of i th fol-
lower is expressed as

z̄i,κ = zi (�κ),∀t ∈ [�κ, �κ+1), (11)

where �κ denotes the κth sampling instant. Hence, the cor-
responding sampled formation error is provided as

Ēi,κ =
∑

j∈Mi

αi j (z̄i,κ − ηi − z̄ j,κ + η j )

+ci (z̄i,κ − z̄0,κ − ηi ),∀t ∈ [�κ, �κ+1). (12)

Moreover, the event-triggered error is formulated as

ei,κ (t) = Ei (t) − Ēi,κ ,∀t ∈ [�κ, �κ+1). (13)

Based on (9), (11) and (12), the ETCOF control law of the
i th follower is given as

μ∗
i (Ēi,κ ) = −di + ci

2
R−1

i AT
g,i (z̄i,κ )∇J ∗

i (Ēi,κ ). (14)

Assumption 3 The system functionAg,i (zi ) is norm-bounded
as

‖Ag,i (zi )‖ ≤ ḡi , (15)

where ḡi is a positive constant [5, 6].

In the following,wewill indicate that the designedETCOF
control law (14) guarantees the formation error of each fol-
lower to be asymptotically stable. This indicates that it is
reasonable and effective to convert the ETCRF control prob-
lem into an ETCOF control problem.

Theorem 1 Consider the i th follower with dynamic uncer-
tainty (1),Assumptions 2 and 3, and the ETCOF control law
provided by (14). If the triggering condition fulfills

Ti,c(Ei , Ēi,κ ) = (1 + ν)∇J ∗T
i (Ei )

(
− ciA f ,0(z0)

+(di + ci )
(
A f ,i (zi ) + Ag,i (zi )μ

∗
i (Ēi,κ )

)

−
∑

j∈Mi

αi j
(
A f , j (z j )+ Ag, j (z j )μ

∗
j (Ē j,κ )

))

+Ui (Ei , μ
∗
i , μ

∗−i ) + θ
∑

j∈M̄i

�̄2
j (z j )

+(1 + ν)∇J ∗T
i (Ei )∇J ∗

i (Ei )

< 0, (16)

where ν > 0 is a design parameter. Then, the formation error
pertaining to the i th follower exhibits asymptotic stability.

Proof Decide on the Lyapunov function candidate as

LT 1 = J ∗
i (Ei ). (17)

By taking the derivative ofLT 1 with respect to the solution
of (1) and utilizing (16), we can derive

L̇T 1 = ∇J ∗T
i (Ei )

(

− ciA f ,0(z0) + (di + ci )
(
A f ,i (zi )

+Ag,i (zi )
(
μ∗
i (Ēi,κ ) + �i (zi )

)) −
∑

j∈Mi

αi j

(
A f , j (z j ) + Ag, j (z j )

(
μ∗

j (Ē j,κ ) + � j (z j )
))

)

= 1

1 + ν

(

Ti,c(Ei , Ēi,κ ) − Ui (Ei , μ
∗
i , μ

∗−i )

−θ
∑

j∈M̄i

�̄2
j (z j ) − (1 + ν)∇J ∗T

i (Ei )∇J ∗
i (Ei )

)

+(di + ci )∇J ∗T
i (Ei )Ag,i (zi )�i (zi )

−(di + ci )∇J ∗T
i (Ei )

∑

j∈Mi

αi jAg, j (z j )� j (z j )

≤ 1

1 + ν

(

Ti,c(Ei , Ēi,κ ) − Ui (Ei , μ
∗
i , μ

∗−i )

−θ
∑

j∈M̄i

�̄2
j (z j ) − (1 + ν)∇J ∗T

i (Ei )∇J ∗
i (Ei )

)

+∇J ∗T
i (Ei )∇J ∗

i (Ei ) + (di + ci )

2
ḡ2i �̄

2
i (zi )

+Mi (di + ci )

2

∑

j∈Mi

αi j ḡ
2
j �̄

2
j (z j )

≤ 1

1 + ν

(

Ti,c(Ei , Ēi,κ ) − Ui (Ei , μ
∗
i , μ

∗−i )

−θ
∑

j∈M̄i

�̄2
j (z j )

)

+ (di + ci )

2
ḡ2i �̄

2
i (zi )

+Mi (di + ci )

2

∑

j∈Mi

αi j ḡ
2
j �̄

2
j (z j ). (18)

Let

ϒi = max

{
(di + ci )ḡ2i

2
,
Mi (di + ci )ai1ḡ21

2
,

...,
Mi (di + ci )aiMi ḡ

2
Mi

2

}

.
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Then, if θ is selected to satisfy θ
1+ν

> ϒi , we can obtain

L̇T 1 ≤ 1

1 + ν

(

− Ui (Ei , μ
∗
i , μ

∗−i ) − θ
∑

j∈M̄i

�̄2
j (z j )

)

+ϒi

∑

j∈M̄i

�̄2
j (z j )

≤ − 1

1 + ν
Ui (Ei , μ

∗
i , μ

∗−i ) < 0. (19)

Therefore, with the event-triggering condition (16), the
ETCOF control law (14) guarantees the asymptotic stability
of the formation error for each follower. The proof has been
concluded. ��

Remark 4 The design of the event-triggered condition (16)
is primarily based on the Lyapunov stability principle. It is
well-known that the stability of the closed-loop system can
only be guaranteed when the L̇T 1 is less than 0. Through
the proof process of Theorem 1, it can be observed that if
the event-triggered condition satisfies (16), then the L̇T 1 is
negative,which guarantees that the formation error is asymp-
totically stable. This constitutes the main idea behind the
design of the event-triggered condition. In addition, there
are certain parameter values in (16) that need to be deter-
mined by the user. These values will impact the magnitude
of the triggering threshold. Generally, a larger triggering
threshold leads to fewer controller updates, thus conserv-
ing computational and communication resources. However,
this may risk system instability. Conversely, a smaller trig-
gering threshold results in more frequent controller updates,
which increase the computational and communication bur-
den and make the stability of the closed-loop system easier
to maintain. At present, there is no unified method to select
these parameter values. Typically, iterative experiments are
required for their determination.

3.2 Neural network implementation

By leveraging the assistance of the critic NN, we can approx-
imate the optimal value function as

J ∗
i (Ei ) = χ∗T

ic ζic(Ei ) + εic(Ei ), (20)

where χ∗
ic ∈ R

hc is the ideal weight vector, ζic(Ei ) ∈ R
hc is

the activation function, hc is the number of hidden layer neu-
rons, and εic(Ei ) ∈ R is the approximation error. Obviously,
the partial derivative of J ∗

i (Ei ) is given as

∇J ∗
i (Ei ) = ∇ζ T

ic(Ei )χ
∗
ic + ∇εic(Ei ). (21)

The approximate value function is formulated as

Ĵi (Ei ) = χ̂T
icζic(Ei ), (22)

where χ̂ic denotes the estimate of the optimal weight. Then,
we can further get

∇Ĵi (Ei ) = ∇ζ T
ic(Ei )χ̂ic. (23)

According to (14) and (20), the ETCOF control law of the
i th follower is rewritten as

μ∗
i (Ēi,κ )=−di + ci

2
R−1

i AT
g,i (z̄i,κ )

(∇ζ T
ic(Ēi,κ )χ∗

ic+∇εic(Ēi,κ )
)
.

(24)

Combining (14) and (22), the approximateETCOFcontrol
law is provided as

μ̂i (Ēi,κ ) = −di + ci
2

R−1
i AT

g,i (z̄i,κ )∇ζ T
ic(Ēi,κ )χ̂ic. (25)

As per the equations (10) and (25), the approximate
Hamiltonian is given as

Ĥi
(
Ei , χ̂ic

) = χ̂T
ic∇ζic(Ei )

(

− ciA f ,0(z0)

+(di + ci )
(
A f ,i (zi ) + Ag,i (zi )μ̂i (Ēi,κ )

)

−
∑

j∈Mi

αi j
(
A f , j (z j )+ Ag, j (z j )μ̂ j (Ē j,κ )

)
)

+Ui (Ei , μ̂i , μ̂−i ) − γ Ĵi (Ei ) � eic. (26)

By minimizing the objective function Eic = 1
2e

T
iceic, the

weight tuning law of the critic NN is designed as

˙̂χic = −�c
1

(1 + �T
i �i )2

(
∂Eic

∂χ̂ic

)

= − �c�i

(1 + �T
i �i )2

(
χ̂T
ic�i + Ui (Ei , μ̂i , μ̂−i )− γ Ĵi (Ei )

)
,

(27)

where �c > 0 is the learning rate and

�i = ∇ζic(Ei )

(

(di + ci )
(A f ,i (zi ) + Ag,i (zi )μ̂i (Ēi,κ )

)

−
∑

j∈Mi

αi j
(A f , j (z j )+ Ag, j (z j )μ̂ j (Ē j,κ )

)− ciA f ,0(z0)

)

.

Theorem 2 Consider the i th nominal follower (3), the critic
NN weight updating rule is provided as (27), then the critic
NN weight estimation error χ̃ic = χ∗

ic − χ̂ic is guaranteed
to be uniform ultimate boundedness (UUB).
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Proof The similar proof of Theorem 2 is widely existed in
[26, 27], we omit the detail proof here. ��
Remark 5 It is worth noting that each term in the trig-
gering condition (16) is known and easy to compute. The
reasons are explained as follows. 1) With the help of the
NN, the first part J ∗T

i (Ei ) is expressed as (21). There-
fore, by calculating the product of the activation function
and the NN weight, the value of J ∗T

i (Ei ) can be obtained.
2) The second part, represented by −ciA f ,0(z0) + (di +
ci )

(
A f ,i (zi )+Ag,i (zi )μ∗

i (Ēi,κ )
)−∑

j∈Mi
αi j

(
A f , j (z j )+

Ag, j (z j )μ∗
j (Ē j,κ )

)
, signifies the dynamics of the formation

error. Since the control law can be calculated from (24), and
the system functionsA f ,0,A f ,i , andAg,i as well as the con-
stants ci , di , and αi j are all known, we can directly calculate
the value of the second part. 3) The third part �̄ j (z j ) is the
upper bound function of the uncertainty and can be chosen as
‖z j‖, so obtaining the value of this part is straightforward.
4) The four part Ui (Ei , μ

∗
i , μ

∗−i ) is the utility function. Since
Ei , μi and �̄ j (z j ) are known, the value of this part can be
readily determined. According to the above discussion, the
triggering condition is easy to implement.

3.3 Stability analysis

This section will provide proof that during the training phase
of the RL-based ETCRF controller, the formation error of
each follower is guaranteed to be UUB.

Assumption 4 The system functionA f ,i (zi ) is Lipschitz con-
tinuous and satisfies

‖A f ,i (zi )‖ ≤ Li, f ‖zi‖, (28)

where Li, f is a positive constant [5, 6].

Assumption 5 χ̃ic, χ∗
ic, ∇ζic(zi ), and ∇εic(zi ) are norm-

bounded, i.e.,

‖χ̃ic‖ ≤ χ̄ic, ‖χ∗
ic‖ ≤ χ̄icM ,

‖∇ζic(zi )‖ ≤ ζ̄ic, ‖∇εic(zi )‖ ≤ ε̄ic

where χ̄ic, χ̄icM , ζ̄ic and ε̄ic are positive constants [22, 28–
31].

Theorem 3 For the i th nominal follower (3), the approxi-
mate ETCOF control law provided by (25), the critic NN
weight renovating law given by (27), and Assumptions 3–5.
Then, the formation error is ensured to be UUB if the event-
triggering condition

T̂i,c(Ei , Ēi,κ )

= (1 + ν)

(

∇Ĵ T
i (Ei )

(

(di + ci )
(A f ,i (zi ) + Ag,i (zi )μ̂i (Ēi,κ )

)

−
∑

j∈Mi

αi j
(A f , j (z j )+ Ag, j (z j )μ̂ j (Ē j,κ )

)− ciA f ,0(z0)

))

+Ui (Ei , μ̂i , μ̂−i ) + θ
∑

j∈M̄i

‖z j‖2

< 0 (29)

holds.

Proof The selected Lyapunov function candidate is shown as

L3T = L3T 1 + L3T 2 = J ∗
i (Ei ) + J ∗

i (Ēi,κ ). (30)

Case 1: The event is not triggered, i.e., t ∈ [�κ, �κ+1).
Calculating the time derivative of (30) and adopting system
(3), we can get

L̇3T 1 = ∇J ∗T
i (Ei )

(

(di + ci )
(A f ,i (zi ) + Ag,i (zi )μ̂i (Ēi,κ )

)

−
∑

j∈Mi

αi j
(A f , j (z j )+ Ag, j (z j )μ̂ j (Ē j,κ )

)− ciA f ,0(z0)

)

,

L̇3T 2 = 0.

If the event-triggering condition (29) holds, it can be
derived that

L̇3T 1 ≤ ∇J ∗T
i (Ei )

(

(di + ci )
(
A f ,i (zi ) + Ag,i (zi )μ̂i (Ēi,κ )

)

−
∑

j∈Mi

αi j
(
A f , j (z j ) + Ag, j (z j )μ̂ j (Ē j,κ )

)

−ciA f ,0(z0)

)

− 1

1 + ν
T̂i,c(Ei , Ēi,κ )

≤ ∇J ∗T
i (Ei )

(

(di + ci )
(
A f ,i (zi ) + Ag,i (zi )μ̂i (Ēi,κ )

)

−
∑

j∈Mi

αi j
(
A f , j (z j ) + Ag, j (z j )μ̂ j (Ē j,κ )

)
)

−∇Ĵ T
i (Ei )

(

(di + ci )
(
A f ,i (zi )+ Ag,i (zi )μ̂i (Ēi,κ )

)

−
∑

j∈Mi

αi j
(
A f , j (z j ) + Ag, j (z j )μ̂ j (Ē j,κ )

)
)

+∇J ∗T
i (Ei )ciA f ,0(z0) − ∇Ĵ T

i (Ei )ciA f ,0(z0)

− 1

1 + ν
Ui (Ei , μ̂i , μ̂−i ) − θ

1 + ν

∑

j∈M̄i

‖z j‖2

≤ ‖∇J ∗T
i (Ei ) − ∇Ĵ T

i (Ei )‖2

+1

2

∥
∥(di + ci )

(
A f ,i (zi ) + Ag,i (zi )μ̂i (Ēi,κ )

)∥
∥2
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+1

2

∥
∥
∥
∥
∥
∥

∑

j∈Mi

αi j
(
A f , j (z j ) + Ag, j (z j )μ̂ j (Ē j,κ )

)
∥
∥
∥
∥
∥
∥

2

− 1

1 + ν
Ui (Ei , μ̂i , μ̂−i ) − θ

1 + ν

∑

j∈M̄i

‖z j‖2

≤ ‖∇ζ T
ic(Ēi,κ )χ∗

ic + ∇εic(Ei ) − ∇ζ T
ic(Ēi,κ )χ̂ic‖2

+ (di + ci )2

2

∥
∥A f ,i (zi ) + Ag,i (zi )μ̂i (Ēi,κ )

∥
∥2

+Mi

2

∑

j∈Mi

α2
i j

∥
∥A f , j (z j ) + Ag, j (z j )μ̂ j (Ē j,κ )

∥
∥2

− 1

1 + ν
Ui (Ei , μ̂i , μ̂−i ) − θ

1 + ν

∑

j∈M̄i

‖z j‖2.

(31)

According to Assumptions 3–5, we further obtain

L̇3T 1 ≤ Mi

∑

j∈Mi

L2
j, f α

2
i j‖z j‖2 + (di + ci )

2L2
i, f ‖zi‖2

+ε̄2ic + ζ̄ 2
icχ̄

2
icM + (di + ci )

2L2
i, f ḡ

2
i ‖μ̂i (Ēi,κ )‖2

+Mi

∑

j∈Mi

α2
i j ḡ

2
j‖μ̂ j (Ē j,κ )‖2 − λmin(Qi )

1 + ν
‖Ei‖2

− θ

1 + ν

∑

j∈M̄i

‖z j‖2 + ζ̄ 2
icχ̄

2
ic. (32)

Let�i =max{(di+ci )2L2
i, f ,Mi L2

1, f α
2
i,1, ...,Mi L2

Mi , f

α2
i,Mi

}. If we select appropriate θ to satisfy θ > (1 + ν)�i ,
then we further get

L̇3T 1 ≤ ζ̄ 2
icχ̄

2
ic+ ε̄2ic + ζ̄ 2

icχ̄
2
icM + (di + ci )

2L2
i, f ḡ

2
i ‖μ̂i (Ēi,κ )‖2

+Mi

∑

j∈Mi

α2
i j ḡ

2
j‖μ̂ j (Ē j,κ )‖2 − λmin(Qi )

1 + ν
‖Ei‖2.

According to (25) and Assumptions 3 and 5, we have

∥
∥μ̂i (Ēi,κ )

∥
∥2 =

∥
∥
∥
∥−di + ci

2
R−1

i AT
g,i (z̄i,κ )∇ζ T

ic(Ēi,κ )χ̂ic

∥
∥
∥
∥

2

≤ (di + ci )2

4
‖R−1

i ‖2 ḡ2i ζ̄ 2
icχ̄

2
ic � �i . (33)

Based on (33), L̇3T 1 can be deduced as

L̇3T 1 ≤ ζ̄ 2
icχ̄

2
ic + ε̄2ic + ζ̄ 2

icχ̄
2
icM + (di + ci )

2L2
i, f ḡ

2
i �i

+Mi

∑

j∈Mi

α2
i j ḡ

2
j� j − λmin(Qi )

1 + ν
‖Ei‖2

≤−ρ2λmin(Qi )

1+ ν
‖Ei‖2+ (ρ2− 1)λmin(Qi )

1+ ν
‖Ei‖2+�,

(34)

where 0 < ρ < 1 and � = ζ̄ 2
icχ̄

2
ic + ε̄2ic + ζ̄ 2

icχ̄
2
icM + (di +

ci )2L2
i, f ḡ

2
i �i + Mi

∑
j∈Mi

α2
i j ḡ

2
j� j . Hence, L̇3T < 0 if

the formation error Ei lies outside the compact set

�Ei =
{

Ei : ‖Ei‖ ≤
√

�(1 + ν)

(1 − ρ2)λmin(Qi )

}

. (35)

Case 2: The event is triggered, i.e., ∀t = �κ+1. According
to (30), we can get

�L3T (t) = �L3T 1(t) + �L3T 2(t). (36)

Based on the result in Case 1, it is evident that L̇3T < 0
for all t ∈ [�κ, �κ+1). Therefore, we further have

�L3T 1(t) = J ∗
i (Ēi,κ+1) − J ∗

i

(
E (�−

κ+1)
) ≤ 0,

�L3T 2(t) = J ∗
i (Ēi,κ+1) − J ∗

i (Ēi,κ ) ≤ −ι
(‖ei,κ+1(�κ)‖),

where ι(·) is a class-K function and ei,κ+1(�κ) = Ēi,κ+1 −
Ēi,κ . According to the above discussion, we can conclude
that L̇3T < 0 is still satisfied when the event occurs. The
proof is completed. ��
Theorem 4 Consider the i th nominal follower (3), the
approximate ETCOF control law given by (25), the event-
triggering condition given by (29), and Assumptions 3–5.
Then, the minimal intersampling time satisfies ��min > 0.

Proof According to the existing results [18] and [32], it is
easy to obtain the conclusion of Theorem 4, so the detailed
proof is omitted. ��
Remark 6 The difficulty of designing the RL-based ETCRF
controller is mainly reflected in the following two aspects.
Firstly, this paper considers the MAS with dynamic uncer-
tainties. In order to ensure that each following agent can
catch up with the leader trajectory with the specified for-
mation in the presence of uncertain terms, the designed
controller is required to possess robustness. Therefore, a
novel value function which contains an upper bound function
of the uncertainty, is designed. The objective is to proac-
tively account for the impact of uncertainties during the
controller design process, thus obtaining a robust formation
controller. Second, in order to save computing and commu-
nication resources, this paper designs the robust formation
controller under the event triggered mechanism, that is, the
controller is updated only when the triggering condition is
not met. To this end, it is crucial to design a reasonable
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triggering condition, which can save computing and com-
munication resources and maintain the desired formation
between each agent. In this paper, a new triggering condition
is designed by using the Lyapunov stability principle. Theo-
retical analysis shows that the developed RL-based ETCRF
controller ensures the formation error to be asymptotically
stable under the designed triggering condition.

4 Simulation

In this section, three simulation cases are applied to showcase
the availability of the presented RL-based ETCRF control
approach.

4.1 Case 1

This case selects a MAS with one leader and three follow-
ers. The communication network is illustrated in Fig. 1, with
L0 acting as the leader and Fi (i = 1, 2, 3) serving as the
respective follower. The parameters of communication topol-
ogy are given as α12 = 1, α21 = 1, α13 = 1, α31 = 1, α23 =
1, α32 = 1, and c1 = 1. The dynamics of the i th follower is
given as

żi = A f ,i (zi ) + Ag,i (zi )
(
μi + �i (zi )

)
, (37)

where

A f ,1(z1) =
[
z1,2
F1

]

,A f ,2(z2)=
[
z2,2
F2

]

,A f ,3(z3)=
[
z3,2
F3

]

,

Ag,1(z1) =
[

0
2z1,1

]

,Ag,2(z2) =
[

0
cos(2z22,1) + 2

]

,

Ag,3(z3) =
[

0
sin(4z23,1) + 2

]

,

Fig. 1 The structure of communication topology
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Fig. 2 Formation errors of all followers in case 1

F1 = −0.5z1,1 − 0.5z1,2(1 + (cos(2z1,1) + 2)2),

F2 = −z2,1 − 0.5z2,2 + 0.5z22,1z2,2,

F3 =−0.5z3,1 −z3,2 +z23,1z3,2− 0.25z3,2
(
cos(2z3,1)

+2
)2

,+0.25zi,2
(
sin(4z2i,2) + 2

)2
,

�1(z1) = 2z1,1cos
3(z1,1)cos

2(z1,2),�2(z2)

= 2z2,1sin
6(z2,1)sin

2(z2,2),

�3(z3) = 2z3,1cos
3(z3,1)sin

5(z3,2), zi = [zi,1, zi,2]T,
i = 1, 2, 3.

The dynamics of the leader is chosen as

ż0 =
[
sin(t)
cos(t)

]

.
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Fig. 4 The controller update times of all followers in case 1

The formation patterns of all followers are chosen as η1 =
[0.5; 0], η2 = [1; 0], and η3 = [1.5; 0]. The parameters
in value function are determined as Qi = I2, Ri = 0.1I ,
γ = 0.5 and θ = 10, respectively. The activation function of
each follower is designed as ζic = [E 2

i,1,E
2
i,2,Ei,1Ei,2]. The

learning rate is picked as �c = 2. The parameter in triggering
condition is selected as ν = 0.5.

Simulation results of this case are exhibited in Figs. 2,
3, 4, 5 and 6. Figure 2 displays that the formation error of
each nominal follower will converge to zero, which implies
that the desired formation between each follower can be
maintained. The critic NN weight evolution curves are pro-
vided in Fig. 3. It is apparent that the weight vectors of
critic NNs will converge to χ̂1c = [35.16, 25.29, 22.90]T ,
χ̂2c = [2.98, 34.08, 1.87]T , and χ̂3c = [3.62, 25.81, 6.81]T ,
respectively. Figure 4 compares the controller update times of
each follower under the time-triggered control (TTC) mech-
anism and the event-triggered control (ETC) mechanism.
It is clear that the ETC mechanism can reduce the con-
troller update times and the computing and communication
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Fig. 6 System state curves of all followers in case 1

burdens of each follower is alleviated. Figure 5 presents
the triggering time curves for each follower, from which it
can be observed that under the event-triggered framework,
the triggering times are not evenly spaced. Figure 6 reveals
the state curve of each follower with dynamic uncertainty.
We can conclude that the expected formation between each
uncertain follower can be guaranteed with the presented RL-
based ETCRF control method. Figure 7 depicts the system
state trajectories under different control methods. It can be
observed that due to the influence of uncertainties, the system
state trajectories under traditional formation control method
deviate from the ideal trajectory.

4.2 Case 2

In this case, three spacecrafts are adopted to demonstrate the
validity of the proposed RL-based ETCRF control approach.
According to [33], the system dynamics of the i th spacecraft
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Fig. 5 Triggering times in case 1
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Fig. 7 System state curves of all uncertain agents in case 1

is provided as

Ṗi = Vi ,

mi V̇i + CiVi + DiPi + Ni = μi + �i , (38)

Table 1 Parameters of the spacecraft

Parameter ϕ ac σc

Description True anomaly Semimajor
axis

Orbit
eccentricity

Value ϕ(0) = 0 7178 0.01

Parameter � mi

Description Earth’s gravitational Mass of the
spacecraft

Value 3.986 × 1014m3/s2 100kg
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Fig. 8 Formation errors of all followers in case 2
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Fig. 10 Controller update times of all spacecrafts in case 2

where Pi = [Pi,1,Pi,2,Pi,3]T ∈ R
3 and Vi ∈ R

3 denote the
position and velocity vectors of the i th spacecraft, respec-
tively, μi is the control input, �i is the dynamic uncertainty,
Ci , Di and Ni are system functions, which provide as

Ci = 2mi

⎡

⎣
0 −ϕ̇ 0
ϕ̇ 0 0
0 0 0

⎤

⎦ ,

Di = mi

⎡

⎣
�/r3i − ϕ̇2 −ϕ̈ 0

ϕ̈ �/r3i − ϕ̇2 0
0 0 �/r3i

⎤

⎦ ,

Ni = mi�

⎡

⎣
Rc/r3i − 1/R2

c
0
0

⎤

⎦ ,

ri =
√

(Rc + Pi,1)2 + P2
i,2 + P2

i,3,

Rc = ac(1 − σ 2
c )/

(
1 + σccos(ϕ)

)
,

ϕ̇ = nc
(
1 − σccos(ϕ)

)2
/(1 − σ 2

c )3/2, nc =
√

�/a3c .

The physical interpretations and values of the correspond-
ing variables are given in Table 1.

Let zi = [PT
i , ṖT

i ]T = [zi,1, zi,2, zi,3, zi,4, zi,5, zi,6]T.
Then, the system dynamics of the i th spacecraft is refor-
mulated as

zi = A f ,i (zi ) + Ag,i (zi )(μi + �i ), (39)

where

�1 =
⎡

⎣
z1,1

cos5(z1,1)
sin3(z1,5)

⎤

⎦ ,�2 =
⎡

⎣
z2,1

sin6(z2,2)
sin2(z2,3)

⎤

⎦ ,

�3 =
⎡

⎣
z3,1

cos3(z3,3)
sin6(z3,1)

⎤

⎦ ,

A f ,i (zi ) =
[ Vi

− 1
mi

(CiVi + DiPi + Ni )

]

,

Ag,i (zi ) = 1

mi

[
03×3

I3

]

.

The dynamics of the leader is given as

ż0 = A f ,0(z0),

where

A f ,0(z0)=[cos(t), sin(t), cos(t),−sin(t), cos(t),−sin(t)]T.
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Fig. 11 Triggering times in case 2
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The communication topology of this case is selected the
same as in case 1. The formation patterns of all followers
are chosen as η1 = [1; 1; 1; 0; 0; 0], η2 = [2; 2; 2; 0; 0; 0],
and η3 = [1.5; 1.5; 1.5; 0; 0; 0]. The activation func-
tion of the i th following spacecraft is designed as ζic =
[E 2

i,1,E
2
i,2,E

2
i,3,E

2
i,4,E

2
i,5,E

2
i,6,Ei,1Ei,4,Ei,2Ei,5,Ei,3Ei,6].

The control parameters of this case are given as: Qi = I6,
Ri = 0.1I3, γ = 0.5, θ = 20, �c = 0.5, ν = 0.8.

Figures 8, 9, 10, 11 and 12 display the simulation results
of this case. The convergence of the formation error of each
following spacecraft is shown in Fig. 8. Figure 9 reveals the
critic NN weight updating curves. It is readily apparent that
the weight vectors of the critic NN will converge to χ̂1c =
[11.61, 93.29, 80.76, 48.61, 43.63, 45.67, 29.56, 50.70, 49.
31]T, χ̂2c=[74.85, 77.61, 61.67,35.97,80.84, 51.28, 38.27,
95.04, 89.88]T , and χ̂3c=[56.33, 65.51,60.34,20.93, 35.19,
46.78, 22.37, 80.09, 19.12]T , respectively. The controller
update times of the TTC and ETC approaches are provided
in Fig. 10. Obviously, the ETC method requires less con-
troller update and saves communication and computing
resources. Figure 11 further illustrates the triggering time
of each following spacecraft. It can be seen that under the

event-triggered framework, the controller for each following
spacecraft is not continuously updated. Figure 12 demon-
strates that the proposed RL-based ETCRF control approach
maintains the expected formation of the spacecraft cluster
with dynamic uncertainty. Figure 13 compares the space-
craft state trajectories under different control methods, from
which we can see that the developed RL-based ETCRF con-
trol approach method can effectively resist the influence of
uncertainties.

4.3 Case 3

This case adopts three robotic arms to further validate the
effectiveness of the developed RL-based ETCRF control
method. The dynamics of the i th robotic arm is given as

żi = A f ,i (zi ) + Ag,i (zi )
(
μi + �i (zi )

)
, (40)

where

A f ,i (zi ) =
[

zi,2
−4.905sin(zi,1)− 0.2zi,2

]

,Ag,i (z1)=
[
0
0.1

]

,
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Fig. 12 System state curves of all uncertain agents in case 2
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Fig. 13 System states under different control approaches in case 2

�1(z1) = cos(z1,1)sin
2(z1,2),�2(z2) = z2,1sin

3(z2,1),

�3(z3) = z3,1cos
2(z3,1)sin

5(z3,2), zi = [zi,1, zi,2]T,
i = 1, 2, 3.

The dynamics of the leader, the communication topology,
and the formation patterns of all followers are the same as in
Case 1. The simulation parameters are selected as Qi = I2,
Ri = 0.01I , γ = 0.3, �c = 3, θ = 15 and ν = 0.5.
The activation function of each robotic arm is designed as
ζic = [E 2

i,1,E
2
i,2,Ei,1Ei,2].

Figure 14 shows that the formation errors can eventually
converge to near zero. Therefore, the desired formation of
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Fig. 14 Formation errors of all followers in case 3

each robotic arm can be achieved. Figure 15 displays the
changes of critic NN weights, which ultimately converge to
χ̂1c = [64.91, 42.81, 82.14]T , χ̂2c = [21.93, 49.54, 91.65]T ,
and χ̂3c = [70.47, 77.97, 77.10]T , respectively. Figure 16
compares the controller update times between the ETC
method and the TTC method. It is evident that the ETC
method requires fewer controller updates, thus alleviating
computing and communication burdens. Figure 17 reveals
the moments of event occurrences, indicating that they are
not evenly spaced. Only when the triggering condition is not
met will it be recorded as a triggering moment. Figure 18
demonstrates that even in the presence of system uncertain-
ties, each robotic arm can maintain the specified formation
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Fig. 15 Critic NN weights in case 3
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Fig. 16 Controller update times of all robotic arms in case 3

and track the leader’s trajectory. Figure 19 demonstrates that
compared with the traditional method, the developed RL-
based ETCRF control approach exhibits robustness and has
the ability to eliminate the influence of uncertainties.

Remark 7 a) Equations (1)-(10), which appear in the prob-
lem statement section, primarily describe the system dynam-
ics, the formation error and its dynamics, the value function,
the optimal formation control law, and the HJB equation.
b) Equations (11)-(19), appearing in the section of event-
triggered robust formation controller design, provide the
definition of formation error and the expression of optimal
formation control law under the event-triggered mechanism.
In addition, it includes the detailed derivation process of The-
orem 1. c)Equations (20)-(27) describe the expressions of the
value function, the formation control law, the Hamiltonian,
and the NN weight updating law under the NN frame-
work. b) Equations (28)-(36) present a detailed derivation of
Theorem 3. e) Equations (37)-(40) provide the expressions of
closed-loop systems in simulation section.
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Fig. 18 System state curves of all uncertain agents in case 3

5 Conclusion

In this paper, the RL-based ETCRF control method is pre-
sented for MASs with matched uncertainties. The ETCRF
control problem is transformed to a ETCOF control prob-
lem by developing a discounted value function for each
agent. For the sake of reducing computing and communi-
cation burdens, the developed robust formation controller
of each agent is improved when the novel event-triggering
condition is contravened only. Afterwards, a single critic
structure is established to acquire the approximate solution
of the coupled HJB equation of each agent. Additionally,
through theoretical analysis, it is revealed that the proposed
RL-based ETCRF control method is capable of preserving
the prescribed formation between each agent. In the end, two
simulation cases are presented to confirm the effectiveness
of the introduced RL-based ETCRF control approach. Due
to the unique advantages of different types of RL algorithms,
in our future work, we will propose event-triggered control

Fig. 17 Triggering times in case
3
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Fig. 19 System states under different control appraoches in case 3

methods based on value iteration or policy gradient to address
cooperative control problems ofMASs.Additionally, wewill
apply the RL-based ETCRF control approach to solve for-
mation control problems of practical unmanned autonomous
systems such as drones or ships.
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A B S T R A C T

In this paper, the integral sliding mode-based event-triggered optimal fault tolerant tracking control of
continuous-time nonlinear systems is investigated via adaptive dynamic programming. The developed control
scheme consists of two parts, i.e., integral sliding mode control and event-triggered optimal tracking control.
For the first part, an integral sliding mode controller is designed to eliminate the affect of actuator fault and
the dynamics of nominal nonlinear systems is obtained. For the second part, a novel quadratic cost function
with respect to the tracking error and its dynamics is developed such that the feedforward control law or
the discount factor is not required, which reduces the complexity of the control method and guarantees
the tracking performance. Moreover, a critic-only structure is established to obtain the solution of tracking
Hamilton–Jacobi–Bellman equation. It should be noted that the optimal tracking control law is updated only
at triggering moments in order to preserve computing and communication resources. Finally, the effectiveness
of the present approach is demonstrated through simulation examples of a robotic arm system and a Van der
Pol circuit system.
1. Introduction

In real-world control systems, such as those encountered in un-
manned aerial vehicles (UAVs), mobile robots, and unmanned sur-
face vehicles (USVs), simultaneous tracking of a predetermined tra-
jectory and optimization of performance indicators poses significant
challenges. Consequently, the optimal tracking control (OTC) problem
emerges, necessitating the resolution of the intricate Hamilton–Jacobi–
Bellman (HJB) equation. Due to the presence of a nonlinear partial
derivative term, obtaining an analytical solution of the HJB equa-
tion is intractable. Thankfully, adaptive dynamic programming (ADP),
initially introduced by Werbos (Werbos, 1992) as a self-learning op-
timization algorithm, integrates neural networks (NNs) to obtain an
approximate solution of the HJB equation in a forward-in-time manner,
which effectively addresses the ‘‘curse of dimensionality’’ in dynamic
programming. In the early stage, scholars mainly developed classic ADP
algorithms such as value iteration, policy iteration, Q-learning, etc., and
provided proofs of their convergence and optimality (Liu, Wei, Wang,
Yang, & Li, 2017; Liu, Xue, Zhao, Luo, & Wei, 2021; Luo, Huang, &
Liu, 2021; Yanez & Souza, 2022; Zhao, Zhang, & Liu, 2023). With the
continuous development of ADP, it is generally employed to address

✩ This work was supported in part by the National Natural Science Foundation of China under Grant 62303122, in part by the Guangdong Basic and Applied
Basic Research Foundation under Grant 2021A1515110022, and in part by Science and Technology Projects in Guangzhou under Grant 2024A04J3363.
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various control problems, including OTC (Carolis & Saccon, 2020; Lu,
Wei, Liu, Zhou, & Wang, 2022; Modares & Lewis, 2014; Mu, Zhang,
Gao, & Sun, 2020; Tang, Luo, & Liao, 2023), robust stabilization (Gao,
Jiang, & Davari, 2019; Yang, Guo, Xiong, Ding, Yin, & Wunsch, 2019;
Yang & He, 2020), fault-tolerant control (Fan & Yang, 2016; Liu, Zhao,
& Liu, 2020; Yang, Li, Xie, & Zhang, 2020; Zhang, Yuan, & Guo, 2021;
Zhang, Zhao, Liu, & Zhang, 2022; Zhao, Liu, & Li, 2017; Zhao, Wang,
Xu, Zong, & Zhao, 2023), and so on. In general, by employing the
ADP algorithm and the NN approximator, an approximate optimal cost
function can be obtained, thereby obtaining an approximate optimal
control policy.

Regarding the OTC problem, the aforementioned ADP-based ap-
proaches can be categorized into two groups. The first approach designs
a tracking controller that consists of a feedforward and a feedback
component. The feedforward component ensures tracking performance,
while the feedback component stabilizes the tracking error dynamics
and optimizes system performance indicators. The second approach
transforms the OTC problem into an optimal control problem by aug-
menting the original system with a command generator. Nevertheless,
both methods possess certain limitations. In the first approach, the
vailable online 1 June 2024
947-3580/© 2024 European Control Association. Published by Elsevier Ltd. All r
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design of the feedforward component explicitly demands accurate sys-
tem functions and an invertible control input matrix. In the second
approach, convergence is ensured by supplementing the cost function
with an additional discount factor, but this factor can recursively
impact the optimization metrics and the convergence of the ADP al-
gorithm. To overcome above-mentioned difficulties, Li, Ding, Lewis,
and Chai (2021) and Wang, Wang, Yang, and Yang (2023) addressed
the OTC problem by designing novel quadratic performance index
functions in regard to the tracking error and the tracking error dynam-
ics. Nevertheless, existing results consider ideal scenario only. In the
practical system, the existence of actuator fault is inevitable due to the
control system works in hostile environment for a long time.

Over the past decades, a mass of researchers investigated the fault-
olerant problem by adopting ADP technique in a near optimal man-
er (Liu et al., 2020; Stojanovic, 2023; Zhao et al., 2017). Liu et al.
2020) addressed the fault-tolerant tracking control problem by de-
eloping an NN-based fault observer to compensate the control input
nline. Zhao et al. (2017) developed an ADP-based fault-tolerant
ontrol approach for nonlinear systems with actuator faults. Stojanovic
2023) combined ADP and fault compensation techniques to design
n approximated optimal fault-tolerant control approach by adopting
eal-time input/output data. Among the aforementioned results, the
ajority of them employ an observer to obtain the fault information,
hich is then incorporated directly into the cost function or optimal

ontrol policy. Regrettably, the achievement of desired performance
etrics can be notably arduous, and the use of such observational

echniques can often amplify the conservatism of the controlling mech-
nism. It is worth mentioning that sliding mode control method has
een regarded as an effective approach for handling faults or external
isturbances, and has been extensively utilized in various types of
ontrol systems, including ordinary differential systems (Fan & Yang,
016), partial differential systems (Zhang, Song, Song, & Stojanovic,
023), and fractional-order systems (Mathiyalagan & Sangeetha, 2020).
n recent years, many scholars have integrated integral sliding mode
ontrol (ISM) technique and ADP technique to achieve optimal fault-
olerant control. The main idea is to design a composite law, which
ontains an ISM law to eliminate the actuator fault and an optimal law
o stablize the sliding mode dynamics/nominal systems (Fan & Yang,
016; Tajrishi & Kalat, 2024; Yang et al., 2020). This method is less
onservative, because there is no need to add fault information into the
ost function such that the expected performance of control systems can
e guaranteed as far as possible. Despite these efforts, it is noteworthy
hat the current ISM-based optimal fault-tolerant control approaches
ave only addressed bias faults and considered regulation problems
xclusively. As such, the optimal fault-tolerant tracking (OFTT) con-
rol with more generalized fault behavior remains largely unexplored.
oreover, existing methods are time-triggered control methods, where

ontrollers are updated periodically, leading to heavy computational
nd communication burdens. It is well-known that event-triggered
ontrol approach can economize computing and communication re-
ources due to the control signal update at triggering moment only.
onsequently, ADP-based event-triggered control schemes have been
ut forward to cope with the optimal regulation (Djordjevic, Tao,
ong, He, Gao, & Stojanovic, 2023; Vamvoudakis, 2014; Yang et al.,
023), trajectory tracking (Lu et al., 2022; Peng, Yan, Huang, Cheng,
hi, & Ghosh, 2023), robust stabilization (Lin, Zhao, & Liu, 2024;
ang & He, 2020), differential game (Lin, Xue, Liu, Liang, & Wang,
023; Wang, Hu, Zhao, & Qiao, 2023; Xue, Luo, & Liu, 2020) of
onlinear systems. For example, Djordjevic et al. (2023) developed an
DP-based event-triggered data driven controller for hydraulic servo
ctuators with unknown dynamics. Lu et al. (2022) addressed the
vent-triggered optimal parallel tracking control problem of discrete-
ime nonlinear systems. Lin et al. (2024) presented an event-triggered
obust ADP algorithm to cope with the multiplayer stackelberg games
f uncertain nonlinear systems. Xue et al. (2020) investigated the
2

ero-sum game problem of partially unknown nonlinear systems by
developing an ADP-based event-triggered control scheme. Nevertheless,
to our best knowledge, the OFTT control problem under event-triggered
framework is rarely studied yet, which inspires our research.

To deal with the aforementioned limitations, an ISM-based event-
triggered optimal fault-tolerant tracking (ETOFTT) control approach
for continuous-time (CT) nonlinear systems is proposed. The primary
contributions and novelties of this research are outlined below.

(1) This paper integrates ADP and ISM techniques to deal with
the OFTT control problem for CT nonlinear systems subject to
general actuator fault. On the one hand, with the help of ISM
technique and a novel adaptive law, both the bias fault and
the loss of effectiveness fault can be eliminated effectively. On
the other hand, ADP-based OFTT control scheme completes the
trajectory tracking assignment in an optimal manner.

(2) Different from the existing ADP-based OTC control approaches
(Lu et al., 2022; Mu et al., 2020) which need to design a
discount cost function or develop a tracking controller contains
the feedforward part and the feedback part, this article designs
a quadratic cost function in regard to the tracking error and its
dynamics such that the inadequacies of existing methods can be
improved. Moreover, unlike the existing approaches (Ha, Wang,
& Liu, 2022; Li et al., 2021; Wang, Ren, & Ha, 2023; Wang,
Wang, Yang, & Yang, 2023) which considered ideal fault-free
systems only, this paper considers actuator fault such that the
practicability of the control method is improved.

The subsequent section of this paper is arranged as follows. In
Section 2, we introduce the problem statement. Section 3 is dedicated
to the development of ISM control laws to address actuator fault. Addi-
tionally, we provide details on the design of an event-triggered optimal
tracking controller, the NN implementation, and the analysis of the
closed-loop system’s stability. In Section 4, simulations are employed
to substantiate the theoretical findings, and Section 5 encompasses the
conclusions.

2. Problem statement

Consider a category of nonlinear systems provided by

̇(𝑡) = 𝑓
(

(𝑡)
)

+ 𝑔
(

(𝑡)
)

𝜇𝑜(𝑡), (1)

here (𝑡) ∈ R𝑛 is the system state, 𝜇𝑜(𝑡) ∈ R𝑚 is the output of the
ctuator, and 𝑓

(

(𝑡)
)

∈ R𝑛 and 𝑔
(

(𝑡)
)

∈ R𝑛×𝑚 are nonlinear system
unctions.

ssumption 1. The system functions 𝑓 () and 𝑔() are Lipschitz
ontinuous over a compact set 𝛺, and the controllability of system (1)
olds within 𝛺.

For the OTC problem, it is imperative to develop an optimal con-
roller to guarantee the system state (𝑡) follows the predesigned

trajectory 𝜋(𝑡) whose dynamics is given by

̇ (𝑡) = 𝜓𝑑
(

𝜋(𝑡)
)

, (2)

where 𝜓𝑑 (⋅) is a continuously differentiable function with 𝜓𝑑 (0) = 0.
In practice, actuator fault is inevitable, and a mathematical model

illustrating the actuator fault is provided by

𝜇𝑜(𝑡) = 𝜎𝜇(𝑡) + 𝜇𝑓 (𝑡), 𝑡 > 𝑡𝑓 (3)

where 0 < 𝜎 < 1 denotes the unknown loss of effectiveness fault, 𝜇(𝑡)
represents the control input signal, 𝜇𝑓 (𝑡) means the unknown bias fault,
and 𝑡𝑓 indicates the time when the fault occurred.

The primary objective of this paper is to introduce an ISM-based
ETOFTT control method capable of ensuring the system state closely

follows a pre-specified trajectory even in the presence of actuator
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fault. To realize this objective, the ISM-based ETOFTT controller is
formulated by

𝜇(𝑡) = 𝜇𝑐 (𝑡) + 𝜃̂𝜇𝑛(𝑡), (4)

where 𝜇𝑛(𝑡) ∈ R𝑚 is an event-triggered OTC law which used to guar-
antee the tracking performance of the nominal plant, 𝜇𝑐 (𝑡) ∈ R𝑚 is a
discontinuous ISM control law which adopted to deal with the actuator
fault, 𝜃 = 1

𝜎 and 𝜃̂ is the estimate of 𝜃.

ssumption 2. The unknown bias fault 𝜇𝑓 (𝑡) and the inverse of the
oss of effectiveness fault 𝜃 are norm-bounded, i.e., ‖𝜇𝑓 (𝑡)‖ ≤ 𝜇̄𝑓 and
‖𝜃‖ ≤ 𝜃̄, where 𝜇̄𝑓 and 𝜃̄ are positive constants.

3. Integral sliding mode-based event-triggered optimal fault toler-
ant tracking control approach

3.1. ISM controller design

With the objective of acquiring the discontinuous control law 𝜇𝑐 (𝑡),
the integral sliding function is specified as


(

(𝑡), 𝑡
)

= −∫

𝑡

0


(

(𝜏)
)

(

𝑓
(

(𝜏)
)

+𝑔
(

(𝜏)
)

𝜇𝑛
)

𝑑𝜏+()−
(

(0)
)

,

(5)

where () ∈ R𝑚 and () = 𝜕()
 ∈ R𝑚×𝑛 are user-designed

functions. The time derivative of (5) is calculated as

̇( , 𝑡) = ()̇ − ()
(

𝑓 () + 𝑔()𝜇𝑛
)

. (6)

Letting ̇( , 𝑡) = 0, the equivalent control is calculated as

𝜇𝑐𝑒𝑞 = − 1
𝜎
𝜇𝑛 −

1
𝜎
𝜇𝑓 . (7)

Substituting (7) into (1), the nominal system dynamic is

̇ = 𝑓 () + 𝑔()𝜇𝑛. (8)

Consider the equivalent control is unavailable, we turn to design the
following ISM control law 𝜇𝑐(𝑡) to guarantee the system state stays on
the sliding surface

𝜇𝑐 (𝑡) = −sgn
(

𝖳
𝑔 ()

𝖳()()
)

, (9)

where  is a positive constant, sgn(A) = [sgn(A1),… , sgn(A𝑛)] with
A = [A1,… ,A𝑛] and sgn(⋅) is a sign function.

Theorem 1. For the nonlinear system subject to actuator fault (1), the
integral sliding mode function designed by (5), and Assumptions 1 and 2,
if the renovating law of 𝜃̂ is formulated as

̇̂𝜃 = 1
𝛾
𝖳()()𝑔()𝜇𝑛, (10)

where 𝛾 > 0 is an user-defined parameter, then the system state stays on the
sliding surface using the discontinuous ISM control law (9).

roof. We design a Lyapunov function candidate as

𝑇 1 =
1
2𝜎

𝖳()() + 𝛾
2
𝜃𝖳𝜃, (11)

here 𝜃 = 𝜃− 𝜃̂. Calculating the time derivative of (11) and considering
ystem dynamics (1) yields

̇ 𝑇 1 =
1
𝜎
𝖳()

(

()
(

𝑓 () + 𝑔()(𝜎𝜇 + 𝜇𝑓 )
)

−()
(

𝑓 () + 𝑔()𝜇𝑛
)

)

− 𝛾𝜃𝖳 ̇̂𝜃

=𝖳()()𝑔()𝜇 + 1
𝜎
𝖳()()𝑔()𝜇𝑓

− 1
𝜎
𝖳()()𝑔()𝜇𝑛 − 𝛾𝜃𝖳

̇̂𝜃

=𝖳()() ()𝜇 − 𝖳()() ()𝜇 𝜃
3

𝑔 𝑐 𝑔 𝑛 O
+ 𝜃𝖳()()𝑔()𝜇𝑓 − 𝛾𝜃𝖳 ̇̂𝜃

= −𝖳()()𝑔()sgn
(

𝖳
𝑔 ()

𝖳()()
)

− 𝜃𝖳
(

𝖳()()𝑔()𝜇𝑛 + 𝛾
̇̂𝜃
)

+ 𝜃𝖳()()𝑔()𝜇𝑓 . (12)

ased on Assumption 2 and the adaptive update law (10), we further
ave

̇ 𝑇 1 ≤ −‖𝖳()()𝑔()‖ + 𝜃̄‖𝖳()()𝑔()‖𝜇̄𝑓
≤ − ‖𝖳()()𝑔()‖( − 𝜃̄𝜇̄𝑓 ). (13)

herefore, if  > 𝜃̄𝜇̄𝑓 is held, then ̇𝑇 1 ≤ 0. This implies that the ISM
ontrol law (9) ensures the system state sustain on the sliding surface.
his accomplishes the proof.

.2. Event-triggered optimal tracking controller design

Next, an event-triggered optimal tracking controller is developed for
ominal system (8) to ensure the system state pursues the predesigned
rajectory. The tracking error is expressed as

(𝑡) = (𝑡) − 𝜋(𝑡). (14)

he cost function of the system (8) is defined as

(𝜐) = ∫

∞

𝑡

(

𝜐(𝜈), 𝜐̇(𝜈)
)

𝑑𝜈, (15)

here (𝜐, 𝜐̇) = 𝜐𝖳𝜐 + 𝜐̇𝖳𝜐̇ is the utility function,  ∈ R𝑛×𝑛 and
∈ R𝑚×𝑚 are positive definite matrices. The Hamiltonian is described

s
(

𝜐, 𝜇𝑛,∇ (𝜐)
)

= ∇ 𝖳(𝜐)
(

𝑓 () + 𝑔()𝜇𝑛 − 𝜓𝑑 (𝜋)
)

+ (𝜐, 𝜐̇). (16)

The optimal cost function satisfies

 ∗(𝜐) = min
𝜇𝑛∈ℜ(𝛺)∫

∞

𝑡

(

𝜐(𝜈), 𝜐̇(𝜈)
)

𝑑𝜈, (17)

where ℜ(𝛺) represents the admissible control sets. Thus, the OTC law
is obtained by

𝜇∗
𝑛 (𝜐) =

(

𝖳
𝑔 ()𝑔()

)−1
(

−𝖳
𝑔 ()𝑓 () + 𝖳

𝑔 ()𝜓𝑑 (𝜋) −
1
2
𝖳
𝑔 ()∇ (𝜐)

)

.

(18)

ombining to (16) and (18), the HJB equation is provided as

= ∇ ∗𝖳(𝜐)
(

𝑓 () + 𝑔()𝜇∗𝑛 − 𝜓𝑑 (𝜋)
)

+ 
(

𝜐, 𝜐̇
)

. (19)

raditional ADP-based control approaches obtain the optimal cost func-
ion in an iterative manner. However, there consume abundant com-
uting and communication resources since control laws update at each
ampling moment. To conquer this problem, an event-triggered frame-
ork is established and the system state and the predesigned trajectory
t the triggering moment are expressed as

̄𝑘(𝑡) = (𝑃𝑘), 𝑃𝑘 ≤ 𝑡 < 𝑃𝑘+1 (20)

̄𝑘(𝑡) = 𝜋(𝑃𝑘), 𝑃𝑘 ≤ 𝑡 < 𝑃𝑘+1 (21)

here 𝑃𝑘 the 𝑘th triggering instant. Hence, the homologous tracking
rror is determined by

̄𝑘(𝑡) = ̄𝑘(𝑡) − 𝜋̄𝑘(𝑡), 𝑃𝑘 ≤ 𝑡 < 𝑃𝑘+1 (22)

he next triggering instant is calculated as

𝑘+1 = inf{𝑡 > 𝑃𝑘 ∶ ‖𝑘(𝑡)‖2 ≥ 𝛼1(‖𝜐(𝑡)‖2)}, (23)

here 𝑘(𝑡) = 𝜐̄𝑘(𝑡) − 𝜐(𝑡) is the measurement error and 𝛼1 is a ∞
unction. According to (18), (20), (21) and (22), the event-triggered
TC law is provided as
第90页



European Journal of Control 79 (2024) 101021Y. Zhang and S. Zhang

t
‖

‖

‖

h
a
t

P



B



𝜖
d

w

∇

C

𝜇

H

𝜇

B
u

𝜛

w

L
t
𝜛

P
a
s

3

A

‖

w

T
a
t

‖

w
b

P
t





𝜇∗𝑛 (𝜐̄𝑘) =
(

𝖳
𝑔 (̄𝑘)𝑔(̄𝑘)

)−1
(

− 𝖳
𝑔 (̄𝑘)𝑓 (̄𝑘) + 𝖳

𝑔 (̄𝑘)𝜓𝑑 (𝜋̄𝑘)

− 1
2
𝖳
𝑔 (̄𝑘)∇

∗(𝜐̄𝑘)
)

. (24)

Assumption 3. The OTC law is Lipschitz continuous in regard to 𝑘(𝑡),
hat is,

𝜇∗𝑛
(

𝜐(𝑡)
)

− 𝜇∗
(

𝜐̄𝑘(𝑡)
)

‖

‖

‖

≤ 𝐿𝜇‖𝑘(𝑡)‖, (25)

where 𝐿𝜇 is a positive constant.

Assumption 4. The partial derivative of optimal cost function  ∗(𝜐)
in regard to 𝜐 satisfies,

‖∇ ∗(𝜐)‖ ≤ 𝑐1‖𝜐‖, (26)

where 𝑐1 is a positive constant.

Assumption 5. The system function 𝑔() is norm-bounded, i.e.,

0 < ‖𝑔()‖ ≤ ̄𝑔 , (27)

where ̄𝑔 is a positive constant.

Theorem 2. Given the nominal nonlinear system (8), the event-triggered
OTC law provided by (24), and Assumptions 3–5, if the triggering condition

‖𝑘(𝑡)‖2 ≤
2(1 − 𝜌21)𝜆min() − 𝑐21 ̄

2
𝑔

𝐿2
𝜇

‖𝜐‖2 (28)

and the following inequation

2(1 − 𝜌21)𝜆min() > 𝑐21 ̄
2
𝑔 (29)

old, where 0 < 𝜌1 < 1, then the asymptotic stability of the tracking error is
ssured, indicating that the system state effectively follows the predetermined
rajectory.

roof. The Lyapunov function candidate is formulated as

𝑇 2 =  ∗(𝜐). (30)

ased on (8), the time derivative of (30) is calculated by

̇ 𝑇 2 = ∇ ∗𝖳(𝜐)
(

𝑓 () + 𝑔()𝜇∗𝑛 (𝜐̄𝑘) − 𝜓𝑑 (𝜋)
)

. (31)

According to (19) and Assumptions 3–5, it holds that

̇𝑇 2 = − (𝜐, 𝜐̇) + ∇ ∗𝖳(𝜐)𝑔()
(

𝜇∗
𝑛 (𝜐̄𝑘) − 𝜇

∗
𝑛 (𝜐)

)

≤ − 𝜐𝖳𝜐 + 1
2
‖∇ ∗𝖳(𝜐)𝑔()‖2 +

1
2
‖𝜇∗

𝑛 (𝜐̄𝑘) − 𝜇
∗
𝑛 (𝜐)‖

2

≤ − 𝜌21𝜆min()‖𝜐‖2 + (𝜌21 − 1)𝜆min()‖𝜐‖2 +
1
2
𝐿2
𝜇‖𝑘(𝑡)‖2 +

𝑐21 ̄
2
𝑔

2
‖𝜐‖2.

(32)

As a result, it can be inferred that ̇𝑇 2 < 0 when the triggering
condition (28) is fulfilled, implying the asymptotic stability of the
tracking error.

3.3. Neural network implementation

In this part, the critic NN is adopted to approximate the optimal cost
function  ∗(𝜐), which is shown as

 ∗(𝜐) = 𝜛∗𝖳
𝑐 𝜁𝑐 (𝜐) + 𝜖𝑐 (𝜐), (33)

where 𝜛∗
𝑐 ∈ Rℎ𝑐 is the optimal weight vector, 𝜁𝑐 (𝜐) ∈ Rℎ𝑐 is the

activation function, ℎ𝑐 is the number of hidden layer neurons, and
𝑐 (𝜐) ∈ R is the approximation error. Then, we derive the partial
erivative of  ∗(𝜐) with respect to 𝑒 as

∇ ∗(𝜐) = ∇𝜁𝖳(𝜐)𝜛∗ + ∇𝜖 (𝜐). (34)
4

𝑐 𝑐 𝑐
The estimated cost function is represented as

̂ (𝜐) = 𝜛̂𝖳
𝑐 𝜁𝑐 (𝜐), (35)

here 𝜛̂𝑐 is the estimate of 𝜛∗
𝑐 . Similarly, we can obtain

̂ (𝜐) = ∇𝜁𝖳𝑐 (𝜐)𝜛̂𝑐 . (36)

onsequently, the event-triggered OTC law is rewritten as

∗
𝑛 (𝜐̄𝑘) =

(

𝖳
𝑔 (̄𝑘)𝑔(̄𝑘)

)−1
(

𝖳
𝑔 (̄𝑘)𝜓𝑑 (𝜋̄𝑘)

− 1
2
𝖳
𝑔 (̄𝑘)

(

∇𝜁𝖳𝑐 (𝜐)𝜛
∗
𝑐 + ∇𝜖𝑐 (𝜐)

)

− 𝖳
𝑔 (̄𝑘)𝑓 (̄𝑘)

)

(37)

ereafter, we can obtain the event-triggered approximate OTC law as

̂𝑛(𝜐̄𝑘) =
(

𝖳
𝑔 (̄𝑘)𝑔(̄𝑘)

)−1
(

−𝖳
𝑔 (̄𝑘)𝑓 (̄𝑘) + 𝖳

𝑔 (̄𝑘)𝜓𝑑 (𝜋̄𝑘)

− 1
2
𝖳
𝑔 (̄𝑘)∇𝜁

𝖳
𝑐 (𝜐)𝜛̂𝑐

)

. (38)

The approximate Hamiltonian is given as


(

𝜐, 𝜇̂𝑛, 𝜛̂𝑐
)

= 𝜛̂𝖳
𝑐 ∇𝜁𝑐 (𝜐)

(

𝑓 () + 𝑔()𝜇̂𝑛 − 𝜓𝑑 (𝜋)
)

+ (𝜐, 𝜐̇) ≜ 𝑒𝑐 . (39)

y utilizing the gradient descent method, the critic NN weight is
pdated as

̇̂
𝑐 = − 𝛼𝑐

1
(1 + 𝛥𝖳𝛥)2

(

𝜕𝐸𝑐
𝜕𝜛̂𝑐

)

= −
𝛼𝑐𝛥

(1 + 𝛥𝖳𝛥)2
(

𝜛̂𝖳
𝑐 𝛥 + (𝜐, 𝜐̇)

)

, (40)

here 𝛼𝑐 > 0 is the learning rate and 𝛥 = ∇𝜁𝑐 (𝜐)
(

𝑓 () + 𝑔()𝜇̂𝑛
)

.

emma 1. Given the nominal nonlinear system (8), the critic NN weight
uning rule (40) ensures that the estimation error of the critic NN weights
̃ 𝑐 will be uniformly ultimately bounded.

roof. The detailed proof of Lemma 1 is available in Chen, Chen, Chen,
nd Zhang (2022), Vamvoudakis (2014), Xue et al. (2020), and thus is
kipped here.

.4. Stability analysis

ssumption 6. 𝜛̃𝑐 , 𝜛∗
𝑐 , ∇𝜁𝑐 (𝜐), and ∇𝜖𝑐(𝜐) satisfy

𝜛̃𝑐‖ ≤ 𝜛̄𝑐 , ‖𝜛
∗
𝑐 ‖ ≤ 𝜛̄𝑐𝑚, ‖∇𝜁𝑐 (𝜐)‖ ≤ 𝜁𝑐 , ‖∇𝜖𝑐(𝜐)‖ ≤ 𝜖𝑐

here 𝜛̄𝑐 , 𝜛̄𝑐𝑚, 𝜛̄𝑐 , and 𝜖𝑐 are positive constants.

heorem 3. For the nominal nonlinear system (8), the event-triggered
pproximate OTC law provided by (38), and Assumptions 3–6, if the
riggering condition satisfies

𝑘(𝑡)‖2 ≤
(1 − 𝜌22)‖𝜐‖

2

𝐿2
𝜇

, (41)

here 0 < 𝜌2 < 1, then the tracking error is insured to be uniform ultimate
oundedness.

roof. The entire process of proving is split into two components, and
he construction of the Lyapunov function candidate is as follows.

𝑇 3 =  ∗(𝜐) +  ∗(𝜐̄𝑘). (42)

Part 1: The event is not triggered, i.e., 𝑡 ∈ [𝑃𝑘, 𝑃𝑘+1).
By calculating the time derivative of (42), one can obtain

̇ 𝑇 3 =∇ ∗𝖳(𝜐)
(

𝑓 () + 𝑔()𝜇̂𝑛(𝜐̄𝑘) − 𝜓𝑑 (𝜋)
)

= − (𝜐, 𝜐̇) + ∇ ∗𝖳(𝜐)𝑔()
(

𝜇̂𝑛(𝜐̄𝑘) − 𝜇∗𝑛 (𝜐)
)

≤ − 𝜐𝖳𝜐 + 1
2
‖∇ ∗𝖳(𝜐)𝑔()‖2 +

1
2
‖𝜇̂𝑛(𝜐̄𝑘) − 𝜇∗𝑛 (𝜐)‖

2. (43)
第91页



European Journal of Control 79 (2024) 101021Y. Zhang and S. Zhang

L

b

𝛺

c

𝛥

T

𝜋

i
i
a
a
i
d
s

𝜁

According to Assumption 3, (37) and (38), the last part of (43) can be
derived as
1
2
‖𝜇̂𝑛(𝜐̄𝑘) − 𝜇∗𝑛 (𝜐)‖

2 ≤ ‖𝜇̂𝑛(𝜐̄𝑘) − 𝜇∗𝑛 (𝜐̄𝑘)‖
2 + ‖𝜇∗𝑛 (𝜐̄𝑘) − 𝜇

∗
𝑛 (𝜐)‖

2

≤𝐿2
𝜇‖𝑘(𝑡)‖

2 + ‖𝜇̂𝑛(𝜐̄𝑘) − 𝜇∗𝑛 (𝜐̄𝑘)‖
2

≤ ‖

‖

‖

− 1
2
(

𝖳
𝑔 (̄𝑘)𝑔(̄𝑘)

)−1𝖳
𝑔 (̄𝑘)∇𝜁

𝖳
𝑐 (𝜐)𝜛̃𝑐

− 1
2
(

𝑔𝖳(̄𝑘)𝑔(̄𝑘)
)−1𝖳

𝑔 (̄𝑘)∇𝜖𝑐 (𝜐̄𝑘)
‖

‖

‖

2

+ 𝐿2
𝜇‖𝑘(𝑡)‖

2. (44)

Based on Assumption 5, we assume that
(

𝖳
𝑔 (̄𝑘)𝑔(̄𝑘)

)−1 satisfies
‖

(

𝖳
𝑔 (̄𝑘)𝑔(̄𝑘)

)−1
‖ ≤ 𝜆1, where 𝜆1 is a positive constant. Therefore,

we further have
1
2
‖𝜇̂𝑛(𝜐̄𝑘) − 𝜇∗𝑛 (𝜐)‖

2 ≤ 1
2
𝜆21̄

2
𝑔𝜁

2
𝑐 𝜛̄

2
𝑐 +

1
2
𝜆21̄

2
𝑔𝜖

2
𝑐 + 𝐿

2
𝜇‖𝑘(𝑡)‖

2. (45)

Substituting (45) into (43), we can obtain

̇𝑇 3 ≤ − 𝜐𝖳𝜐 + 1
2
‖∇ ∗𝖳(𝜐)𝑔()‖2 + 1

2
𝜆21̄

2
𝑔𝜁

2
𝑐 𝜛̄

2
𝑐

+ 1
2
𝜆21̄

2
𝑔 𝜖

2
𝑐 + 𝐿

2
𝜇‖𝑘(𝑡)‖

2

≤ − 𝜌22𝜆min()‖𝜐‖2 + (𝜌22 − 1)𝜆min()‖𝜐‖2 + 𝐿2
𝜇‖𝑘(𝑡)‖

2

+ 1
2
̄2
𝑔𝜁

2
𝑐 𝜛̄

2
𝑐 +

1
2
𝜆21̄

2
𝑔𝜁

2
𝑐 𝜛̄

2
𝑐 +

1
2
𝜆21̄

2
𝑔 𝜖

2
𝑐 .

etting 𝛩1 = 1
2 ̄

2
𝑔𝜁

2
𝑐 𝜛̄

2
𝑐 + 1

2𝜆
2
1̄

2
𝑔𝜁

2
𝑐 𝜛̄

2
𝑐 + 1

2𝜆
2
1̄

2
𝑔 𝜖

2
𝑐 . Therefore, if the

system state 𝜐 is located outside the following compact set, ̇𝑇 4 will
e negative.

𝜐 =

{

𝜐∶ ‖𝜐‖ ≤
√

𝛩1

(1 − 𝜌22)𝜆min(𝑄)

}

. (46)

Part 2: The event is triggered, i.e., ∀𝑡 = 𝑃𝑘+1. According to (42), one
an get

𝑇 3(𝑡) = 𝛥𝑇 3,1(𝑡) + 𝛥𝑇 3,2(𝑡). (47)

Based on the result in Case 1, we can conclude that ̇𝑇 3 < 0 for every
𝑡 ∈ [𝑃𝑘, 𝑃𝑘+1). Therefore, we further get

𝛥𝑇 3,1(𝑡) =  ∗(𝜐̄𝑘+1) −  ∗(𝜐(𝑃−
𝑘+1)

)

≤ 0,

𝛥𝑇 3,2(𝑡) =  ∗(𝜐̄𝑘+1) −  ∗(𝜐̄𝑘) ≤ −𝜄
(

‖𝑘+1(𝑃𝑘)‖
)

,

where 𝜄(⋅) is a class- function, and 𝑘+1(𝑃𝑘) = 𝜐̄𝑘+1 − 𝜐𝑘. Based on
the aforementioned analysis, it is evident that ̇𝑇 3 < 0 holds at the
triggering instants. This completes the proof.

Remark 1. This paper develops an ISM-based ETOFTT control method
for CT nonlinear systems with general actuator fault. The advantages
of the proposed control scheme are outlined as follows. (1) Different
from traditional ADP-based OTC control approaches (Lu et al., 2022;
Mu et al., 2020) which need to design a discount cost function, this
paper develops a novel cost function without discount factor. As a
result, the problem of the discount factor affecting the system stability
is avoided. Therefore, the controller design process is simplified and the
practicability of the control method is improved. In addition, unlike
existing results (Ha et al., 2022; Li et al., 2021; Liu et al., 2020)
that developed time-triggered OTC methods, the proposed OTC law
is updated only at triggering moments. Hence, the computational and
communication burden is reduced. (2) Unlike existing optimal fault
tolerant control methods (Liu et al., 2020; Zhao et al., 2017) addressed
bias faults only, this paper considers general actuator faults which
contains the loss of effectiveness fault and the bias fault. Therefore,
the developed ISM-based ETOFTT control method is more suitable in
practical scenarios. Moreover, by designing the ISM control law and the
adaptive updating law, the effects of both the loss of effectiveness fault
and the bias fault can be eliminated.
5

a

Fig. 1. Critic NN weights.

Remark 2. In this paper, we introduce a novel cost function to
characterize the system’s performance index. Traditional cost functions
are typically quadratic in terms of system states and control inputs.
However, for tracking control problems, control inputs do not approach
zero. In order to prevent the cost function from diverging, a discount
factor is usually incorporated. Nonetheless, the selection of the discount
factor will impact the convergence of the ADP algorithm and even the
stability of the closed-loop system. This paper proposes a novel cost
function which contains tracking errors and their derivatives and the
need of the discount factor is avoided. Therefore, the controller design
process is simplified and the practicability of the control method is
improved.

4. Simulation

4.1. Example 1

In this part, we employ a robotic arm as a means of showcasing the
applicability of the ISM-based ETOFTT control approach. The dynamics
of the robotic arm are depicted as

̇1 = 2

̇2 = −4.905sin(1) − 0.22 + 0.1𝜇𝑜 (48)

Due to actuator fault, the actual control input become

𝜇𝑜(𝑡) = 𝜎𝜇(𝑡) + 𝜇𝑓 (𝑡), (49)

where 𝜎 = 0.5 and

𝜇𝑓 (𝑡) =

{

sin2(𝑡), 𝑡 < 5

0, 𝑡 ≥ 5

he dynamics of the predesigned trajectory is chosen as

̇ (𝑡) =
[

3cos(3𝑡)
−9sin(3𝑡)

]

. (50)

Initially, an ISM controller is proposed with the purpose of mitigat-
ng the effects caused by actuator fault. Let the user-defined functions
n (5) be () = 2 and () = [0, 1], the positive constants in (9)
nd (10) be  = 30 and 𝛾 = 0.01. Under the ISM control law (9), the
ctuator fault can be compensated and the nominal robotic arm system
s obtained. Next, the event-triggered optimal tracking controller is
eveloped for the nominal robotic arm system to assure the system
tate tracks the predesigned trajectory. The parameters in (15) are set as
= 𝐼2 and  = 𝐼 , the activation function of the critic NN is designed as

𝑐 (𝜐) = [𝜐21, 𝜐1𝜐2, 𝜐
2
2]

𝖳, and the parameters in (41) are picked as 𝜌2 = 0.1
nd 𝐿 = 10.
𝜇
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Fig. 2. Controller update time.

Fig. 3. (a) Sliding mode function. (b) Adaptive term.

Fig. 4. ISM control law.

The simulation validation outcomes are presented in Figs. 1–5.
ig. 1 depicts the weight change curves, showing that the critic NN
eight vector arrives to 𝜛̂𝑐 = [2.80, 5.39, 9.38]𝖳. Fig. 2 presents a

omparison of the amount of updates required by the event-triggered
ontroller and the time-triggered controller. The results indicate that
he event-triggered controller necessitates only 1323 updates, while the
ime-triggered controller in Zhao et al. (2017) demands 4249 updates,
nderscoring the former’s superiority in terms of computational and
ommunication resource conservation. In Fig. 3(a), the progression of
6

Fig. 5. ISM-based ETOFTT control law.

Fig. 6. Trajectories errors.

Fig. 7. Trajectories tracking.

the sliding mode function is shown, revealing that the sliding mode
function remains in a tiny zone of zero, indicating that the robotic arm
system state remains on the sliding mode surface. Fig. 3(b) displays
the evolution of the estimate of the loss of effectiveness fault. The
curve of the ISM control law is illustrated in Fig. 4, demonstrating the
capability of the proposed ISM controller to offer responses in dealing
with actuator fault. Fig. 5 displays the changing curve of the ISM-
based ETOFTT control law. The tracking error curves is provided in
Fig. 6, where we can conclude that the system state catches up with
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Fig. 8. Trajectories tracking.

Fig. 9. Cost function.

he predesigned trajectory within 10 s In Figs. 7 and 8, we compared
he tracking performance between the ISM-based ETOFTT control ap-
roach and the traditional ADP method. It is clear that the ISM-based
TOFTT control approach ensures the system state to catch up with
he desired trajectory, whereas the traditional ADP method fails to
rack the desired trajectory due to actuator faults. Fig. 9 compares the
ost functions between the ISM-based ETOFTT control method and the
raditional method in Pan, Yang, Pan, and Yu (2018), indicating that
he convergence value of the cost function in the developed method
s smaller than the traditional one. This implies that the ISM-based
TOFTT control method incurs lower control costs and the proposed
ontrol method exhibits optimized performance. On the whole, the
SM-based ETOFTT controller guarantees the tracking performance of
he robotic arm subject to actuator fault and the developed ISM-based
TOFTT control scheme is effective.

.2. Example 2

Next, we will further confirm the efficacy of the ISM-based ETOFTT
ontrol method by employing a Van der Pol circuit system with the
ollowing dynamics

̇1 = 2

̇2 = −21 + 3(1 − 2
1 )2 + 𝜇𝑜 (51)

As a consequence of the actuator fault, the genuine control input is
formulated as
7

𝜇𝑜(𝑡) = 𝜎𝜇(𝑡) + 𝜇𝑓 (𝑡), (52)
Fig. 10. Critic NN weights.

Fig. 11. Controller update time.

Fig. 12. (a) Sliding mode function. (b) Adaptive term.

where 𝜎 = 0.5 and

𝜇𝑓 (𝑡) =

⎧

⎪

⎨

⎪

⎩

0, 𝑡 < 5

10sin(𝑡)cos(𝑡), 5 ≤ 𝑡 < 10

0, 𝑡 ≥ 10

he dynamics of the predetermined trajectory is selected as

̇ (𝑡) =
[

−0.5sin(𝑡) + 0.6cos(3𝑡)
−0.5cos(𝑡) − 1.8sin(3𝑡)

]

. (53)
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Fig. 13. ISM control law.

Fig. 14. ISM-based ETOFTT control law.

Fig. 15. Trajectories errors.

Firstly, an ISM controller is developed to mitigate the impact of
actuator fault. The user-defined functions in (5) are selected as () =
2 and () = [0, 1], respectively. The positive constants in (9)
nd (10) are assigned as  = 50 and 𝛾 = 0.001. By employing the
SM control law (9), it becomes feasible to effectively compensate the
ctuator fault, thereby leading to the acquisition of the nominal Van der
ol circuits system. Furthermore, an event-triggered optimal tracking
ontroller is established for the nominal Van der Pol circuits system
o assure that the system state accurately catch up the predetermined
8

t

Fig. 16. Trajectories tracking.

Fig. 17. Trajectories tracking.

Fig. 18. Cost function.

trajectory. The parameters in (15) are picked as  = 𝐼2 and  = 𝐼 . The
ctivation function of the critic NN is designed as 𝜁𝑐 (𝜐) = [𝜐21, 𝜐1𝜐2, 𝜐

2
2]

𝖳.
dditionally, the parameters in (41) are selected as 𝜌2 = 0.1 and
𝜇 = 10.

Fig. 10 illustrates the weight change curves, demonstrating the
onvergence of the critic NN weight vector to 𝜛̂𝑐 = [8.17, 8.58, 1.62]𝖳.
n Fig. 11, a comparison is shown between the number of updates
equired by the event-triggered controller and the time-triggered con-
roller. The results demonstrate that the event-triggered controller only
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requires 856 updates, whereas the time-triggered controller requires
2681 updates. This highlights the superiority of the event-triggered
controller in terms of conserving computational and communication
resources. Fig. 12(a) illustrates the progression of the sliding mode
function, demonstrating that it consistently resides within a narrow
region surrounding zero. This indicates that the system state of the
Van der Pol circuits system remains confined to the sliding mode
surface. Fig. 12(b) showcases the development of the estimated loss
of effectiveness fault. Fig. 13 illustrates the curve of the ISM control
law. It can be observed that when the fault occurs, the ISM control
law will provide corresponding compensatory responses to counteract
the impact of the actuator fault. Fig. 14 depicts the overall ISM-based
ETOFTT control law curve. Fig. 15 provides the tracking error curves,
from which it can be observe that the tracking error converges after
10 s. This indicates that the system state successfully catches up with
the predetermined trajectory. Figs. 16 and 17 depict the system state
and desired trajectory curves under the developed ISM-based ETOFTT
control method and the traditional ADP method. It is evident that the
proposed ISM-based ETOFTT control method can ensure that the system
state catches up with the ideal trajectory in the presence of actuator
faults. In contrast, the traditional ADP method is unable to track the
desired trajectory due to the impact of actuator faults. Fig. 18 illustrates
that the control cost of the ISM-based ETOFTT control method is
smaller than that of the traditional one, which means that this approach
can achieve fault-tolerant tracking control in an efficient and energy-
saving way. In summary, the ISM-based ETOFTT controller ensures the
tracking performance of the Van der Pol circuits system even with the
actuator fault, thus confirming the efficacy of the proposed ISM-based
ETOFTT control approach.

Remark 3. In this paper, we evaluate the effectiveness of the proposed
SM-based ETOFTT control method through the tracking error, the
umber of controller update, and the convergence value of the cost
unction. The details are illustrated as follows. (1) In simulation, we
dopt tracking error to evaluate the trajectory tracking performance.
s shown in Figs. 6 and 15, the tracking error converges to a small
egion around zero, indicating that the system state closely follows
he desired trajectory. This means that the proposed control method
an ensure that the system state tracks the desired trajectory. (2) In
rder to highlight the advantages of event-triggered mechanism, we
ompared the number of controller update time between the time-
riggered control method and the event-triggered control method. It can
e observed from Figs. 2 and 11 that the event-triggered control method
equires fewer controller updates compared to the time-triggered one.
s each controller update process consumes computational and commu-
ication resources, the event-triggered control method can alleviate the
omputational and communication burden of the closed-loop system.
3) To demonstrate the optimization of the developed control methods,
e compared the convergence values of the cost functions between

he ISM-based ETOFTT control method and traditional control method
n Pan et al. (2018). It can be observed from Figs. 9 and 18 that
he convergence value of the cost function in the ISM-based ETOFTT
ontrol method is smaller than the traditional one. Generally, a smaller
onvergence value of the cost function indicates lower control costs and
ower energy consumption for the closed-loop system. Therefore, the
imulation results indicate that the ISM-based ETOFTT control method
an reduce control costs and achieve fault-tolerant tracking control in
n efficient and energy-saving way.

emark 4. In fact, the parameter  in the ISM control law, the
parameters  and  in the cost function, and the parameter 𝐿𝜇 in the
triggering condition will affect the control performance. For example,
(1) In the ISM control law, if  is too small and does not satisfy
 > 𝜃̄𝜇̄𝑓 , the designed ISM control law cannot guarantee that the
system state remains on the sliding surface, thus the impact of actuator
9

faults cannot be eliminated effectively. If  is too large, it may cause
the closed-loop system oscillations or even instability. (2) In the cost
function, the  value is adopted to limit tracking errors and ensure the
peed of system response. The  value is used to limit the amplitude
nd the smoothness of the control input, ensuring the stability of
he closed-loop system. Additionally, it affect the energy consumption
uring the control process. (3) The parameter 𝐿𝜇 in the triggering

condition affects the controller update frequency. If 𝐿𝜇 is too large, the
triggering threshold will be small, leading to a higher controller update
frequency, which brings a large amount of computation. However,
if 𝐿𝜇 is too small, the controller update frequency will decrease but
the system state may not track the desired trajectory. In general, the
above-mentioned parameters will affect the control performance of
the developed ISM-based ETOFTT control method. However, there is
currently no unified method to select the values of these parameters.
Researchers usually obtain suitable parameter values based on experi-
ence and continuous tuning. In this paper, we select these parameter
values by ‘‘trial and error’’ with repetitive simulations.

5. Conclusion

In this article, an ISM-based ETOFTT approach is presented for CT
nonlinear systems subject to actuator fault. At first, an ISM control law
is designed to cope with actuator fault and acquire the nominal non-
linear system plant. Subsequently, a novel cost function is developed
to satisfactorily tackle the OTC problem. To acquire an approximate
solution for the tracking HJB equation, a critic-only framework is uti-
lized. Moreover, the developed control law is updated aperiodically to
conserve computing and communication resources. Theoretical analysis
demonstrates that the ISM-based ETOFTT controller assures asymptotic
stability of the tracking error. Finally, simulation outcomes certify
the validity of the presented ISM-based ETOFTT scheme. In practice,
multi-agent systems are widely encountered, such as drone swarms
and autonomous driving systems. Since agents operate in complex
environments, the occurrence of actuator faults is inevitable. However,
compared with single-agent systems, the fault-tolerant control of multi-
agent systems is more intricate due to the fact that the fault of each
agent can propagate to affect other agents through the communication
network. Therefore, in future work, we will further integrate ISM
and ADP techniques to address the fault-tolerant control problem of
multi-agent systems.
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Abstract— This article develops a distributed fault-tolerant
consensus control (DFTCC) approach for multiagent systems by
using adaptive dynamic programming. By establishing a local
fault observer, the potential actuator faults of each agent are
estimated. Subsequently, the DFTCC problem is transformed
into an optimal consensus control problem by designing a novel
local value function for each agent which contains the estimated
fault, the consensus errors, and the control laws of the local
agent and its neighbors. In order to solve the coupled Hamilton–
Jacobi–Bellman equation of each agent, a critic-only structure
is established to obtain the approximate local optimal consensus
control law of each agent. Moreover, by using Lyapunov’s direct
method, it is proven that the approximate local optimal consensus
control law guarantees the uniform ultimate boundedness of the
consensus error of all agents, which means that all following
agents with potential actuator faults synchronize to the leader.
Finally, two simulation examples are provided to validate the
effectiveness of the present DFTCC scheme.

Index Terms— Adaptive dynamic programming, fault-tolerant
control, multiagent systems, optimal consensus control.
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broad applications in multirobot systems [1], distributed sensor
networks [2], battery management [3], spring-mass systems
[4], and unmanned air vehicles [5], etc. For such systems,
cooperative control policies are required to drive all agents
to achieve a unified goal. It is well-known that system
consensus or synchronization is one of the most significant
tasks for MASs. The consensus control can be divided into
two categories, i.e., the leaderless consensus and the leader-
follower consensus. In recent years, many researchers have
paid attention to developing consensus control schemes for
MASs. In [6], a robust adaptive fault-tolerant control (FTC)
scheme was developed to address the leaderless consensus
of MASs with uncertain nonidentical dynamics and actua-
tor faults. In [7], a distributed sliding-mode controller was
developed for second-order MASs to achieve leader-follower
consensus. In [8], the distributed resilience consensus problem
of MASs with actuator faults was investigated by designing
an adaptive controller. It is noted that all the above-mentioned
results only guarantee the stability of the consensus error.
However, the control efficiency such as the energy consump-
tion and the production cost which are important indicators in
practical applications is not taken into account. Consequently,
optimal consensus control receives wide attention and it aims
to develop distributed control protocols based on the local
information of each agent and its neighbors, such that all
agents achieve synchronization and optimal performance. It is
worth pointing out that the game theory provides an ideal
perspective to solve the optimal consensus control problem
of MASs [9], [10], [11], [12]. Under the game theory, each
agent chooses a local optimal control policy to minimize its
performance index. However, obtaining the analytic solution is
intractable by solving the coupled Hamilton–Jacobi–Bellman
(HJB) equation due to its high nonlinearities [13], [14], [15],
[16], [17].

For the sake of the “curse of dimensionality” in solving
the coupled HJB equation by dynamic programming, adaptive
dynamic programming (ADP) has been extensively investi-
gated [18], [19], [20], [21], [22], [23], [24]. In recent years,
several researchers have developed optimal consensus control
schemes for MASs by using the ADP technique. For linear
systems, in [25], an off-policy reinforcement learning (RL)
method was proposed to address optimal consensus control
problems. Under the framework of graphical games, a local
performance index function in terms of the tracking error

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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and the control input was designed for each agent, and the
off-policy RL method was developed to obtain the approximate
solution of the coupled HJB equation. In [26], the optimal con-
sensus control problem of discrete-time (DT) linear MASs was
addressed by using the RL method. By designing a discounted
performance index function, the coupled DT HJB equation was
solved by an actor-critic framework. For nonlinear systems,
in [27], an augmented system was established and the solutions
of the corresponding coupled HJB equations were obtained by
using the policy iteration (PI) algorithm. In [28], a Q-function-
based PI algorithm was developed to realize the model-free
distributed optimal consensus control of DT nonlinear MASs.

It is worth pointing out that the aforementioned works have
not considered actuator faults. As industrial systems become
complex and large-scale, the occurrence of actuator faults is
inevitable. Once the faults occur, the control performance will
be degraded or even become unstable [29]. To ensure relia-
bility and control accuracy, many ADP-based FTC methods
have been developed recently. In [30], a PI-based online fault
compensation control method was developed for continuous-
time (CT) nonlinear systems. In order to handle actuator faults,
the FTC was constructed by an online fault compensation
term and a PI-based optimal regulation term. In [31], the FTC
problem of CT nonlinear systems was tackled by developing
an ADP-based control method. The actuator fault was esti-
mated by a fault observer, and a novel performance index
function was designed to transform the FTC problem into
an optimal control problem. In [32], a sliding-mode FTC
method was proposed to deal with actuator faults of nonlinear
systems by using the RL method. In [33], the FTC problem
of complex unknown dynamical networks was considered.
The static feedback gain which was obtained by the iterative
ADP algorithm was employed to compensate for the actuator
faults.

The above-mentioned works only considered single agent
systems, but multiple agents are required to fulfill complex
practical tasks, such as industrial manufacturing [34], atti-
tude alignment of space crafts [35], and disaster relief [36].
However, the occurrence of actuator faults is inevitable in
systems with large-scale, distributed, and autonomous agents.
As aforementioned, the ADP-based FTC has shown proper
advantages, i.e., optimality, adaptivity, and learning ability.
Therefore, it is reasonable to tackle the fault-tolerant con-
sensus control (FTCC) problem of MASs by using the ADP
technique. Compared with a single-agent system, the FTCC
problem of MASs is more intractable because agents in MASs
are interconnected through mechanical interconnections or
communication networks. It implies that a fault that occurs
in one agent may affect other interconnected agents or even
destroy the control performance of the whole system. More-
over, the interconnection of MASs leads to complications of
fault detection and low fault estimation accuracy. Thus, the
major challenges lie in that: 1) how to obtain the accurate
fault information of each agent and 2) how to design a
fault-tolerant controller to compensate for the actuator faults.
From the above discussion, it is urgent to develop a distributed
fault-tolerant consensus control (DFTCC) method to guarantee
the stability of MASs with unpredictable faults. However, this

problem has been rarely investigated, which motivates our
research.

In this article, an ADP-based DFTCC approach is developed
for MASs with potential actuator faults. The contributions and
novelties of this work are summarized as follows.

1) Different from existing approaches [30], [31] which
addressed the FTC problem for single-agent systems,
this article develops an ADP-based DFTCC approach for
MASs. It guarantees the consensus error of each agent to
be uniformly ultimately bounded (UUB), which means
that all agents agree upon the leader state even if faults
exist.

2) A local fault observer is established to estimate the
potential actuator faults of each agent. Subsequently,
the FTCC problem is converted to an optimal consensus
control problem by designing a local value function that
contains the estimated fault, the local consensus error,
and the control inputs of the agent and its neighbors.

3) Compared with traditional ADP-based control appro-
aches to address simple HJB equations, a distributed PI
algorithm is developed to solve coupled HJB equations
that reflect the interconnections among each agent and
its neighbors. Moreover, the critic neural network (NN)
is adopted to obtain the approximate local optimal
consensus control law of each agent.

The rest of this article is organized as follows. In Section II,
the FTCC problem for MASs is formulated. In Section III,
a local fault observer and a critic NN are established for each
agent, and the ADP-based DFTCC approach is developed.
Moreover, the stability of the closed-loop system is provided.
In Section IV, the effectiveness of the developed method is
verified by two simulation examples. In Section V, a brief
conclusion is given.

II. PRELIMINARIES

A. Graph Theory

Consider the undirected communication topology graph
denoted by �g = {P, ξ,A}, where P = {p1, . . . , pN } is a
set of nodes, ξ = {(pi, p j) : pi , p j ∈ P} is a set of edges,
and A = [ai j] is a weighted adjacency matrix. If and only if
agent i and agent j are directly connected, then (pi, p j) ∈ ξ .
Moreover, ai j > 0 if (pi , p j) ∈ ξ , ai j = 0 if (pi, p j) /∈ ξ , and
aii = 0 for all i = 1, . . . , N . Let Ni = { j : (pi, p j) ∈ ξ, j �=
i} be a set of neighbors of the agent i , N̄i be a set of agent i
and its neighbors, D = diag{d1, . . . , dN } with di = �

j∈Ni
ai j

be the degree matrix of �g , and L = D − A = [li j ] be the
Laplacian matrix with li j = −ai j and lii = �Ni

j=1 ai j .

B. Problem Formulation

Consider the nonlinear MASs with one leader and N
followers. The system dynamics of each following agent is
described as

ẋi = f̄i (xi) + Gi (xi)(ui − ui f ), i = 1, 2, . . . , N (1)

where xi ∈ R
ni is the system states of the agent i , ui ∈ R

mi is
the control input of the agent i , ui f ∈ R

mi is the actuator fault,
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and f̄i (xi) ∈ R
ni and Gi (xi) ∈ R

ni ×mi are known nonlinear
system functions.

Assumption 1: The system functions f̄i (xi) and Gi (xi) are
Lipschitz continuous on a compact set � containing the origin
with f (0) = 0, and the system (1) is stabilizable on �.

The system dynamics of the leader is given by

ẋ0 = f0(x0) (2)

where x0 ∈ R
n0 , and f0(x0) ∈ R

n0 is a differentiable function.
The local neighborhood consensus error of the agent i is
defined as

Ei =
�
j∈Ni

ai j(xi − x j) + ci (xi − x0) (3)

where ci ≥ 0 is the pinning gain. Thus, the dynamics of
the local neighborhood consensus error can be obtained by
differentiating (3) as

Ėi =
�
j∈Ni

ai j(ẋi − ẋ j) + ci(ẋi − ẋ0)

=
�
j∈Ni

ai j
�

f̄i (xi) + Gi (xi)(ui − ui f )

− f̄ j (x j) − G j (x j)(u j − u j f )
�

+ ci
�

f̄i (xi) + Gi (xi)(ui − ui f ) − f0(x0)
�

=
�
j∈Ni

ai j
�

f̄i (xi) + Gi (xi)(ui − ui f )
�

+ ci
�

f̄i (xi) + Gi (xi)(ui − ui f )
�

− ci f0(x0) −
�
j∈Ni

ai j f0(x0) +
�
j∈Ni

ai j f0(x0)

−
�
j∈Ni

ai j
�

f̄ j (x j) + G j (x j)(u j − u j f )
�

=
⎛
⎝�

j∈Ni

ai j + ci

⎞
⎠�

f̄i (xi ) + Gi (xi)(ui − ui f ) − f0(x0)
�

−
�
j∈Ni

(ai j + bi j)
�

f̄ j (x j) + G j (x j)(u j − u j f )− f0(x0)
�

= (lii + bii )
�
Fi + Gi (xi)(ui − ui f )

�
+

�
j∈Ni

(li j + bi j)
�
F j + G j (x j)(u j − u j f )

�
=

�
j∈N̄i

(li j + bi j)
�
F j + G j(x j)(u j − u j f )

�
(4)

where Fi = f̄i (xi) − f0(x0), bii = ci and bi j = 0 if j ∈ Ni .
In order to solve the FTCC problem of system (1), we need

to obtain a set of feedback control policies u1(x), . . . , uN (x),
such that all the followers synchronize with the leader even if
the fault occurs. Next, we will show that the FTCC problem
of system (1) is transformed into an optimal consensus control
problem by designing a modified local value function.

The nominal system corresponding to system (1) without
actuator faults is expressed by

ẋi = f̄i (xi) + Gi (xi)ui . (5)

Then, the dynamics of the local neighborhood consensus
error without actuator faults is given by

Ėi =
�
j∈N̄i

(li j + bi j)
�
F j + G j (x j)u j

�
. (6)

The local value function of the agent i is defined as

Vi(Ei) =

 ∞

t

�
ρûT

i f ûi f + Ci(Ei , ui , u(−i))
�
dτ

where ρ is a positive constant, ûi f ∈ R
ni is the estimation of

ui f , and the utility function Ci(·) is designed as

Ci(Ei , ui , u(−i)) = ET
i QiiEi + uT

i Rii ui +
�
j∈Ni

uT
j Ri j u j (7)

where u(−i) = {u j | j ∈ Ni } are the control inputs of the
neighbors of the agent i , Qii ∈ R

ni ×ni , Rii ∈ R
mi ×mi and

Ri j ∈ R
m j ×m j are positive definite matrices.

Assume Vi (Ei) ∈ Z1, where Z1 is a space on � of functions
with continuous first derivative. Then, the Hamiltonian of the
agent i is defined as

Hi
�
Ei ,∇Vi(Ei ), ui , u(−i)

�
= ρûT

i f ûi f + Ci (Ei , ui , u(−i))

+ ∇VT
i (Ei )

⎛
⎝�

j∈N̄i

(li j + bi j)
�
F j + G j (x j)u j

�⎞⎠.

The local optimal value function of the agent i

V∗
i (Ei )

= min
ui ∈�(�)


 ∞

t

�
ρûT

i f ûi f + Ci
�
Ei(τ ), ui (τ ), u(−i)(τ )

��
dτ

satisfies the HJB equation as

min
ui ∈�(�)

Hi
�
Ei ,∇V∗

i (Ei), ui , u(−i)
� = 0 (8)

where �(�) is a set of admissible controls. Then, the local
optimal consensus control law is derived by

u∗
i = −di + ci

2
R−1

ii GT
i (xi)∇V∗

i (Ei). (9)

Based on (8) and (9), we can obtain

0 = ρûT
i f ûi f + Ci

�
Ei , u∗

i , u∗
(−i)

�
+ ∇V∗T

i (Ei)

⎛
⎝�

j∈N̄i

(li j + bi j)
�
F j + G j (x j)u

∗
j

�⎞⎠. (10)

Noticing that (10) is the HJB equation, which is difficult to
solve due to its high nonlinearities [38], [39], [44], [45]. In the
next section, the ADP technique is adopted to overcome this
bottleneck.

Remark 1: In the optimal control community, the value
function represents the objective to be optimized. For the
nominal system, a value function is a quadratic form with
respect to the system state and the control input. In this article,
the fault estimation which is obtained by the fault observer is
added to the value function to compensate for the actuator
fault of each agent in real-time. Therefore, the influence of
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the actuator fault can be eliminated. It is worth mentioning
that the controller design process not only compensates for
the actuator fault but also optimizes the control performance.
Therefore, the DFTCC is achieved in an optimal manner.

III. FAULT TOLERANT CONTROLLER DESIGN

A. Problem Transformation

In this section, by using the Lyapunov stability theorem, we
demonstrate that the local optimal consensus control law (9)
guarantees the UUB of the local neighborhood consensus error
of each agent even suffering from actuator faults, i.e., all
following agents with potential actuator faults synchronize
with the leader. It means that the FTCC problem of system (1)
is transformed into an optimal consensus control problem, and
the local optimal consensus control law (9) is thus the solution
to the FTCC problem. Before proving, some assumptions
which were used in [30], [31] and [40] are provided.

Assumption 2: The actuator fault ui f is norm-bounded, that
is,

	ui f 	 ≤ ūi f (11)

where ūi f is a positive constant.
Assumption 3: The system function G j (x j) is norm-

bounded, that is,

	G j (x j)	 ≤ Ḡ j (12)

where Ḡ j is a positive constant.
Theorem 1: Considering the nonlinear MASs with the

leader (2) and followers (1), the dynamics of the local neigh-
borhood consensus error given by (4), the local optimal con-
sensus control law given by (9), and the Assumptions 2 and 3,
the local neighborhood consensus error of each following
agent with potential actuator faults is guaranteed to be UUB
if the following inequality:

χ2λmin(Qii )	Ei	2 >


∇V∗

i (Ei)


2

(13)

holds, where 0 < χ < 1.
Proof: Select a Lyapunov function candidate as

L = V∗
i (Ei). (14)

Taking the time derivative of (14) along with the local
neighborhood consensus error (3), we have

L̇ = ∇V∗T
i (Ei)

�
j∈N̄i

(li j + bi j)
�
F j + G j (x j)

�
u∗

j − u j f
��

= ∇V∗T
i (Ei)

�
j∈N̄i

(li j + bi j)
�
F j + G j (x j)u

∗
j

�
− ∇V∗T

i (Ei )
�
j∈N̄i

(li j + bi j)G j (x j)u j f . (15)

According to (10), we can obtain

∇V∗T
i (Ei )

�
j∈N̄i

(li j + bi j)
�
F j + G j (x j)u

∗
j

�
= −Ci

�
Ei , u∗

i , u∗
(−i)

� − ρûT
i f ûi f . (16)

Combining (15) with (16), we can get

L̇ = −ρûT
i f ûi f − ET

i QiiEi − u∗T
i Rii u

∗
i −

�
j∈Ni

u∗T
j Ri j u

∗
j

− ∇V∗T
i (Ei )

�
j∈N̄i

(li j + bi j)G j (x j)u j f

≤ −ρûT
i f ûi f − ET

i QiiEi

− ∇V∗T
i (Ei )

�
j∈N̄i

(li j + bi j)G j (x j)u j f

≤ −ρûT
i f ûi f − ET

i QiiEi − 1

2
∇V∗T

i (Ei )∇V∗
i (Ei)

+ 1

2

⎛
⎝∇V∗T

i (Ei) −
�
j∈N̄i

(li j + bi j)G j (x j)u j f

⎞
⎠T

×
⎛
⎝∇V∗T

i (Ei) −
�
j∈N̄i

(li j + bi j)G j(x j)u j f

⎞
⎠

− 1

2

⎛
⎝�

j∈N̄i

(li j + bi j)G j (x j)u j f

⎞
⎠T

×
⎛
⎝�

j∈N̄i

(li j + bi j)G j (x j)u j f

⎞
⎠

≤ −ρûT
i f ûi f − ET

i QiiEi + 

∇V∗
i (Ei )



2

+







�
j∈N̄i

(li j + bi j)G j (x j)u j f








2

≤ −χ2λmin(Qii )	Ei	2 + (χ2 − 1)λmin(Qii )	Ei	2

− ρûT
i f ûi f + 

∇V∗

i (Ei)


2

+ N̄i

�
j∈N̄i

(li j + bi j)
2Ḡ2

j ū
2
j f . (17)

If the inequality (13) holds, we further have

L̇ ≤ (χ2 − 1)λmin(Qii )	Ei	2 + λ1 (18)

where λ1 = N̄i
�

j∈N̄i
(li j + bi j)

2Ḡ2
j ū

2
j f . Hence, L̇ < 0 if Ei

lies outside the compact set

�Ei =
�
Ei : 	Ei	 ≤

�
λ1

(1 − χ2)λmin(Qii )

�
. (19)

It means that the local optimal consensus control law given
by (9) can guarantee the local neighborhood consensus error
of each agent with potential actuator faults to be UUB, i.e.,
(9) is the solution to the FTCC problem. Thus, the problem
transformation is reasonable. This completes the proof.

B. Fault Observer Design

In this section, a local fault observer is designed to estimate
unknown potential actuator faults. Consider the agent i with
actuator faults (1), a local fault observer is designed as

˙̂xi = f̄ (x̂i) + Gi (x̂i)(ui − ûi f ) + L1(xi − x̂i) (20)
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where x̂i is the observation of the system state xi , L1 is the
positive definite observer gain matrix, and ûi f is the estimated
actuator faults which is updated by

˙̂ui f = −L2GT
i (x̂i)eio (21)

where L2 is a positive definite matrix, and eio = xi − x̂i is
the state observation error of the agent i . According to (1)
and (20), we can get

ėio = f̃ (xi) + G̃i (xi)ui − Gi (xi)ui f + Gi (x̂i)ûi f − L1eio

(22)

where f̃ (xi ) = f̄ (xi) − f̄ (x̂i) and G̃i (xi) = Gi (xi) − Gi(x̂i).
Lemma 1: Considering the agent i with actuator faults (1)

and the local fault observer given by (20), the fault observation
error can be guaranteed to be UUB with the adaptive updating
law (21).

Proof: The proof of Lemma 1 has been provided in [31],
so the detail is omitted here.

C. Neural Network Implementation

In this section, critic NNs are adopted to approximate the
solutions of HJB equations. According to the universal approx-
imation property of NNs, the local optimal value function of
the agent i can be expressed as

V∗
i (Ei) = W ∗T

ic ϕic(Ei) + εic(Ei) (23)

where W ∗
ic ∈ R

hic is the ideal weight vector, ϕic(Ei ) ∈ R
hic is

the activation function, hic is the number of hidden neurons,
and εic(Ei) ∈ R is the reconstruction error. Then, the partial
derivative of V∗

i (Ei) with respect to Ei is given by

∇V∗
i (Ei) = ∇ϕT

ic(Ei)W ∗
ic + ∇εT

ic(Ei). (24)

The approximate local value function is defined as

V̂i (Ei) = Ŵ T
icϕic(Ei) (25)

where Ŵic ∈ R
hic is the estimate of Wic. Similarly, we have

∇V̂i(Ei ) = ∇ϕT
ic(Ei)Ŵic. (26)

According to (9) and (24), the local optimal consensus
control law of the agent i is expressed as

u∗
i = −di + ci

2
R−1

ii GT
i (xi)

�∇ϕT
ic(Ei)W ∗

ic + ∇εT
ic(Ei)

�
. (27)

Then, the approximate local consensus control law of the
agent i is given by

ûi = −di + ci

2
R−1

ii GT
i (xi)∇ϕT

ic(Ei )Ŵic. (28)

Based on (10) and (28), the approximate Hamiltonian is

Ĥi(Ei , Ŵic, ûi , û(−i))

= ET
i QiiEi + ûT

i Rii ûi +
�
j∈Ni

ûT
j Ri j û j

+ Ŵ T
ic ∇ϕic(Ei )

⎛
⎝�

j∈N̄i

(li j + bi j)
�
F j + G j (x j)û j

�⎞⎠
� �� �

�i

� eic. (29)

Let W̃ic = Wic − Ŵic be the weight estimation error.
The gradient descent algorithm is employed to minimize the
target function Eic = (1/2)eT

iceic. Hence, the critic NN weight
updating rule is given by

˙̂Wic = −αc
1�

1 + �T
i �i

�2

�
∂ Eic

∂Ŵic

�
= − αceic�i�

1 + �T
i �i

�2 (30)

where αc > 0 is the learning rate.
Theorem 2: Consider the agent i with potential actuator

faults (1), if the critic NN weights are updated by (30), then the
weight approximation error W̃ic can be guaranteed to be UUB.

Proof: The proof of Theorem 2 is similar to that in [31],
[40], [41], [42], and [43], so it is omitted here.

According to the above discussion, the structure of the
ADP-based DFTCC approach is displayed in Fig. 1.

Remark 2: In this article, the critic-only structure is estab-
lished to obtain the approximate value function, rather
than the actor-critic structure. That is because: 1) accord-
ing to (28), we know that the local consensus control
law relies on the value function. Once the approximate
value function is obtained by using the critic NN, then the
approximate local consensus control law can be obtained
via (28). Therefore, only critic NN is employed and 2) in
fact, the critic-only structure is widely used in existing
ADP-based control schemes [31], [32], [40]. Compared
with the actor-critic structure, the critic-only structure has
a low control complexity, which is beneficial to practical
applications.

Remark 3: As we all know, existing control architectures
can be divided into three categories, i.e., centralized control,
distributed control, and decentralized control. The centralized
control approach requires the overall system information,
while the distributed control uses the information of the local
agent and its neighbors, and the decentralized control needs
the information of the local agent only. Thus, in this article,
the developed ADP-based DFTCC approach is a distributed
one since the states of the local agent and its neighbors are
the only required information.

D. Stability Analysis

In this section, we will prove that the approximate local
consensus control law (28) can guarantee the local neighbor-
hood consensus error of each following agent with potential
actuator faults to be UUB. Before the stability analysis, the
following assumption which is common in ADP literature [41]
is provided.

Assumption 4: ∇ϕic(Ei ), ∇εic(Ei), W̃ic and W ∗
ic are norm-

bounded, that is,

	∇ϕic(Ei )	 ≤ ϕ̄ic, 	∇εic(Ei)	 ≤ ε̄ic

	W̃ic	 ≤ W̄ic, 	W ∗
ic	 ≤ W̄ ∗

ic

where ϕ̄ic, ε̄ic, W̄ic and W̄ ∗
ic are positive constants.

Theorem 3: Consider the following agent i with potential
actuator faults given by (1), the dynamics of the local neigh-
borhood consensus error of each agent (6), the critic NN
weights updated by (30), and the Assumptions 2–4. Then, the
approximate local consensus control law (28) can guarantee
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Fig. 1. Structure of the ADP-based DFTCC approach.

the local neighborhood consensus error of each following
agent with potential actuator faults to be UUB.

Proof: Select a Lyapunov function candidate as

L1 = V∗
i (Ei ). (31)

Taking the time derivative of (31) along the local neighbor-
hood consensus error (3), we have

L̇1 = ∇V∗T
i (Ei)

�
j∈N̄i

(li j + bi j)
�
F j + G j (x j)(û j − u j f )

�

= ∇V∗T
i (Ei)

�
j∈N̄i

(li j + bi j)
�
F j + G j (x j)û j

�

− ∇V∗T
i (Ei)

�
j∈N̄i

(li j + bi j)G j (x j)u j f . (32)

According to (10), we can obtain

∇V∗T
i (Ei)

�
j∈N̄i

(li j + bi j)F j

= −Ci
�
Ei , u∗

i , u∗
(−i)

� − ∇V∗T
i (Ei )

�
j∈N̄i

(li j + bi j)G j (x j)u
∗
j .

(33)

Let � = [G1(x1), . . . ,GN̄i
(xN̄i

)]T[G1(x1), . . . ,GN̄i
(xN̄i

)] and
λmax(�) be the maximum eigenvalue of � . Based on (33) and
using Young’s inequality 	A+ B	2 ≤ 2	A	2 +2	B	2, we can
obtain (34), as shown at the bottom of the the page. According
to (27) and (28), we can get

û j − u∗

j − u j f



2

=




 − d j + c j

2
R−1

j j GT
j (x j)∇ϕT

jc(E j)Ŵ jc

L̇1 = −Ci
�
Ei , u∗

i , u∗
(−i)

� + ∇V∗T
i (Ei )

�
j∈N̄i

(li j + bi j)G j (x j)
�
û j − u∗

j − u j f
�

≤ −Ci
�
Ei , u∗

i , u∗
(−i)

� + 1

2
∇V∗T

i (Ei)∇Vi (Ei)

+ 1

2

⎡
⎢⎣

(li1 + bi1)(û1 − u∗
1 − u1 f )

...
(li N̄i

+ bi N̄i
)(û N̄i

− u∗̄
Ni

− uN̄i f )

⎤
⎥⎦

T

�

⎡
⎢⎣

(li1 + bi1)(û1 − u∗
1 − u1 f )

...
(li N̄i

+ bi N̄i
)(û N̄i

− u∗̄
Ni

− uN̄i f )

⎤
⎥⎦

≤ −Ci
�
Ei , u∗

i , u∗
(−i)

� + 1

2



∇ϕT
ic(x)W ∗

ic + ∇εic(x)


2 + 1

2
λmax(�)

�
j∈N̄i

(li j + bi j)


û j − u∗

j − u j f



2

≤ −Ci
�
Ei , u∗

i , u∗
(−i)

� + ϕ̄2
icW̄ ∗2

ic + ε̄2
ic + 1

2
λmax(�)

�
j∈N̄i

(li j + bi j)


û j − u∗

j − u j f



2
(34)
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+ d j + c j

2
R−1

j j GT
j (x j)∇ϕT

jc(E j)W jc

+ d j + c j

2
R−1

j j GT
j (x j)∇εT

jc(E j ) − u j f





2

=




d j + c j

2
R−1

j j GT
j (x j)∇ϕT

jc(E j)W̃ jc

+ d j + c j

2
R−1

j j GT
j (x j)∇εT

jc(E j ) − u j f





2

≤




(d j + c j)R−1

j j GT
j (x j)∇ϕT

jc(E j)W̃ jc





2

+




(d j + c j )R−1

j j GT
j (x j)∇εT

jc(E j)





2

+ 2	u j f 	2

≤ (d j + c j )
2 R−2

j j Ḡ2
j ϕ̄

2
jcW̄ 2

jc + (d j + c j)
2 R−2

j j Ḡ2
j ε̄

2
jc

+ 2ū2
j f . (35)

Substituting (35) into (34), we have

L̇1 ≤ −Ci
�
Ei , u∗

i , u∗
(−i)

� + ϕ̄2
icW̄ ∗2

ic + ε̄2
ic

+ 1

2
λmax(�)

�
j∈N̄i

(li j + bi j)

×
�
(d j + c j )

2 R−2
j j Ḡ2

j ϕ̄
2
jcW̄ 2

jc

+ (d j + c j)
2 R−2

j j Ḡ2
j ε̄

2
jc + 2ū2

j f

�
≤ −ET

i QiiEi + λ2

≤ −ζ 2λmin(Qii )	Ei	2 − (1 − ζ 2)λmin(Qii )	Ei	2 + λ2

where

λ2 = ϕ̄2
icW̄ ∗2

ic + ε̄2
ic

+ 1

2
λmax(�)

�
j∈N̄i

(li j + bi j)

×
�
(d j + c j )

2 R−2
j j Ḡ2

j ϕ̄
2
jcW̄ 2

jc

+ (d j + c j)
2 R−2

j j Ḡ2
j ε̄

2
jc + 2ū2

j f

�
.

Therefore, L̇1 < 0 if Ei lies outside the compact set

�Ei =
�
Ei : 	Ei	 ≤

�
λ2

(1 − ζ 2)λmin(Qii )

�
. (36)

It means that the approximate local consensus control
law (28) guarantees the UUB of the local neighborhood
consensus error of each agent with potential faults. The proof
is completed.

Remark 4: It is noted that W ∗
ic and εic are the optimal

weight vector and the reconstruction error of the critic NN,
respectively. In fact, after the critic NN is successfully trained,
the obtained optimal weight vector and the approximate error
cannot be infinite. Therefore, it is reasonable to assume that
they are norm-bounded. Moreover, according to Theorem 2,
the weight approximation error W̃ic is guaranteed to be UUB,
so it is reasonable to assume that it is also norm-bounded.

Remark 5: Different from existing results [27] and [28]
which tackled the consensus control problem of MASs only,
this article further considers actuator faults and develops a

Fig. 2. Structure of communication topology.

TABLE I

PARAMETERS OF THE COMMUNICATION TOPOLOGY

DFTCC approach via ADP. In order to eliminate the influ-
ence of actuator fault, a fault observer is designed for each
following agent to obtain the fault information, and a local
value function is designed, which reflects the estimated fault,
the local consensus error, and the control inputs of the agent
and its neighbors.

Remark 6: In recent years, several FTC approaches have
been developed for MASs [6], [7], [8]. However, existing
results only guarantee the consensus of MASs with actua-
tor faults, but the control performance such as the energy
consumption and the production cost which are important in
practice are not taken into account. In this article, the FTC
problem of MASs is investigated via ADP. The developed
ADP-based DFTCC approach not only guarantees the stability
of MASs with actuator faults but also optimizes the control
performance.

IV. NUMERICAL SIMULATION

In this section, simulation examples are adopted to verify the
effectiveness of the developed ADP-based DFTCC scheme.

A. Example 1
Consider a MAS consisting of one leader and three fol-

lowers, the communication topology is displayed in Fig. 2,
and the corresponding parameters are provided in Table I. The
dynamics of each following agent with potential actuator faults
is provided as

xi = f̄i (xi) + Gi (xi)(ui − ui f ) (37)

where

f̄i (xi) =
�

xi,2

F1

�
, Gi (xi) =

�
0

cos(2xi,1) + 2

�
F1 = −0.5xi,1 − xi,2 + x2

i,1xi,2 − 0.25xi,2
�
cos(2xi,1) + 2

�2

+ 0.25xi,2
�
sin2(4x2

i,2 + 2)
�

xi = [xi,1, xi,2]T is the system state of the agent i , and the
actuator fault ui f ∈ R is given as

u1 f =
�

cos(5t/2π) + sin(t), 10s ≤ t ≤ 20s

0, others
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Fig. 3. Trajectories tracking of Example 1.

u2 f = 0, 0 ≤ t ≤ 30s

u3 f =
�

10sin(t/2π) − cos(2t), 20s ≤ t ≤ 25s

0, others.

We suppose that agents 1 and 3 are faulty, and agent 2 is
fault-free.

The reference dynamics of the leader is provided as

r(t) =
�−cos(t) − sin(t)

sin(t) − cos(t)

�
. (38)

In the simulation, the initial states of the following agents
are chosen as x1 = [1,−1]T, x2 = [0.5,−0.5]T and x3 =
[1.5,−1.5]T, respectively, and the initial states of the observers
are selected as x̂1 = [2,−2]T, x̂2 = [0.5,−0.5]T and x̂3 =
[1.5,−1.5]T. Let Qii = 200I2, Rii = 0.1I , Ri j = 0.01I ,
ρ = 1, L2 = 100, L1 = 300. Let the activation function of
the critic NN be ϕic = [E2

i,1, Ei,2Ei,1, E2
i,2], and the learning rate

of the critic NN be αc = 1.
Simulation results are displayed in Figs. 3–8. In Fig. 3,

we can observe that the trajectories of all following agents
catch up with the leader within 10 s. Fig. 4 illustrates the
consensus errors of each following agent converge to a small
region of zero. The fault estimations of all following agent
are given in Fig. 5, where we can find that the actuator
faults can be estimated by fault observers precisely. Fig. 6
shows the critic NN weight vectors will converge to Ŵ1 =
[4.13, 8.33, 8.92]T, Ŵ2 = [20.00, 8.79, 15.42]T and Ŵ3 =
[12.16, 8.32, 4.70]T, respectively. Fig. 7 displays the control
inputs of all following agents. It is clear that the controllers
provide quick compensation after faults occur. Therefore, the
leader and all followers can maintain consensus in the presence
of actuator faults.

In order to verify the trajectory tracking performance of the
developed ADP-based DFTCC approach, a different reference

Fig. 4. Consensus errors of Example 1.

Fig. 5. Fault estimation of each agent of Example 1.

dynamics of the leader is selected as

ẋ0 =
�−0.5x0,1 − x0,2cos(x0,1)

sin(x0,1) − x0,2

�
(39)

where x0 = [x0,1, x0,2]T is the leader’s state vector. From
Fig. 8, we can find that the trajectories of the leader and all
followers can achieve consensus.

B. Example 2

To further verify the effectiveness of the developed
ADP-based DFTCC approach, three 2-DOF modular
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Fig. 6. Critic weights of Example 1.

reconfigurable robots are adopted. The communication
topology is the same as those of Example 1. The dynamics of
each following agent with potential actuator faults is given as

Mi (qi)q̈i + Ci (qi , q̇i)q̇i + Gi(qi) = ui − ui f (40)

where qi = [qi1, qi2] ∈ R
2 is the joint displacements of the

agent i , Mi (qi) ∈ R
2×2 is the inertia matrix, Ci (qi , q̇i) ∈ R

2×2

is the Coriolis and centripetal force, Gi(qi) ∈ R
2 is the gravity

term, and ui f ∈ R
2 is the unknown actuator faults. The system

functions and the actuator faults of each agent are provided at

Fig. 7. Control inputs of Example 1.

the bottom of the page. In this case, we assume that agents 1
and 2 are faulty, and agent 3 is fault-free.

The reference trajectory of the leader is selected as

r(t) =
�

0.6cos(3t) − 0.4sin(4t)
0.6cos(2t) − 0.2sin(t)

�
. (41)

Let Qii = 150I4, Rii = 0.1I2, Ri j = 0.01I2, ρ = 1, L2 =
100, the local fault observer gain be L1 = 100, the initial states

Agent 1:

M1(q1) =
�

0.17 − 0.1166cos2(q12) −0.06cos(q12)
−0.06cos(q12) 0.1233

�
, C1(q1, q̇1) =

�
0.1166sin(2q12)q̇12 0.06sin(q12)q̇12

0.06sin(q12)q̇12 − 0.0583sin(q12)q̇11 0.06sin(q12)q̇11

�

G1(q1) =
�

0
−5.88cos(q12)

�
Agent 2:

M2(q2) =
�

0.17 − 0.1166cos2(q22) −0.06cos(q22)
−0.06cos(q22) 0.1233

�
, C2(q2, q̇2) =

�
0.1166sin(2q22)q̇22 0.06sin(q22)q̇22

0.06sin(q22)q̇22 − 0.0583sin(q22)q̇21 0.06sin(q22)q̇21

�

G2(q2) =
�−5.88cos(q21)sin(q22) + 3.92sin(q21)

−5.88cos(q22)

�
Agent 3:

M3(q3) =
�

0.36cos(q32) − 0.6066 −0.18cos(q32) + 0.1233
−0.18cos(q32) + 0.1233 0.1233

�
, C3(q3, q̇3) =

� −0.36sin(q32)q̇32 −0.18sin(q32)q̇32

0.18sin(q32)(q̇31 − q̇32) 0.18sin(q32)q̇31

�

G3(q3) =
� −5.88sin(q31 + q32) − 17.64sin(q31)

−5.88sin(q31 + q32)

�

u1 f =
�

[1 + sin(3t/2π) + cos(3t); 1 + cos(t/π) + sin(3t)], 10s ≤ t ≤ 20s

[0; 0], others

u2 f =
�

[3 + 5sin(3t/2π) − sin(2t); 2 + 5cos(5t/2π) + sin(2t)], 20s ≤ t ≤ 25s

[0; 0], others

u3 f = [0; 0], 0 ≤ t ≤ 30s
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Fig. 8. Consensus under convergence trajectories.

Fig. 9. Trajectories tracking of Example 2.

Fig. 10. Consensus errors of Example 2.

of the agents be x1 = [−1, 1, 0, 0]T, x2 = [−1.5, 1.5, 0, 0]T

and x3 = [−2, 2, 0, 0]T, the initial states of the observers be
x̂1 = x̂2 = x̂3 = [2, 1.5,−1,−0.5]T, the activation function

Fig. 11. Critic weights of Example 2.

Fig. 12. Fault estimation of each agent of Example 2.

of the critic NN be ϕic = [E2
i,1, Ei,1Ei,3, E2

i,3, E2
i,2, Ei,2Ei,4, E2

i,4],
and the learning rate of the critic NN be αc = 0.8.

Simulation results are provided in Figs. 9–13. The trajec-
tories of the leader and all following agents are given in
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Fig. 13. Control inputs of Example 2.

Fig. 9. We can find that all following agents can follow
the leader within 10 s. Fig. 10 shows the consensus errors
of all agents, where we can observe that the consensus
errors converge to small region of zero as time increases.
The weight evolution curves of the critic NNs are shown in
Fig. 11, which converge to Ŵ1 = [53.99, 107.88, 19.28, 25.46,
33.15, 67.50]T, Ŵ2 = [69.48, 5.08, 25.51, 22.23, 34.21,
92.50]T and Ŵ3 = [57.18, 62.52, 77.67, 23.37, 38.54, 56.15]T,
respectively. Fig. 12 displays the fault estimation of each
agent. We can observe that the local fault observers can
estimate actuator faults accurately. The control inputs of all
agents are illustrated in Fig. 13. It is found that when faults
occur, the controllers present a quick response to resist faults
so that the trajectory of the leader can be tracked even if the
faults occur. From the above results and analysis, we conclude
that all following agents with potential faults can successfully
follow the leader. It means that the developed ADP-based
DFTCC approach is effective.

Remark 7: In fact, the ADP-based DFTCC is developed
based on the critic NN, which means that if the critic NN
approximates the optimal value function successfully, the
control input is obtained by calculating (28). Therefore, the
implementation complexity of the controller mainly depends
on the acquisition of the optimal weights of the critic NN.
Once the optimal critic NN weights are obtained, the devel-
oped ADP-based distributed fault-tolerant controller can be
employed on MASs directly. It is noted that the activation
function, the learning rate and the initial weights all affect
the training process of the critic NN, how to select them is
a challenging problem. However, there is no guiding way to
select them and researchers usually choose them by “trial and
error” with repetitive simulations. Therefore, the selection of
them is not unique and they can be selected to be different as
long as the simulation results are satisfactory.

V. CONCLUSION

In this article, the FTCC problem of the MASs is addressed
by proposing an ADP-based DFTCC approach. To begin with,

a local fault observer is designed to estimate the potential actu-
ator faults of each agent. Then, the FTCC problem is converted
to an optimal consensus control problem by designing a novel
local value function that contains the estimated faults, the local
consensus errors, and the control laws of the local agent and
its neighbors. A critic-only structure is adopted to solve the
coupled HJB equation. Moreover, the Lyapunov-based stability
analysis demonstrates that the consensus errors are UUB.
Finally, the effectiveness of the developed ADP-based DFTCC
approach is verified by two simulation examples. The main
contribution of this article lies in designing an ADP-based
fault-tolerant controller for each agent such that all following
agents with potential actuator faults can still follow the leader.
The related future work is given as follows.

1) Assumption 4 is necessary for guaranteeing the stability
of the local neighborhood consensus error of each agent,
and we will try to relax it in our future work.

2) Since the convergence rate of the ADP algorithm is a
challenging problem and significant in practical applica-
tions, we will try to investigate it in our future work.
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Adaptive Dynamic Programming-Based
Event-Triggered Robust Control for Multiplayer
Nonzero-Sum Games With Unknown Dynamics

Yongwei Zhang , Member, IEEE, Bo Zhao , Senior Member, IEEE,
Derong Liu , Fellow, IEEE, and Shunchao Zhang

Abstract—In this article, the event-triggered robust control of
unknown multiplayer nonlinear systems with constrained inputs
and uncertainties is investigated by using adaptive dynamic pro-
gramming. To relax the requirement of system dynamics, a neural
network-based identifier is constructed by using the system input-
output data. Subsequently, by designing a nonquadratic value
function, which contains the bounded functions, the system states,
and the control inputs of all players, the event-triggered robust
stabilization problem is converted into an event-triggered con-
strained optimal control problem. To obtain the approximate
solution of the event-triggered Hamilton–Jacobi (HJ) equation, a
critic network for each player is established with a novel weight
updating law to relax the persistence of excitation condition
based on the experience replay technique. Furthermore, accord-
ing to the Lyapunov stability theorem, the present event-triggered
robust optimal control ensures the multiplayer system to be uni-
formly ultimately bounded. Finally, two simulation examples are
employed to show the effectiveness of the present method.

Index Terms—Adaptive dynamic programming (ADP), event-
triggered control (ETC), multiplayer nonzero-sum games
(MNSG), neural networks (NNs), robust control.

I. INTRODUCTION

W ITH the rapid development of modern industries, con-
trol systems are becoming more and more complex
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and uncertain, which may severely degrade the control
performance or even lead to system’s instability. Much effort
has been devoted to the robustness of such systems. In recent
decades, the robustness has attracted extensive attention in
designing optimal control systems. In [1], the robust adaptive
dynamic programming (ADP), which combined backstep-
ping, robust redesign, and small-gain technique, was proposed
to solve optimal control problems for uncertain nonlinear
systems.

For the purpose of designing optimal controllers for non-
linear systems, it is required to solve the Hamilton–Jacobi–
Bellman (HJB) equation, which is difficult or impossible due
to its high nonlinearities. Fortunately, ADP, which was put
forward by Werbos, is an effective approach to deal with this
difficulty [2]–[8]. During the past decade, extensive ADP-
based literature has been reported to address varieties of
control problems of discrete-time (DT) systems [9]–[11] and
continuous-time (CT) systems [12], [13] with trajectory track-
ing [14], [15], input constraints [16], fault tolerance [17],
and so on. For robust stabilization problems, several ADP-
based approaches were also developed. In [19], the robust
controller for CT nonlinear systems with input constraints
was designed by using reinforcement-learning (RL)/ADP
approach. A suitable value function was selected to cope
with the constrained input and the matched perturbation. For
systems with unmatched disturbances, in [18], a robust con-
trol approach was proposed for nonlinear affine systems via
ADP. By constructing an auxiliary system and a modified
value function, the robust stabilization problem was converted
into an optimal regulation problem. In [20], a robust control
approach was proposed to deal with the general uncertainties.
Through system transformation, an optimal controller of the
nominal system was designed to stabilize the original system.
Moreover, the uniform ultimate boundedness (UUB) was ana-
lyzed for both the nominal plant and the original uncertain
system. However, the aforementioned robust control strategies
were proposed based on the time-triggered mechanism with
heavy computational and communication burden since they
require data transmission at every sampling instant.

Different from time-triggered control schemes, the event-
triggered control (ETC) updates system states and executes
with a proper triggering condition; thus, it requires less sam-
pling instants and less computational and communication
resources [21], [22]. Thus, the ADP-based ETC (ADPETC)
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has become a hot research topic recently. In [25], the event-
triggered neurodynamic programming with an actor-critic
(AC) framework was applied to acquire an optimal controller
for DT nonlinear systems. In [23], the decentralized trajectory
tracking control problem for modular reconfigurable robots
was investigated by using the event-triggered method. In [16],
a robust ETC (RETC) strategy for uncertain nonlinear CT
systems with constrained input was proposed by using an
adaptive critic structure. In [24], a decentralized ETC approach
was presented for CT nonlinear interconnected systems. In
addition, ADPETC methods were applied to network control
systems [26] and power systems [27]. It should be noticed
that the controllers developed in aforementioned works were
updated at the triggering moments, hence, the computational
and communication burden are alleviated.

In the aforementioned literature, single controllers with cen-
tralized control structure are employed to drive the systems
that are not sufficiently large scale and complex. However,
for complex and large-scale systems, such as communica-
tion networks, power systems, and networked control systems,
multiple controllers, which can be regarded as multiplay-
ers, are necessarily required to perform satisfactory control
performance [28], [29]. The optimal control problem of multi-
player systems can be regarded as a nonzero-sum game, which
presents both competitive and cooperative relationships, and its
objective is to generate a set of control policies to approach
a Nash equilibrium, which not only minimize the value func-
tion for each player but also guarantee the system to be stable.
In [30], the game theory and the optimal control theory were
integrated to address the DT multiplayer nonzero-sum game
(MNSG) problem with the AC structure. The policy iteration
algorithm was adopted to acquire a series of control laws to
minimize the value function for each player. For CT MNSG
problems, in [31], an ADPETC scheme was developed. The
value function and the control strategy of each player were
approximated by a citric neural network (NN).

It is worth pointing out that most of the existing results
are developed for nominal multiplayer systems only. However,
multiplayer systems are large scale, which indicates that
their mathematical models are difficult to establish. Even if
the mathematical model is obtained, dynamical uncertainties
inevitably exist. Moreover, due to the physical characteristics
of the actuator, the amplitude of its input or output is usually
limited to result in a decreased execution ability. Consequently,
the control performance may be reduced and even the system
stability may get compromised. To the best of our knowl-
edge, input constraints and system uncertainties have not been
considered simultaneously in previous works. In addition, the
existing time-triggered control approaches require plenty of
computational and communication resources since the con-
trollers are updated at every sampling instant. Based on the
above discussion, it is urgent to investigate the robust con-
trol problem of multiplayer systems with input constraints and
dynamical uncertainties based on the event-triggered mecha-
nism. The main challenges are as follows: 1) a suitable value
function needs to be constructed for each player to deal with
input constraints and dynamical uncertainties; 2) the coupled
Hamilton–Jacobi (HJ) equation is necessary but difficult to

solve to obtain the Nash equilibrium; and 3) to reduce the com-
putational and communication burdens, an event-triggering
condition, which is suitable for multiple controllers, needs to
be designed. These motivate our research.

To tackle this problem, an ADP-based RETC approach is
presented. To begin with, an NN-based identifier is established
to estimate the unknown system dynamics. Then, critic NNs
are constructed to approximate the solution of HJ equation
of each player, and the experience replay (ER) technique is
adopted to remove the persistence of excitation (PE) condition.
Moreover, a novel event-triggering condition is derived based
on Lyapunov’s direct method. Consequently, the developed
ADP-based RETC approach reduces the computational and
communication burden in contrast to time-triggered ADP-
based methods. The novelties and contributions of this article
are presented as follows.

1) Different from existing methods [16], [33], which
addressed the robust control problem for nonlinear
systems with single controller only, this article develops
an ADP-based RETC approach for multiplayer nonlinear
systems. By system transformation and designing a mod-
ified nonquadratic value function for each player, the
robust stabilization problem is converted to a constrained
optimal control problem.

2) Unlike existing results [29], [35], which developed time-
triggered control methods for multiplayer systems, this
article investigates the MNSG problem with the event-
triggered mechanism. It reduces the computational and
communication burden in two aspects, that is: a) the
developed robust controllers are updated at triggering
moments and b) the value function of each player is
approximated by critic NN.

3) An NN-based identifier is established to estimate
the unknown system dynamics by adopting the mea-
sured system data. Moreover, the ER method, which
removes the PE condition, is employed to design novel
weight updating laws. Furthermore, under a new event-
triggering condition, the critic NN weight estimate error
dynamics and the multiplayer system are both guaran-
teed to be UUB.

The remainder of this article is organized as follows. In
Section II, the problem statement is presented. In Section III,
the unknown dynamics is reconstructed by the NN-based iden-
tifier, and the ADP-based RETC method is designed. Then,
the NN implementation and the stability analysis are given.
Section IV provides simulation results of the developed control
method. In Section V, corresponding conclusions are given.

II. PROBLEM STATEMENT

Consider the unknown multiplayer CT nonlinear systems
with uncertainties as

ẋ(t) = F(x(t))+
N∑

j=1

Gj(x(t))
(
uj(t)+�j(x(t))

)
(1)

where x(t) ∈ R
n is the system state, uj(t) =

[uj1, uj2, . . . , ujmj ]
T ∈ R

mj is the control input of the jth
player and satisfies |ujκ | ≤ ūjκ , κ = 1, 2, . . . ,mj, where
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ūjκ > 0 is the bound, �j(x(t)) ∈ R
mj represents the norm-

bounded uncertainty, ‖�j(x)‖ ≤ ηjM(x) with ηjM(x) is a known
positive function, ηjM(0) = 0, and N is the number of con-
trollers. F(x) ∈ R

n and Gj(x) ∈ R
n×mj are unknown nonlinear

system functions. Assuming that F(x) and Gj(x) are Lipschitz
continuous on a compact set � with F(0) = 0.

The nominal system corresponding to system (1) can be
given as

ẋ(t) = F(x(t))+
N∑

j=1

Gj(x(t))uj(t). (2)

Denote u−i = {uj : j = 1, 2, . . . ,N , j �= i} as the supple-
mentary set of player i. The value function for each player is
defined as

Vi(x) =
∫ ∞

t

⎛

⎝ξ
N∑

j=1

η2
jM(x(ν))+ Ci(x(ν), ui(ν), u−i(ν))

⎞

⎠dν

i = 1, 2, . . . ,N (3)

where ξ is a positive constant, Ci(x(ν), ui(ν), u−i(ν)) =
xTQix + Wi(UN ) ≥ 0 is the utility function, where Qi ∈
R

n×n is a symmetric positive-definite matrix and UN =
[u1, . . . , uN ]. In order to cope with the optimal control for
systems with constraints, inspired by [16] and [39], Wi(UN )
is chosen as

Wi(UN ) = 2
N∑

j=1

∫ uj

0
δ−T

(
	−1

j s
)

ds (4)

where δ(·) ∈ R
mj is a monotonic odd function satis-

fying |δq(·)| < 1, q = 1, 2, . . . ,mj with δ−1(·) =
[δ−1

1 (·), . . . , δ−1
mj
(·)]T, and 	j = diag{ūj1, . . . , ūjmj} is a diag-

onal matrix that contains all the bounds. In this article,
δq(·) is selected as the hyperbolic tangent function, that is,
δq(·) = tanh(·).

Definition 1 ([28], [30], [36]): An N -tuple of admissible
policies {u∗

1, . . . , u∗
N } is called the Nash equilibrium for the

N -player nonzero-sum game, if for any ui and 1 ≤ i ≤ N ,
the following inequality is satisfied:

Vi
(
u∗

1, . . . , u∗
i , . . . , u∗

N
) ≤ Vi

(
u∗

1, . . . , ui, . . . , u∗
N
)
. (5)

Denote 
(�) as a set of admissible control. Assuming (3)
is continuously differentiable, the Hamiltonian of system (2)
is defined as

Hi(x,∇Vi(x),UN ) = ∇V
T
i (x)

⎛

⎝F(x)+
N∑

j=1

Gj(x)uj

⎞

⎠

+ ξ

N∑

j=1

η2
jM(x)+ Ci(x, ui, u−i). (6)

Thus, the optimal value function

V
∗
i (x) = min

ui∈
(�)

∫ ∞

t

⎛

⎝ξ
N∑

j=1

η2
jM(x(ν))+ Ci(x(ν), ui(ν), u−i(ν))

⎞

⎠dν

(7)

satisfies the HJ equation

min
ui∈
(�)Hi

(
x,∇V

∗
i (x),UN

) = 0. (8)

Then, the optimal control law for the ith player can be obtained
by differentiating (6) with respect to ui as

u∗
i (x) = arg min

ui∈
(�)
Hi

(
x,∇V

∗
i (x),UN

)

= −	iδ

(
1

2
GT

i (x)∇V
∗
i (x)

)
. (9)

According to (6) and (9), we can obtain

0 = Hi
(
x,∇V

∗
i (x),U∗

N
)

= ∇V
∗T
i (x)

⎛

⎝F(x)+
N∑

j=1

Gj(x)u
∗
j

⎞

⎠

+ ξ

N∑

j=1

η2
jM(x)+ xTQix + Wi(U∗

N ). (10)

It is noticed that the time-triggered HJ equation (10) is solved
with huge amount of transmitted data and results in enormous
computational and communication burden in existing ADP-
based control methods. In the next section, the ADP-based
RETC approach is developed to overcome these shortcomings.

Remark 1: Inspired by [16] and [39], the nonquadratic
form with a monotonic odd function tanh(·) was adopted to
deal with the constrained input. It is noticed that existing
approaches [16] and [39] have considered single controller
only; however, this article aims to develop multiple robust
controllers for multiplayer systems with dynamical uncertain-
ties. Therefore, the designed value function contains the bound
functions, the system states, and the control inputs of all play-
ers, which reflects the uncertainties, the regulation, and the
control simultaneously. By using this modified value function,
the robust stabilization problem is converted to a constrained
optimal control problem.

Remark 2: Different from zero-sum games and full coop-
erative games, the MNSG reflects both competitive and coop-
erative relationships, that is, all players have their individual
control goal and a common goal [28], [31], [40], [41]. For
MNSG, it aims at obtaining a set of control policies to find
the Nash equilibrium, which not only minimize the value func-
tion for each player but also guarantee the system to be stable.
On the one hand, the competition illustrates that each player
expects to achieve their own target, that is, minimize individual
value function (3). However, since the value function of one
player contains the control laws of other players, the realiza-
tion of optimal control goal of one player will affect the control
performance of others. Therefore, there exists competitive rela-
tionship among players. On the other hand, the cooperation
lies in that the control policies generated by all players make
contribution to stabilize the entire system. It implies that each
player cooperates with others to achieve the same goal.
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III. EVENT-TRIGGERED ROBUST CONTROLLER DESIGN

A. Event-Triggered Robust Controller Design

The sequence of triggering instants is defined as {Sϑ }∞ϑ=0,
where Sϑ is the ϑ th sampling instant. Under the event-
triggered framework, for ∀t ∈ [Sϑ , Sϑ+1), ϑ ∈ N, the
event-triggered error eϑ(t) is defined as

eϑ(t) = x̄ϑ(t)− x(t) (11)

where x̄ϑ(t) = x(Sϑ) is the sampled state. The event-triggered
optimal control law is given as

u∗
i (x̄ϑ , t) = u∗

i (x̄ϑ)

= −	iδ

(
1

2
GT

i (x̄ϑ)∇V
∗
i (x̄ϑ)

)
, t ∈ [Sϑ , Sϑ+1). (12)

According to (10), the event-triggered HJ equation is
defined as

Hi
(
x,∇V

∗
i (x),U∗

N (x̄ϑ)
)

= ∇V
∗T
i (x)

⎛

⎝F(x)+
N∑

j=1

Gj(x)u
∗
j (x̄ϑ)

⎞

⎠

+ ξ

N∑

j=1

η2
jM(x)+ xTQix + Wi

(U∗
N (x̄ϑ)

) = 0 (13)

where U∗
N (x̄ϑ) = [u∗

1(x̄ϑ), . . . , u∗
N (x̄ϑ)].

Assumption 1 [38]: Gj(x) and ∇V
∗
i (x) are norm-bounded,

that is,
∥∥Gj(x)

∥∥ ≤ Ḡj,
∥∥∇V

∗
i (x)

∥∥ ≤ V̄i (14)

where Ḡj and V̄i are positive constants.

Assumption 2 [21], [22]: The control law is Lipschitz
continuous, that is

∥∥u∗
i (x)− u∗

i (x̄ϑ)
∥∥2 ≤ Lu‖eϑ(t)‖2 (15)

where Lu is a positive constant.
Theorem 1: Consider the unknown multiplayer nonlinear

system (1) with its nominal form (2), and the event-triggered
optimal control law (12). The multiplayer system (1) is guar-
anteed to be UUB only if the following triggering condition:

‖eϑ(t)‖2 ≤ (1 − τ 2)λmin(Qi)‖x‖2 + (
ξ − Ḡ2

)∑N
j=1 η

2
jM(x)

Ḡ2LuN
� ‖eT‖2 (16)

and the inequality ξ > Ḡ2 hold, where 0 < τ < 1 and Ḡ > 0
are design parameters.

Proof: Select the Lyapunov function candidate as

LT1 = V
∗
i (x). (17)

Taking the time derivative of (17) along with the solutions
of (1), we can obtain

L̇T1 = ∇V
∗T
i (x)

⎛

⎝F(x)+
N∑

j=1

Gj(x)u
∗
j (x̄ϑ)+

N∑

j=1

Gj(x)�j(x)

⎞

⎠.

(18)

According to (10), we can obtain

∇V
∗T
i (x)F(x) = −ξ

N∑

j=1

η2
jM(x)− xTQix − Wi(U∗

N )

− ∇V
∗T
i (x)

N∑

j=1

Gj(x)u
∗
j (x).

L̇T1 = −ξ
N∑

j=1

η2
jM(x)− xTQix − Wi

(U∗
N
) + ∇V

∗T
i (x)

N∑

j=1

Gj(x)
(

u∗
j (x̄ϑ)+�j(x)− u∗

j (x)
)

= −ξ
N∑

j=1

η2
jM(x)− xTQix − Wi

(U∗
N
) + 1

2

∥∥∇V
∗
i (x)

∥∥2 + 1

2

∥∥∥∥∥∥

N∑

j=1

Gj(x)
(

u∗
j (x̄ϑ)+�j(x)− u∗

j (x)
)
∥∥∥∥∥∥

2

≤ −ξ
N∑

j=1

η2
jM(x)− xTQix + 1

2
V̄

2
i

+ 1

2

⎡

⎢⎣
u∗

1(x̄ϑ)+�1(x)− u∗
1(x)

...

u∗
N (x̄ϑ)+�N (x)− u∗

N (x)

⎤

⎥⎦

T

[G1(x), . . . ,GN (x)]T[G1(x), . . . ,GN (x)]

⎡

⎢⎣
u∗

1(x̄ϑ)+�1(x)− u∗
1(x)

...

u∗
N (x̄ϑ)+�N (x)− u∗

N (x)

⎤

⎥⎦

≤ −ξ
N∑

j=1

η2
jM(x)− xTQix + 1

2
V̄

2
i + 1

2
‖G‖2

N∑

j=1

∥∥∥u∗
j (x̄ϑ)+�j(x)− u∗

j (x)
∥∥∥

2

≤ −ξ
N∑

j=1

η2
jM(x)− xTQix + 1

2
V̄

2
i + Ḡ2

N∑

j=1

∥∥∥u∗
j (x̄ϑ)− u∗

j (x)
∥∥∥

2 + Ḡ2
N∑

j=1

η2
jM(x)

≤ −(1 − τ 2)λmin(Qi)‖x‖2 + Ḡ2LuN‖eϑ(t)‖2 +
(
Ḡ2 − ξ

) N∑

j=1

η2
jM(x)− τ 2λmin(Qi)‖x‖2 + 1

2
V̄

2
i (19)
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Define G = [G1(x), . . . ,GN (x)]T[G1(x), . . . ,GN (x)] and it is
assumed to be norm-bounded as ‖G‖ ≤ Ḡ. Then, (19) is
obtained. If the triggering condition (16) holds and ξ > Ḡ2

is satisfied, then (19), as shown at the bottom of the previous
page becomes

L̇T1 ≤ −τ 2λmin(Qi)‖x‖2 + 1

2
V̄

2
i . (20)

Thus, L̇T1 ≤ 0 as long as the state x lies outside the
compact set

�x =
⎧
⎨

⎩x : ‖x‖ ≤
√

V̄
2
i

2τ 2λmin(Qi)

⎫
⎬

⎭. (21)

B. System Identification via NN

In this section, an NN is adopted to estimate the
unknown multiplayer system dynamics by utilizing measured
input/output data. Inspired by [34], system (2) is recon-
structed as

ẋ = 
Tx + ωT
f σf (x)+

N∑

j=1

ωT
GjσGj(x)uj + ε(t) (22)

where 
 ∈ R
n×n, ωf ∈ R

n×n, and ωGj ∈ R
n×n are optimal

NN weight matrices, σf (x) ∈ R
n represents the activation func-

tion, and σGj(x) = [σGj1(ψ
T
1 x), σGj2(ψ

T
2 x), . . . , σGjn(ψ

T
n x)]T ∈

R
n×mj is a matrix function with momotonically increasing

function σGjl(·) ∈ R
mj and constant matrix ψl ∈ R

n×mj ,
l = 1, 2, . . . , n. ε(t) ∈ R

n is the reconstruction error. Then,
the NN-based identifier is

˙̂x = 
̂T(t)x̂ + ω̂T
f (t)σf

(
x̂
) +

N∑

j=1

ω̂T
Gj(t)σGj

(
x̂
)
uj + υ (23)

where 
̂(t) ∈ R
n×n, ω̂f (t) ∈ R

n×n, and ω̂Gj(t) ∈ R
n×n are

the estimates of the corresponding weight matrices, υ ∈ R
n

is defined as υ = θ x̃, θ > 0 is a design parameter, and x̃ �
x − x̂ is the identification error. Then, the identification error
dynamics is

˙̃x = 
Tx̃ + 
̃T(t)x̂ + ω̃T
f (t)σf

(
x̂
)

+
N∑

j=1

(
ω̃T
Gj(t)σGj(x̂)+ ωT

Gj

(
σGj(x)− σGj(x̂)

))
uj

+ ωT
f

(
σf (x)− σf

(
x̂
)) + ε(t)− θ x̃ (24)

where 
̃(t) = 
 − 
̂(t), ω̃f (t) = ωf − ω̂f (t), and ω̃Gj(t) =
ωGj − ω̂Gj(t).

Assumption 3: The NN reconstruction error ε(t) satisfies

εT(t)ε(t) ≤ ρ1x̃Tx̃ (25)

where ρ1 is a positive constant.
Assumption 4: The optimal NN weights are norm-bounded,

that is

‖ωf ‖ ≤ ω̄f , ‖ωGj‖ ≤ ω̄Gj (26)

where ω̄f and ω̄Gj are positive constants.

Theorem 2: Consider the nominal system (2),
Assumptions 3 and 4, and the reconstructed system
dynamics (23). The identification error x̃ will reach zero if
NN weights 
̂(t), ω̂f (t), and ω̂Gj(t) are updated by

˙̂

(t) = �ax̂x̃T (27)
˙̂ωf (t) = �fσf

(
x̂
)
x̃T (28)

˙̂ωGj(t) = �GjσGj
(
x̂
)
ujx̃

T (29)

where �a, �f , and �Gj are symmetric positive-definite
matrices.

Proof: The proof of Theorem 2 has been provided in
[34, Th. 3.1], so the detail is omitted here.

According to Theorem 2, system (2) is expressed by

ẋ = 
̂Tx + ω̂f σf (x)+
N∑

j=1

ω̂T
GjσGj(x)uj (30)

where 
̂, ω̂f , and ω̂Gj are converged values of corresponding
weights. Then, from (2) and (30), we have

F(x) = 
̂Tx + ω̂f σf (x), Gj(x) = ω̂T
GjσGj(x). (31)

Remark 3: The designed NN-based identifier learns the
unknown system dynamics offline. Compared with the online
observer, more historical system data are available and used in
the offline learning and the data usage efficiency is improved.
Moreover, the identification error of the NN-based identifier
will be asymptotically stable, rather than UUB [33].

C. Neural Network Implementation

In this section, critic NNs are constructed to approximate the
solutions of event-triggered HJ equations. The optimal value
function V

∗
i (x) is approximated by NN as

V
∗
i (x) = ωT

ciσc(x)+ εci(x) (32)

where ωci ∈ R
Lc is the ideal weight vector, σc(x) ∈ R

Lc is the
activation function, Lc is the number of hidden layer neurons,
and εci(x) ∈ R is the approximation error. Then, according
to (32), we have

∇V
∗
i (x) = ∇σT

c (x)ωci + ∇εci(x). (33)

The approximate value function is formulated as

V̂i(x) = ω̂T
ciσc(x) (34)

where ω̂ci is the estimate of ωci. Similarly, we have

∇V̂i(x) = ∇σT
c (x)ω̂ci. (35)

Based on (12) and (33), the event-triggered optimal control
law is

ui(x̄ϑ) = −	iδ

(
1

2
GT

i (x̄ϑ)
(
∇σT

c (x̄ϑ)ωci + ∇εci(x̄ϑ)
))
.

Based on (35), we have

ûi(x̄ϑ) = −	iδ

(
1

2
GT

i (x̄ϑ)∇σT
c (x̄ϑ)ω̂ci

)
. (36)
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According to (6) and (36), the approximate Hamiltonian is

Ĥi

(
x, ÛN (x̄ϑ), ω̂ci

)

= ξ

N∑

j=1

η2
jM(x)+ xTQix + Wi

(
ÛN (x̄ϑ)

)

+ ω̂T
ci ∇σc(x)

⎛

⎝F(x)+
N∑

j=1

Gj(x)ûj(x̄ϑ)

⎞

⎠

︸ ︷︷ ︸
ϒi

� eci (37)

where ÛN (x̄ϑ) = [û1(x̄ϑ), . . . , ûN (x̄ϑ)]. To derive the updat-
ing law of the critic NN, the objective function Eci = 1

2 eT
cieci

is minimized by the gradient descent algorithm as

˙̂ωci = −αc
1

(1 + ϒT
i ϒi)2

(
∂Eci

∂ω̂ci

)

= − αcϒi

(1 + ϒT
i ϒi)2

⎛

⎝ω̂T
ciϒi + ξ

N∑

j=1

η2
jM(x)+ xTQix

+ Wi

(
ÛN (x̄ϑ)

)
⎞

⎠ (38)

where αc > 0 is the learning rate. For the purpose of relaxing
the PE condition, ER technique is adopted. Inspired by [24],
by using the historical system data, a new critic NN weight
tuning rule is designed by

˙̂ωci = − αcϒi

(1 +ϒT
i ϒi)2

⎛

⎝ω̂T
ciϒi + ξ

N∑

j=1

η2
jM(x)

+ xTQix + Wi

(
ÛN (x̄ϑ)

)
⎞

⎠

−
ND∑

d=1

αcϒid

(1 + ϒT
idϒid)2

⎛

⎝ω̂T
ciϒid + ξ

N∑

j=1

η2
jM(x(td))

+ xT(td)Qix(td)+ Wi

(
ÛN (x̄ϑ)

)
⎞

⎠

td ∈ [Sϑ , Sϑ+1) (39)

where d ∈ {1, 2, . . . ,ND} is the index of stored data, and
ϒid = ∇σc(x(td))(F(x(td))+ ∑N

j=1 Gj(x(td))ûj(x̄ϑ)).
Define the weight estimation error as ω̃ci = ωci − ω̂ci and

recall ˙̃ωci = − ˙̂ωci. Inspired by [33], we have

˙̃ωci = −αc

⎛

⎝�i�
T
i +

ND∑

d=1

�id�
T
id

⎞

⎠ω̃ci + αc�i

1 +ϒT
i ϒi

εHi

+
ND∑

d=1

αc�id

1 +ϒT
idϒid

εHid, td ∈ [Sϑ , Sϑ+1) (40)

where

εHi = −∇εT
ci(x)

⎛

⎝F(x)+
N∑

j=1

Gj(x)ûj(x̄ϑ)

⎞

⎠

Fig. 1. Structure of the ADP-Based RETC method.

εHid = −∇εT
ci(x(td))

⎛

⎝F(x(td))+
N∑

j=1

Gj(x(td))ûj(x̄ϑ)

⎞

⎠

�id = ϒid

1 + ϒT
idϒid

and �i = (ϒi/[1 +ϒT
i ϒi]).

Remark 4: In the present ADP-based RETC method, the
ER technique uses historical system data to update the network
weights. Compared with traditional methods to relax PE con-
dition, the ER technique is convenient to implement in practice
since the historical system data are easy collected during the
learning process.

Remark 5: Let � = [σc(x(t1)), . . . , σc(x(tND ))] be the his-
torical data matrix. According to [36], the matrix � requires
to include enough linearly independent elements such that
rank(�) = Lc.

Remark 6: According to (36), we find that the designed
event-triggered optimal controller of each player relies on
the overall system state. Therefore, the developed ADP-based
RETC approach is a kind of centralized control method.

Based on the above discussion, the structure of the ADP-
based RETC method is shown in Fig. 1.

D. Stability Analysis

In this section, the stability of the multiplayer system (2) is
demonstrated by using the Lyapunov stability theorem. Before
proving, some assumptions, which were used in [16], [32],
[34], and [42]–[44], are provided.

Assumption 5 [32], [34], [43], [44]: ωci, ∇σc(x), ∇εci(x),
and εHi are norm-bounded, that is

‖ωci‖ ≤ ω̄ci, ‖∇σc(x)‖ ≤ σ̄c

‖∇εci(x)‖ ≤ ε̄ci, ‖εHi‖ ≤ ε̄Hi

where ω̄ci, σ̄c, ε̄ci, and ε̄Hi are positive constants.
Assumption 6 [16], [42]: δ(·) is Lipschitz continuous, that is

‖δ(ζ1)− δ(ζ2)‖ ≤ Lδ‖ζ1 − ζ2‖
where Lδ is a positive constant, and ζ1 and ζ2 are m-
dimensional vectors

Theorem 3: Consider the unknown multiplayer nonlinear
system (1) with the nominal form (2), the event-triggered
approximate optimal control law (36), and the critic NN weight
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updating law (39). Then, both the multiplayer system (2) and
the critic NN weight estimation error ω̃ci are UUB when the
event-triggering condition

‖eϑ(t)‖2 ≤
∑N

i=1

(
ξ
∑N

j=1 η
2
jM(x)+ (1 − τ 2)λmin(Qi)‖x‖2

)

1
2NḠ2

(
1 + 1

β2

)
L2

u

� ‖eT‖2 (41)

and the inequality

αc >
(1 + β2)Ḡ2‖	i‖2L2

δ Ḡ2
i σ̄

2
c

2λimin

(
�i�

T
i + ∑ND

d=1�id�
T
id

) (42)

hold, where β > 0 is a design parameter.
Proof: Select the Lyapunov function candidate as

L = L1 + L2 + L3

=
N∑

i=1

V
∗
i (x)+

N∑

i=1

V
∗
i (x̄ϑ)+ 1

2

N∑

i=1

ω̃T
ciω̃ci. (43)

Case 1 (Event Is Not Triggered): Taking the time derivative
of (43) and utilizing system (2), we have

L̇1 =
N∑

i=1

⎛

⎝∇V
∗T
i (x)

⎛

⎝F(x)+
N∑

j=1

Gj(x)ûj(x̄ϑ)

⎞

⎠

⎞

⎠ (44)

L̇2 = 0 (45)

L̇3 =
N∑

i=1

⎛

⎝−αcω̃
T
ci

⎛

⎝�i�
T
i +

ND∑

d=1

�id�
T
id

⎞

⎠ω̃ci

+ αcω̃
T
ci�i

1 +ϒT
i ϒi

εHi +
ND∑

d=1

αcω̃
T
ci�id

1 + ϒT
idϒid

εHid

⎞

⎠. (46)

According to (10), we can obtain (47), as shown at the
bottom of the page. By using Young’s inequality, we further

obtain
∥∥∥ûj(x̄ϑ)− u∗

j (x)
∥∥∥

2

= ∥∥
(

ûj(x̄ϑ)− u∗
j (x̄ϑ)

)
+

(
u∗

j (x̄ϑ)− u∗
j (x)

)∥∥2

≤ (1 + β2)

∥∥∥ûj(x̄ϑ)− u∗
j (x̄ϑ)

∥∥∥
2

+
(

1 + 1

β2

)∥∥∥u∗
j (x̄ϑ)− u∗

j (x)
∥∥∥

2

≤ 1

2
(1 + β2)‖	j‖2L2

δ Ḡ2
j

(
σ̄ 2

c

∥∥ω̃cj
∥∥2 + ε̄2

cj

)

+
(

1 + 1

β2

)
L2

u‖eϑ‖2 (48)

where
∥∥∥ûj(x̄ϑ)− u∗

j (x̄ϑ)
∥∥∥

2

=
∥∥∥	jδ

(
1

2
GT

j (x̄ϑ)
(
∇σT

c (x̄ϑ)ωcj + ∇εcj(x̄ϑ)
))

− 	jδ

(
1

2
GT

j (x̄ϑ)∇σT
c (x̄ϑ)ω̂cj

)∥∥∥
2

≤ 1

4
‖	j‖2L2

δ

∥∥GT
j (x̄ϑ)

(
∇σT

c (x̄ϑ)ωcj + ∇εcj(x̄ϑ)
)

− GT
j (x̄ϑ)∇σT

c (x̄ϑ)ω̂cj
∥∥2

≤ 1

4
‖	j‖2L2

δ

∥∥∥GT
j (x̄ϑ)

∥∥∥
2∥∥∇σT

c (x̄ϑ)ω̃cj + ∇εcj(x̄ϑ)
∥∥2

≤ 1

2
‖	j‖2L2

δ Ḡ2
j

(
σ̄ 2

c

∥∥ω̃cj
∥∥2 + ε̄2

cj

)
. (49)

According to (47) and (48), we have

L̇1 ≤
N∑

i=1

⎛

⎝−ξ
N∑

j=1

η2
jM(x)− xTQix

⎞

⎠ + N σ̄ 2
c

N∑

i=1

ω̄2
ci

L̇1 =
N∑

i=1

⎛

⎝−ξ
N∑

j=1

η2
jM(x)− xTQix − Wi

(U∗
N
)
⎞

⎠ −
N∑

i=1

∇V
∗T
i (x)

N∑

j=1

Gj(x)u
∗
j (x)+

N∑

i=1

∇V
∗T
i (x)

N∑

j=1

Gj(x)ûj(x̄ϑ)

=
N∑

i=1

⎛

⎝−ξ
N∑

j=1

η2
jM(x)− xTQix − Wi

(U∗
N
)
⎞

⎠ + [∇V
∗
1(x)+ · · · + ∇V

∗
N (x)

]T
N∑

j=1

Gj(x)
(

ûj(x̄ϑ)− u∗
j (x)

)

≤
N∑

i=1

⎛

⎝−ξ
N∑

j=1

η2
jM(x)− xTQix − Wi

(U∗
N
)
⎞

⎠ + 1

2

[∇V
∗
1(x)+ · · · + ∇V

∗
N (x)

]T[∇V
∗
1(x)+ · · · + ∇V

∗
N (x)

]

+ 1

2

⎡

⎢⎣
û1(x̄ϑ)− u∗

1(x)
...

ûN (x̄ϑ)− u∗
N (x)

⎤

⎥⎦

T

[G1(x), . . . ,GN (x)]T[G1(x), . . . ,GN (x)]

⎡

⎢⎣
û1(x̄ϑ)− u∗

1(x)
...

ûN (x̄ϑ)− u∗
N (x)

⎤

⎥⎦

≤
N∑

i=1

⎛

⎝−ξ
N∑

j=1

η2
jM(x)− xTQix

⎞

⎠ + N
2

N∑

i=1

∥∥∥∇σT
c (x)ωci + ∇εci(x)

∥∥∥
2 + 1

2
Ḡ2

N∑

j=1

∥∥∥ûj(x̄ϑ)− u∗
j (x)

∥∥∥
2

≤
N∑

i=1

⎛

⎝−ξ
N∑

j=1

η2
jM(x)− xTQix

⎞

⎠ + N σ̄ 2
c

N∑

i=1

ω̄2
ci + N

N∑

i=1

ε̄2
ci + 1

2
Ḡ2

N∑

j=1

∥∥∥ûj(x̄ϑ)− u∗
j (x)

∥∥∥
2

(47)
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+ 1

4

(
1 + β2

)
Ḡ2L2

δ

N∑

j=1

‖	j‖2Ḡ2
j

(
σ̄ 2

c

∥∥ω̃cj
∥∥2 + ε̄2

cj

)

+ N
N∑

i=1

ε̄2
ci + 1

2
NḠ2

(
1 + 1

β2

)
L2

u‖eϑ‖2. (50)

Apply the inequality ATB ≤ ATA/2 + BTB/2 to the last two
terms of (46), we have

N∑

i=1

αcω̃
T
ci�iεHi

1 +ϒT
i ϒi

≤
N∑

i=1

αc

2
ω̃T

ci�i�
T
i ω̃ci

+
N∑

i=1

αc

2
εT

HiεHi (51)

N∑

i=1

ND∑

d=1

αcω̃
T
ci�id

1 + ϒT
i ϒi

εHid ≤ αc

2

N∑

i=1

ND∑

d=1

ω̃T
ci�id�

T
idω̃ci

+ αc

2

N∑

i=1

ND∑

d=1

εT
HidεHid. (52)

Then, according to (51) and (52), we can obtain

L̇3 ≤ −αc

2

N∑

i=1

λimin

⎛

⎝�i�
T
i +

ND∑

d=1

�id�
T
id

⎞

⎠‖ω̃ci‖2

+ αc(ND + 1)

2

N∑

i=1

ε̄2
Hi. (53)

Combining (45), (50), and (53), we obtain

L̇ ≤
N∑

i=1

⎛

⎝−ξ
N∑

j=1

η2
jM(x)− xTQix

⎞

⎠ + N σ̄ 2
c

N∑

i=1

ω̄2
ci

+ N
N∑

i=1

ε̄2
ci + 1

2
NḠ2

(
1 + 1

β2

)
L2

u‖eϑ‖2

+ 1

4

(
1 + β2

)
Ḡ2

N∑

j=1

‖	j‖2L2
δ Ḡ2

j σ̄
2
c

∥∥ω̃cj
∥∥2

+ 1

4

(
1 + β2

)
Ḡ2

N∑

j=1

‖	j‖2L2
δ Ḡ2

j ε̄
2
cj

− αc

2

N∑

i=1

λimin

⎛

⎝�i�
T
i +

ND∑

d=1

�id�
T
id

⎞

⎠‖ω̃ci‖2

+ αc(ND + 1)

2

N∑

i=1

ε̄2
Hi. (54)

Let

λ1 = 1

4

(
1 + β2

)
Ḡ2

N∑

j=1

‖	j‖2L2
δ Ḡ2

j ε̄
2
cj

+ N σ̄ 2
c

N∑

i=1

ω̄2
ci + αc(ND + 1)

2

N∑

i=1

ε̄2
Hi + N

N∑

i=1

ε̄2
ci.

Then, (54) becomes

L̇ ≤
N∑

i=1

⎛

⎝−
(

1 − τ 2
)
λmin(Qi)‖x‖2 − ξ

N∑

j=1

η2
jM(x)

⎞

⎠

+ 1

2
NḠ2

(
1 + 1

β2

)
L2

u‖eϑ‖2 −
N∑

i=1

τ 2λmin(Qi)‖x‖2

−
N∑

i=1

⎛

⎝1

2
αcλimin

⎛

⎝�i�
T
i +

ND∑

d=1

�id�
T
id

⎞

⎠

− 1

4

(
1 + β2

)
Ḡ2‖	i‖2L2

δ Ḡ2
i σ̄

2
c

⎞

⎠‖ω̃ci‖2 + λ1.

(55)

Hence, under conditions (41) and (42), L̇ < 0 if ω̃ci or x
lies outside the compact set (56), as shown at the bottom of
the page or

�x =
{

x : ‖x‖ ≤
√

λ1

τ 2
∑N

i=1 λmin(Qi)

}
. (57)

Case 2 (Event Is Triggered): According to (43), we can
obtain

�L(t) = �L1(t)+�L2(t)+�L3(t). (58)

From case 1, we have L̇ < 0 for all t ∈ [Sϑ , Sϑ+1). Then, we
further obtain

�L1(t) =
N∑

i=1

V
∗
i (x̄ϑ+1)−

N∑

i=1

V
∗
i

(
x
(
S−
ϑ+1

)) ≤ 0

�L2(t) =
N∑

i=1

V
∗
i (x̄ϑ+1)−

N∑

i=1

V
∗
i (x̄ϑ) ≤ −�(‖eϑ+1(Sϑ)‖)

�L3(t) = 1

2

⎛

⎝
N∑

i=1

ω̃T
ci(x̄ϑ+1)ω̃ci(x̄ϑ+1)

−
N∑

i=1

ω̃T
ci

(
x
(
S−
ϑ+1

))
ω̃ci

(
x
(
S−
ϑ+1

))
⎞

⎠ ≤ 0

where �(·) is a class-K function, and eϑ+1(Sϑ) = x̄ϑ+1 − x̄ϑ .
From the above analysis, we know that L̇ < 0 is satisfied at
the triggering instant. The proof is completed.

�ω̃ci =

⎧
⎪⎨

⎪⎩
ω̃ci : ‖ω̃ci‖ ≤

√√√√
4λ1

2αcλimin

(
�i�

T
i + ∑ND

d=1�id�
T
id

)
− (

1 + β2
)Ḡ2‖	i‖2L2

δ Ḡ2
i σ̄

2
c

⎫
⎪⎬

⎪⎭
(56)
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E. Exclusion of the Zeno Behavior

In this section, we will demonstrate that the Zeno behavior
will not occur.

Assumption 7: F(x) satisfies

‖F(x)‖ ≤ Zf ‖x‖ (59)

where Zf is a positive constant.
Theorem 4: Considering the unknown multiplayer nonlin-

ear system (1) with the nominal form (2) and the event-
triggered approximate optimal control law (36), the minimal
intersampling time �tmin has a lower bound given by

�tmin ≥ 1

Zf
ln

(
1 + ‖eϑ‖

B
)
> 0 (60)

where Zf and B are positive constants.
Proof: Taking the time derivative of the event-triggered error

eϑ(t), we can obtain

ėϑ(t) = ẋ(t)− ˙̄xϑ(t) ≡ ẋ(t), t ∈ [
Sϑ , Sϑ+1). (61)

Substituting (2) into (61), we have

‖ėϑ‖ = ‖ẋ‖

=
∥∥∥F(x)+

N∑

j=1

Gj(x)ûj(x̄ϑ)
∥∥∥

≤ Zf ‖x‖ + Zgh

≤ Zf ‖x̄ϑ + eϑ‖ + Zgh

≤ Zf ‖eϑ‖ + Zf ‖x̄ϑ‖ + Zgh (62)

where Zgh = ∑N
j=1 Ḡjūj. According to [23, Th. 4], we have

‖eϑ‖ ≤ Zf ‖x̄ϑ‖ + Zgh

Zf

(
eZf (t−Sϑ )−1

)
(63)

for all t ∈ [Sϑ , Sϑ+1). According to (63), it indicates that the
ϑ th intersampling time satisfies

Sϑ+1 − Sϑ ≥ 1

Zf
ln

(
1 + ‖eϑ‖

B
)
> 0

where B = Zf ‖x̄ϑ‖+Zgh
Zf

. It means that �tmin = min{Sϑ+1 −
Sϑ } > 0 in (60). This ends the proof.

Remark 7: It is noticed that the event-triggering condi-
tion (16) in Theorem 1 and the event-triggering condition (41)
in Theorem 3 are different. The event-triggering condition (16)
is developed for original system (1), which shows the mul-
tiplayer system (1) is guaranteed to be UUB under this
condition. However, the event-triggering condition (41) is
designed for the nominal system (2), which proves that the
multiplayer system (2) and the critic NN weight estimation
errors are both UUB if the condition (41) holds.

IV. SIMULATION

In this section, two simulation examples are employed
to verify the effectiveness of the present ADP-based RETC
scheme.

Fig. 2. Curves of identification errors.

A. Example 1

Considering the uncertain CT nonlinear system as

ẋ = F(x)+ G1(x)(u1 + p1x1sin(x2))

+ G2(x)(u2 + p2x1cos(x2)) (64)

where

F(x) =
[

x2

−0.5x1 − 0.5x2
(
1 + (cos(2x1)+ 2)2

)
]

G1(x) =
[

0
cos(2x1)+ 2

]
,G2(x) =

[
0

sin(4x2
1)+ 2

]

x = [x1, x2]T, p1 and p2 are unknown parameters and cho-
sen randomly within [−(√2/2), (

√
2/2)]. For simplicity, we

choose p1 = p2 = 1, ξ = 10, and η1M(x) = η2M(x) = ‖x‖
in this simulation. Then, the nominal system of (64) is given
as ẋ = F(x) + G1(x)u1 + G2(x)u2. Assume the control input
constraints be ū1 = 0.3 and ū2 = 0.2.

The initial weights of NN-based identifier 
̂(t), ω̂f (t),
ω̂G1(t), and ω̂G2(t) are chosen randomly within [−1, 1]. The
activation functions σf (·) and σGil(·) are chosen as tanh(·),
respectively. ψl is selected randomly within [−1, 1] and
remains unchanged. Other parameters of NN-based iden-
tifer are selected as �a = �f = �G1 = �G2 =
[0.01, 0.001; 0.001, 0.01] and θ = 1. The activation func-
tion and the learning rate of critic NNs are selected as
σc(x) = [x2

1, x1x2, x2
2]T and αc = 10, respectively. The initial

weights of the critic NN are selected randomly within [−1, 1].
Let x0 = [1,−1]T, Q1 = 25I2,Q2 = 30I2, β = 1, Lu = 1.4,
and ND = 8.

Simulation results are depicted in Figs. 2–9. Fig. 2 illus-
trates that the identification errors of the NN-based identifer
converge to equilibrium after t = 75 s. It means that the
NN-based identifier can identify the unknown dynamics of
nominal system successfully. In Fig. 3(a), we can observe
that nominal system states reach a small region of zero after
30 s. The ETC curves are displayed in Fig. 3(b). As illus-
trated in Fig. 3(b), the control inputs are piecewise signals
and satisfy ui < ūi (i = 1, 2), which means that con-
trol input signals vary within the control constraints. The
weight updating curves of critic NNs are displayed in Fig. 4,
which converge to ω̂c1 = [−0.466,−0.456, 0.478]T and
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(a)

(b)

Fig. 3. (a) Trajectories of nominal system states x1 and x2. (b) Trajectories
of control inputs.

Fig. 4. Trajectories of critic network weights.

Fig. 5. Evolution of triggering condition.

ω̂c2 = [−0.689,−1.034,−0.265]T, respectively. The evolu-
tion of the triggering condition is displayed in Fig. 5, where we
can see that the event-triggered error eϑ(t) and the threshold eT

converge to a small region of equilibrium when time increases.
Fig. 6 shows the sampling period of the ETC law. We can find
that the sampling periods are multiples of 0.05 s. Comparison
results on the numbers of samples between the ADP-based
RETC method and the time-triggered one are shown in Fig. 7.
It is clear that the event-triggered controller only updates 455
times, but the time-triggered controller requires 800 times.
Hence, the ADP-based RETC method reduces the compu-
tational and communication burden. Fig. 8 shows that the
ADP-based RETC method can ensure the system (64) to be

Fig. 6. Sampling period.

Fig. 7. Samples.

Fig. 8. State trajectory of multiplayer system.

stable. Fig. 9 displays the value functions of two players. We
can find that the value functions converge to different val-
ues, which means that two players achieve their individual
objectives.

Remark 8: The activation functions of all players are
selected as σc(x) = [x2

1, x1x2, x2
2]T. In fact, selecting activa-

tion function is a challenging issue since it affects the control
performance directly. In this article, we select σc(x) by “trial
and error” with repeated simulations.

Remark 9: The design parameter Lu affects event-triggered
controller design. On the one hand, a large Lu will lead to
a small triggering threshold eT ; thus, more frequent control
updating and computation to maintain the control performance
and system stability. On the other hand, if the selected Lu
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Fig. 9. Evolution of value functions.

is too small, the controllers will update less frequently but
may lead to system instability. Therefore, we need to select
an appropriate Lu by “trial and error” with repeated simula-
tions to guarantee the system to be stable and to reduce the
computational and communication burden.

B. Example 2

Consider the torsional pendulum system [37] expressed by

dχ

dt
= W + χu1

J dW

dt
= u2 − Mglpsin(χ)− fd

dχ

dt
+ W u3

where χ is the angle, W is the angular velocity, M = 1/3 kg
is the mass, lp = 2/3 m is the length of the pendulum bar,
J = (4/3)Ml2p kg · m2 is the rotary inertia, fd = 0.2 is the
frictional factor, and g = 9.8 m/s2 is the gravity acceleration.
By replacing χ and W with x1 and x2, the torsional pendulum
system with uncertainties is expressed by

ẋ = F(x)+ G1(x)
(

u1 + p1x1sin5(x2)cos2(x1)
)

+ G2(x)
(

u2 + p2x2cos5(x1)sin2(x2)
)

+ G3(x)
(

u3 + p3x1cos5(x2)sin2(x2)
)

(65)

where

F(x) =
[

x2

−Mglp
J sin(x1)− fd

J x2

]
,G1 =

[
x1

− fd
J x1

]

G2 =
[

0
1
J

]
,G3 =

[
0
x2J

]

p1, p2, and p3 are selected randomly within [−2, 2]. According
to (65), the nominal system is presented as ẋ = F(x) +
G1(x)u1 + G2(x)u2 + G3(x)u3. In this simulation, let ξ = 10,
Q1 = I2, Q2 = 2I2, Q3 = 1.5I2, β = 1, Lu = 1, ND = 8,
p1 = p2 = p3 = 1, η1M(x) = η2M(x) = η3M(x) = ‖x‖,
and ū1 = 0.8, ū2 = 0.6, ū3 = 0.5. The initial weights of
the NN-based identifier are selected randomly within [−1, 1],
the activation functions σf (·) and σGil(·) are the same as
those of Example 1, �a = �f = �G1 = �G2 = �G3 =
[0.01, 0.001; 0.001, 0.01] and θ = 0.5.

Simulation results are depicted in Figs. 10–17. The iden-
tification errors are displayed in Fig. 10, where we find that

Fig. 10. Curves of identification errors.

(a)

(b)

Fig. 11. (a) Trajectories of nominal system states x1 and x2. (b) Trajectories
of control inputs.

Fig. 12. Trajectories of critic network weights.

identification errors reach zero after 80 s. Then, the ADP-based
RETC approach is applied to the system (65). Fig. 11(a) shows
the nominal system states converge to a small region of zero
with the developed control inputs displayed in Fig. 11(b). We
can observe that control inputs are piecewise signals and sat-
isfy ui < ūi (i = 1, 2, 3), which means that the control laws
are limited within the constraints. Fig. 12 reveals that the critic
NN weights converge to ω̂c1 = [2.745, 0.847, 3.774]T, ω̂c2 =
[2.872, 1.342, 3.453]T, and ω̂c3 = [2.031,−1.060, 5.645]T,
respectively. Fig. 13 shows that the event-triggered error eϑ(t)
and the threshold eT converge to a small region of equilib-
rium after t = 30 s. The sampling period is illustrated in Fig.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Guangdong Univ of Tech. Downloaded on January 26,2023 at 02:19:13 UTC from IEEE Xplore.  Restrictions apply. 第121页



12 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 13. Evolution of triggering condition.

Fig. 14. Sampling period.

Fig. 15. Samples.

Fig. 16. State trajectory of multiplayer system.

14, where the minimum sampling period is 0.05 s. The sam-
ples number illustrated in Fig. 15 indicates that the ADP-based
RETC method greatly reduces the updating times in contrast to

Fig. 17. Evolution of value functions.

the time-triggered method. Therefore, the computational and
communication burden are all reduced. Fig. 16 demonstrates
that the developed controller can guarantee the system (65) to
be stable. The convergence of three player’s value functions
is shown in Fig. 17, where all of them converge to different
values. From the simulation results, we can conclude that the
developed ADP-based RETC method not only achieves the
individual objective of each player but also guarantee the sta-
bility of the torsional pendulum system with input constraints
and dynamical uncertainties.

V. CONCLUSION

In this article, the MNSG problem for unknown nonlin-
ear CT systems with uncertainties and constrained inputs is
addressed by using the ADP-based RETC method. An NN-
based identifier is established to rebuild the system dynamics
by utilizing the measured system data. Then, the approximated
event-triggered optimal control for each player is obtained by
the solution of HJ equation with the critic NN. By introduc-
ing the ER technique, the PE condition is relaxed. In order
to reduce computational and communication burden, a new
triggering condition for the MNSG problem is presented with-
out control information. Moreover, the UUB stability of the
critic NN weight estimate error dynamics and the multiplayer
system are demonstrated by the Lyapunov stability theorem.
Finally, the effectiveness of the ADP-based RETC approach
is validated by two simulation examples. The main innova-
tion of this article is on developing a robust stabilization
scheme with a new nonquadratic value function for unknown
multiplayer systems with uncertainties and constrained inputs.
Furthermore, the developed event-triggered robust controllers
are updated aperiodically such that the computational and
communication burden is alleviated. In our future work, in
order to improve the realizability of this developed approach,
we will try to relax Assumptions 1 and 2 since they are strict in
practice. Moreover, tracking control problems of multiplayer
systems will be considered by using the ADPETC approach,
since the system states have to follow the reference trajectories
in an optimal manner in practice, such as hypersonic aircrafts,
spacecrafts, and robots.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Guangdong Univ of Tech. Downloaded on January 26,2023 at 02:19:13 UTC from IEEE Xplore.  Restrictions apply. 第122页



ZHANG et al.: ADP-BASED EVENT-TRIGGERED ROBUST CONTROL FOR MNSGs 13

REFERENCES

[1] Y. Jiang and Z.-P. Jiang, “Robust adaptive dynamic programming and
feedback stabilization of nonlinear systems,” IEEE Trans. Neural Netw.
Learn Syst., vol. 25, no. 5, pp. 882–893, May 2014.

[2] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, D. A. White and D. A. Sofge, Eds. New York,
NY, USA: Van Nostrand Reinhold, 1992, ch. 13.

[3] P. J. Werbos, “A menu of designs for reinforcement learning over
time,” in Neural Networks for Control, W. T. Miller, R. S. Sutton, and
P. J. Werbos, Eds. Cambridge, MA, USA: MIT Press, 1991, pp. 67–95.

[4] H. Jiang and H. Zhang, “Iterative ADP learning algorithms for discrete-
time multi-player games,” Artif. Intell. Rev., vol. 50, no. 1, pp. 75–91,
Jun. 2018.

[5] D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic
Programming With Applications in Optimal Control. Cham, Switzerland:
Springer, 2017.

[6] B. Zhao, D. Wang, G. Shi, D. Liu, and Y. Li, “Decentralized
control for large-scale nonlinear systems with unknown mismatched
interconnections via policy iteration,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 48, no. 10, pp. 1725–1735, Oct. 2018.

[7] D. Liu, Y. Xu, Q. Wei, and X. Liu, “Residential energy scheduling for
variable weather solar energy based on adaptive dynamic programming,”
IEEE/CAA J. Automatica Sinica, vol. 5, no. 1, pp. 36–46, Jan. 2018.

[8] D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, “Adaptive dynamic pro-
gramming for control: A survey and recent advances,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 51, no. 1, pp. 142–160, Jan. 2021.

[9] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control
of unknown nonaffine nonlinear discrete-time systems based on adap-
tive dynamic programming,” Automatica, vol. 48, no. 8, pp. 1825–1832,
Aug. 2012.

[10] Q. Wei, D. Liu, Y. Liu, and R. Song, “Optimal constrained self-learning
battery sequential management in microgrid via adaptive dynamic pro-
gramming,” IEEE/CAA J. Automatica Sinica, vol. 4, no. 2, pp. 168–176,
Apr. 2017.

[11] Q. Wei, F. L. Lewis, D. Liu, R. Song, and H. Lin, “Discrete-time local
value iteration adaptive dynamic programming: Convergence analysis,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 6, pp. 875–891,
Jun. 2018.

[12] Y. Zhu and D. Zhao, “Comprehensive comparison of online ADP algo-
rithms for continuous-time optimal control,” Artif. Intell. Rev., vol. 49,
no. 4, pp. 531–547, Apr. 2018.

[13] H. Lin, B. Zhao, D. Liu, and C. Alippi, “Data-based fault tolerant control
for affine nonlinear systems through particle swarm optimized neural
networks,” IEEE/CAA J. Automatica Sinica, vol. 7, no. 4, pp. 954–964,
Jul. 2020.

[14] B. Luo, D. Liu, T. Huang, and D. Wang, “Model-free optimal tracking
control via critic-only Q-learning,” IEEE Trans. Neural Netw. Learn
Syst., vol. 27, no. 10, pp. 2134–2144, Oct. 2016.

[15] J. Hou, D. Wang, D. Liu, and Y. Zhang, “Model-free H∞ optimal track-
ing control of constrained nonlinear systems via an iterative adaptive
learning algorithm,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50,
no. 11, pp. 4097–4108, Nov. 2020.

[16] D. Wang, C. Mu, X. Yang, and D. Liu, “Event-based constrained robust
control of affine systems incorporating an adaptive critic mechanism,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1602–1612,
Jul. 2017.

[17] B. Zhao, D. Liu, and Y. Li, “Observer based adaptive dynamic program-
ming for fault tolerant control of a class of nonlinear systems,” Inf. Sci.,
vol. 384, pp. 21–33, Dec. 2016.

[18] X. Yang and H. He, “Self-learning robust optimal control for continuous-
time nonlinear systems with mismatched disturbances,” Neural Netw.
vol. 99, pp. 19–30, Mar. 2018.

[19] D. Liu, X. Yang, D. Wang, and Q. Wei, “Reinforcement-learning-
based robust controller design for continuous-time uncertain nonlinear
systems subject to input constraints,” IEEE Trans. Cybern., vol. 45,
no. 7, pp. 1372–1385, Jul. 2015.

[20] D. Wang, D. Liu, C. Mu, and Y. Zhang, “Neural network learning and
robust stabilization of nonlinear systems with dynamic uncertainties,”
IEEE Trans. Neural Netw. Learn Syst., vol. 29, no. 4, pp. 1342–1351,
Apr. 2018.

[21] X. Zhong and H. He, “An event-triggered ADP control approach for
continuous-time system with unknown internal states,” IEEE Trans.
Cybern., vol. 47, no. 3, pp. 683–694, Mar. 2017.

[22] K. G. Vamvoudakis, “Event-triggered optimal adaptive control algorithm
for continuous-time nonlinear systems,” IEEE/CAA J. Automatica Sinica,
vol. 1, no. 3, pp. 282–293, Jul. 2014.

[23] B. Zhao and D. Liu, “Event-triggered decentralized tracking control of
modular reconfigurable robots through adaptive dynamic programming,”
IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 3054–3064, Apr. 2020.

[24] X. Yang and H. He, “Adaptive critic learning and experience replay
for decentralized event-triggered control of nonlinear interconnected
systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 11,
pp. 4043–4055, Nov. 2020.

[25] A. Sahoo, H. Xu, and S. Jagannathan, “Near optimal event-triggered
control of nonlinear discrete-time systems using neurodynamic pro-
gramming,” IEEE Trans. Neural Netw. Learn Syst., vol. 27, no. 9,
pp. 1801–1815, Sep. 2016.

[26] J. Yi, S. Chen, X. Zhong, W. Zhou, and H. He, “Event-triggered global-
ized dual heuristic programming and its application to networked control
systems,” IEEE Trans. Ind. Informat., vol. 15, no. 3, pp. 1383–1392,
Mar. 2019.

[27] D. Wang, H. He, X. Zhong, and D. Liu, “Event-driven nonlin-
ear discounted optimal regulation involving a power system appli-
cation,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8177–8186,
Oct. 2017.

[28] Q. Zhang and D. Zhao, “Data-based reinforcement learning for nonzero-
sum games with unknown drift dynamics,” IEEE Trans. Cybern., vol. 49,
no. 8, pp. 2874–2885, Aug. 2019.

[29] R. Song, Q. Wei, and B. Song, “Neural-network-based syn-
chronous iteration learning method for multi-player zero-sum games,”
Neurocomputing vol. 242, no. 73–82, Jun. 2017.

[30] H. Zhang, H. Jiang, C. Luo, and G. Xiao, “Discrete-time nonzero-sum
games for multiplayer using policy-iteration-based adaptive dynamic
programming algorithms,” IEEE Trans. Cybern., vol. 47, no. 10,
pp. 3331–3340, Oct. 2017.

[31] H. Zhang, H. Sun, K. Zhang, and Y. Luo, “Event-triggered adap-
tive dynamic programming algorithm for non-zero-sum games of
unknown nonlinear systems via generalized fuzzy hyperbolic mod-
els,” IEEE Trans. Fuzzy Syst., vol. 27, no. 11, pp. 2202–2214,
Nov. 2019.

[32] B. Zhao, D. Liu, and C. Luo, “Reinforcement learning-based optimal
stabilization for unknown nonlinear systems subject to inputs with uncer-
tain constraints,” IEEE Trans. Neural Netw. Learn Syst., vol. 31, no. 10,
pp. 4330–4340, Oct. 2020.

[33] X. Yang and H. He, “Adaptive critic designs for event-triggered robust
control of nonlinear systems with unknown dynamics,” IEEE Trans.
Cybern., vol. 49, no. 6, pp. 2255–2267, Jun. 2019.

[34] X. Yang, D. Liu, and D. Wang, “Reinforcement learning for adap-
tive optimal control of unknown continuous-time nonlinear systems
with input constraints,” Int. J. Control, vol. 87, no. 3, pp. 553–566,
Oct. 2013.

[35] Q. Qu, H. Zhang, C. Luo, and R. Yu, “Robust control design for multi-
player nonlinear systems with input disturbances via adaptive dynamic
programming,” Neurocomputing, vol. 334, pp. 1–10, Mar. 2019.

[36] D. Zhao, Q. Zhang, D. Wang, and Y. Zhu, “Experience replay for optimal
control of nonzero-sum game systems with unknown dynamics,” IEEE
Trans. Cybern., vol. 46, no. 3, pp. 854–865, Mar. 2016.

[37] Q. Wei, H. Li, X. Yang, and H. He, “Continuous-time distributed policy
iteration for multicontroller nonlinear systems,” IEEE Trans. Cybern.,
vol. 51, no. 5, pp. 2372–2383, May 2021.

[38] X. Yang and H. He, “Event-driven H∞-constrained control using
adaptive critic learning,” IEEE Trans. Cybern., vol. 51, no. 10,
pp. 4860–4872, Oct. 2021.

[39] H. Modares, F. L. Lewis, and M. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration and
neural networks,” IEEE Trans. Neural Netw. Learn Syst., vol. 24, no. 10,
pp. 1513–1525, Oct. 2013.

[40] K. G. Vamvoudakis and F. L. Lewis “Multi-player non-zero-sum games:
Online adaptive learning solution of coupled Hamilton-Jacobi equations”
Automatica, vol. 47, no. 8, pp. 1556–1569, Aug. 2011.

[41] K. G. Vamvoudakis, H. Modares, B. Kiumarsi, and F. L. Lewis, “Game
theory-based control system algorithms with real-time reinforcement
learning: How to solve multiplayer games online,” IEEE Control Syst.
Mag., vol. 37, no. 1, pp. 33–52, Feb. 2017.

[42] Y. Yang, H. Zhu, Q. Zhang, B. Zhao, Z. Li, and D. Wunsch, “Sparse
online kernelized actor–critic learning in reproducing kernel Hilbert
space,” Artif. Intell. Rev., vol. 55, no. 1, pp. 23–58, 2022, [Online].
Available: https://doi.org/10.1007/s10462-021-10045-9

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Guangdong Univ of Tech. Downloaded on January 26,2023 at 02:19:13 UTC from IEEE Xplore.  Restrictions apply. 第123页



14 IEEE TRANSACTIONS ON CYBERNETICS

[43] Y. Zhang, B. Zhao, D. Liu, and S. Zhang, “Event-triggered control of
discrete-time zero-sum games via deterministic policy gradient adaptive
dynamic programming,” IEEE Trans. Syst., Man, Cybern., Syst., early
access, Aug. 31, 2021, doi: 10.1109/TSMC.2021.3105663.

[44] M. Lin, B. Zhao, and D. Liu, “Policy gradient adaptive critic
designs for model-free optimal tracking control with experience replay,”
IEEE Trans. Syst., Man, Cybern., Syst., early access, Apr. 19, 2021,
doi: 10.1109/TSMC.2021.3071968.

Yongwei Zhang (Member, IEEE) received the B.S.
degree in automation from the School of Electronic
and Information Engineering, Jiaying University,
Meizhou, China, in 2016, and the Ph.D. degree in
control science and engineering from the School of
Automation, Guangdong University of Technology,
Guangzhou, China, in 2021.

He is currently a Postdoctoral Fellow with the
Guangdong University of Technology. His current
research interests include adaptive dynamic pro-
gramming and optimal control.

Bo Zhao (Senior Member, IEEE) received the
B.S. degree in automation and the Ph.D. degree
in control science and engineering from Jilin
University, Changchun, China, in 2009 and 2014,
respectively.

He was a Postdoctoral Fellow with the State
Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese
Academy of Sciences, Beijing, China, from 2014
to 2017. Then, he joined the State Key Laboratory
of Management and Control for Complex Systems,

Institute of Automation, Chinese Academy of Sciences, Beijing, from 2017
to 2018. He is currently an Associate Professor with the School of Systems
Science, Beijing Normal University, Beijing. He was selected as the Beijing
Normal University Tang Scholar in 2021. He has authored or coauthored over
110 journal and conference papers, and authorized three patents. His research
interests include adaptive dynamic programming, robot control, fault diagnosis
and tolerant control, optimal control, and artificial intelligence-based control.

Dr. Zhao serves as an Associate Editor of IEEE TRANSACTIONS

ON SYSTEMS, MAN AND CYBERNETICS: SYSTEMS and Neurocomputing,
an Early Career Advisory Board Member of IEEE/CAA JOURNAL OF

AUTOMATICA SINICA, and a Guest Editor of Complex & Intelligent Systems,
and also served many academic conferences. He is the Secretary General
of Adaptive Dynamic Programming and Reinforcement Learning Technical
Committee of Chinese Automation Association, and the member of the Asian–
Pacific Neural Network Society and the Chinese Association for Artificial
Intelligence.

Derong Liu (Fellow, IEEE) received the B.S.
degree in mechanical engineering from the East
China Institute of Technology (currently Nanjing
University of Science and Technology), Nanjing,
China, in 1982, the M.S. degree in automatic con-
trol theory and applications from the Institute of
Automation, Chinese Academy of Sciences, Beijing,
China, in 1987, and the Ph.D. degree in electri-
cal engineering from the University of Notre Dame,
Notre Dame, IN, USA, in 1994.

He was a Product Design Engineer with the China
North Industries Corporation, Jilin, China, from 1982 to 1984. He was
an Instructor with the Graduate School of Chinese Academy of Sciences,
Beijing, from 1987 to 1990. He was a Staff Fellow with the General Motors
Research and Development Center, Warren, MI, USA, from 1993 to 1995. He
was an Assistant Professor with the Department of Electrical and Computer
Engineering, Stevens Institute of Technology, Hoboken, NJ, USA, from 1995
to 1999. He joined the University of Illinois at Chicago, Chicago, IL, USA, in
1999, and became a Full Professor of Electrical and Computer Engineering
and of Computer Science in 2006. He was selected for the “100 Talents
Program” by the Chinese Academy of Sciences, Beijing, in 2008, and served
as the Associate Director of the State Key Laboratory of Management and
Control for Complex Systems, Institute of Automation from 2010 to 2016.
He is currently a Full Professor with the School of Automation, Guangdong
University of Technology, Guangzhou, China. He has published 13 books and
260 papers in international journals.

Dr. Liu received the Faculty Early Career Development Award from
the National Science Foundation in 1999, the University Scholar Award
from University of Illinois from 2006 to 2009, the Overseas Outstanding
Young Scholar Award from the National Natural Science Foundation of
China in 2008, and the Outstanding Achievement Award from Asia–Pacific
Neural Network Assembly in 2014. He received the International Neural
Network Societys Gabor Award in 2018, the IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS Outstanding Paper Award
in 2018, the IEEE Systems, Man and Cybernetics Society Andrew P. Sage
Best Transactions Paper Award in 2018, and the IEEE/CCA JOURNAL

AUTOMATICA SINICA Hsue-Shen Tsien Paper Award in 2019. He is the recip-
ient of the IEEE CIS Neural Network Pioneer Award in 2022. He has been
named a highly cited researcher consecutively for five years from 2017 to
2021 by Clarivate. He was a plenary/keynote speaker at 32 international con-
ferences. He was elected three times as the AdCom Member of the IEEE
Computational Intelligence Society in 2006, 2015, and 2022, respectively. He
was the Editor-in-Chief of IEEE TRANSACTIONS ON NEURAL NETWORKS

AND LEARNING SYSTEMS from 2010 to 2015. He was elected twice as the
Distinguished Lecturer of IEEE Computational Intelligence Society in 2012
and 2016, respectively. He served as a member of the Council of International
Federation of Automatic Control from 2014 to 2017 and the President of the
Asia–Pacific Neural Network Society in 2018. He was the General Chair of the
2014 IEEE World Congress on Computational Intelligence, the 2016 World
Congress on Intelligent Control and Automation, and the 2017 International
Conference on Neural Information Processing. He is currently the Editor-
in-Chief of Artificial Intelligence Review, the Deputy Editor-in-Chief of the
IEEE/CAA JOURNAL OF AUTOMATICA SINICA and CAAI Transactions on
Artificial Intelligence, and the Chair of IEEE Guangzhou Section. He is a
Fellow of the International Neural Network Society and the International
Association for Pattern Recognition, and a member of Academia Europaea
(The Academy of Europe).

Shunchao Zhang received the B.S. degree in mea-
surement and control technology and instruments
from the School of Electrical and Information
Engineering, Hunan Institute of Engineering,
Xiangtan, China, in 2016, and the M.S. degree in
control engineering from the Guangdong University
of Technology, Guangzhou, China, in 2019, where
he is currently pursuing the Ph.D. degree in
control science and engineering with the School of
Automation.

His current research interests include optimal
control and adaptive dynamic programming.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Guangdong Univ of Tech. Downloaded on January 26,2023 at 02:19:13 UTC from IEEE Xplore.  Restrictions apply. 第124页

http://dx.doi.org/10.1109/TSMC.2021.3105663
http://dx.doi.org/10.1109/TSMC.2021.3071968


IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 8, AUGUST 2022 4823

Event-Triggered Control of Discrete-Time
Zero-Sum Games via Deterministic Policy
Gradient Adaptive Dynamic Programming

Yongwei Zhang , Bo Zhao , Senior Member, IEEE, Derong Liu , Fellow, IEEE, and Shunchao Zhang

Abstract—In order to address zero-sum game problems for
discrete-time (DT) nonlinear systems, this article develops a novel
event-triggered control (ETC) approach based on the determin-
istic policy gradient (PG) adaptive dynamic programming (ADP)
algorithm. By adopting the input and output data, the proposed
ETC method updates the control law and the disturbance law
with a gradient descent algorithm. Compared with the conven-
tional PG ADP-based control scheme, the present controller is
updated aperiodically to reduce the computational and commu-
nication burden. Then, the actor-critic-disturbance framework is
adopted to obtain the optimal control law and the worst dis-
turbance law, which guarantee the input-to-state stability of the
closed-loop system. Moreover, a novel neural network weight
updating law which guarantees the uniform ultimate bound-
edness of weight estimation errors is provided based on the
experience replay technique. Finally, the validity of the present
method is verified by simulation of two DT nonlinear systems.

Index Terms—Adaptive dynamic programming (ADP), event-
triggered control (ETC), neural networks (NNs), policy gradient
(PG), zero-sum games (ZSGs).

I. INTRODUCTION

OPTIMAL feedback control, which gains extensive
research in control theory and engineering, aims to

design a feedback controller that minimizes the user-defined
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performance index function [1], [2]. In practice, the occurrence
of external disturbance is ineluctable, which undermines the
control performance. The H∞ control which is taken as a two-
player zero-sum game (ZSG) is widely studied to maintain
a satisfactory control performance in the existence of exter-
nal disturbance [3], [4]. For nonlinear systems, one needs to
obtain the solution of the Hamilton–Jacobi–Isaacs (HJI) equa-
tion which is tough to solve due to its inherent nonlinearity
when dealing with ZSG problems [5].

Adaptive dynamic programming (ADP), which was put
forward by Werbos [6], is competitive to solve the non-
linear HJI equation and has been applied to solve optimal
control problems for discrete-time (DT) systems [7]–[12]
and continuous-time (CT) systems [13]–[19] with trajectory
tracking [20]–[22], fault tolerance [23], and robust stabiliza-
tion [24]. For ZSG problems, several ADP-based optimal
control methods have been proposed [25]–[27]. In [25], the
ZSG problem for DT systems was considered by develop-
ing a novel iterative ADP algorithm. The theoretical analysis
illustrated that the upper and lower iterative cost functions con-
verge to the optimal solution of the ZSG, and the existence
condition of the saddle-point equilibrium was not demanded.
In [26], a globalized dual heuristic programming (GDHP) was
presented to solve the HJI equation for unknown DT non-
linear systems. Three neural networks (NNs) were built to
obtain the approximate solution of the HJI equation. In [27],
the ZSG problem was addressed through the modified pol-
icy iteration (PI) algorithm and the actor-critic-disturbance
framework.

It is worth noting that the aforementioned controllers are
periodically updated with a mass of transmitted data, which
leads to heavy computational and communication burden. In
order to break this bottleneck, the event-triggered control
(ETC), which executes the control aperiodically, is investi-
gated in the control community [28]–[34]. The ETC approach
updates the control policy only when the error between the
actual system state and the sampled system state violates the
triggering condition. In [35], the neuro-dynamic programming-
based ETC approach was developed to cope with fixed final
time optimal control problems for DT nonlinear systems. The
event-triggering condition was determined by the actor NN
weights and the system states. Then, the control policy and
all the NN weights were tuned aperiodically to reduce the
computational burden. In [36], the optimal control problem for
CT nonlinear systems with saturating actuators was tackled by

2168-2216 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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the ADP-based ETC method. Based on the Lyapunov stabil-
ity theorem, the triggering condition was derived considering
the control constraints. The NN weights and the control law
were tuned at the triggering moments to reduce the transmis-
sion cost. In [37], an ADP-based ETC scheme was presented
to deal with the CT ZSG problem. In order to save compu-
tational resources, the controllers were renewed at triggering
moments only. From the above discussions, the event-based
control updates the control input at triggering instants only,
which reduces the frequency of controller updating such that
the computational and communication resources are econo-
mized. In practice, the external disturbance is unavoidable and
the computational resource should be utilized with a higher
efficiency. However, to our best knowledge, most of existing
methods for DT ZSG problems are time triggered, where the
controller executes periodically and consumes massive com-
putational resources. Moreover, the training of the model NN
which rebuilds the unknown system dynamics increases the
computational burden. Hence, it is significant to develop a
data-based ETC method to address the ZSG problem for DT
systems with unknown dynamics, which motivates this work.

As it is well known, policy gradient (PG), which is a pow-
erful approach to cope with model-free control problems, has
been developed in the reinforcement learning (RL) and ADP
community. In [38], Google DeepMind investigated the deter-
ministic PG (DPG) algorithm which acts in continuous spaces.
Compared with the stochastic PG algorithm (SPG), the DPG
algorithm updates the control law in the direction of the value
function gradient. In [39], the policy gradient ADP (PGADP)
algorithm was proposed to cope with the model-free control
problem for DT nonlinear systems. It is an off-policy learning
method and the controller was renovated by the gradient of
the Q-function with respect to the action. Inspired by existing
works [38], [39], the DPG-based ETC (DPGETC) approach is
developed to handle ZSG problems for DT nonlinear systems.
The contributions of our work are outlined as follows.

1) A novel data-based DPGETC scheme is developed to
extend the PG-based control approach to handle the ZSG
problem. Different from existing methods [37], [41], the
model NN is not needed to establish and the designed
controller is updated aperiodically and trained by system
data.

2) A triggering condition is deduced to ensure the input-
to-state stability (ISS) of the closed-loop system, the
control law and the disturbance law are tuned aperiodi-
cally at triggering instants only to save the computational
and communication resources.

3) The actor-critic-disturbance structure is established to
approximate the control law, the Q-function, and the dis-
turbance law, respectively. Furthermore, by employing
the experience replay (ER) technique, new NN weight
updating laws are designed to guarantee the uniform
ultimate boundedness (UUB) of the weight estimation
errors.

The remainder of this article is organized as follows.
In Section II, the problem statement for two-player ZSGs
is given. In Section III, the actor-critic-disturbance struc-
ture is established to design the event-triggered controller. In

Section IV, the ISS of the closed-loop system is analyzed. In
Section V, the convergence analysis of the NN weight esti-
mation errors is provided. In Section VI, two examples are
given to verify the effectiveness of the developed method. In
Section VII, concluding remark is given.

Notations: The real and non-negative real numbers are
denoted as R and R≥0, respectively. � is a compact set of
R

n. N = {0, 1, 2, . . . , } denotes the set of all non-negative
integers. T 1 ◦ T 2 represents the composition function of T 1
and T 2, i.e., T 1 ◦T 2(·) = T 1(T 2(·)). Id represents the iden-
tity function, i.e., Id(s) = s for all s ∈ R≥0. M p represents
pth data in the historical data set, where M is a real number
or a real matrix.

II. PROBLEM STATEMENT

Consider the nonaffine nonlinear systems given by

zt+1 = F (zt, ut, dt), t = 0, 1, 2, . . . (1)

where zt ∈ R
n is the system state, ut ∈ R

m is the control input,
dt ∈ R

s is the external disturbance, and F (·) is the unknown
nonlinear system function. In ZSG, ut and dt can be viewed
as two players.

Assumption 1: System (1) is controllable and observable.
F (zt, ut, dt) is a Lipschitz continuous on a set � in R

n con-
taining the origin, i.e., ‖F (zt)‖ ≤ bf ‖zt‖, where bf is a
Lipschitz constant.

Remark 1: If Assumption 1 holds, there exist feedback con-
trol laws ut = �(zt) and dt = υ(zt) with � : R

n → R
m

and υ : R
n → R

s to stabilize the system asymptotically
[29], [40].

Define a monotonically increasing subsequence of time
instants {ti}∞i=0 as sampling instants. Under the event-triggering
architecture, the feedback control law and the disturbance law
are formulated as

ut = �
(
zti

)

dt = υ
(
zti

)
.

The event-triggering error is given by

Et = zti − zt (2)

for ti ≤ t < ti+1 with i = 0, 1, 2, . . . , where zt is the current
state and zti is the sampled state. Then, system (1) can be
rewritten as

zt+1 = F (zt,�(Et + zt), υ(Et + zt)). (3)

The performance index function for system (1) is defined as

J (zt) =
∞∑

l=t

C(zl,�(El + zl), υ(El + zl)) (4)

where C(·, ·, ·) is the utility function and defined as

C(zt,�
(
zti

)
, υ

(
zti

))

= zT
t Qzt +�T(zti

)R� (
zti

) − βυT(zti

)
υ
(
zti

)
(5)

where Q ∈ R
n×n and R ∈ R

m×m are positive definite matri-
ces, and β is a constant describing the precribed level of
disturbance attenuation.
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Fig. 1. Diagram of the actor-critic-disturbance framework.

According to Bellman’s principle of optimality, the optimal
performance index function satisfies

J ∗(zt) = min
�(zti)

max
υ(zti)

{C(zt,�
(
zti

)
, υ

(
zti

)) + J ∗(zt+1)
}
.

Let U and D be policy spaces of two players, respectively.
For DT ZSG problems, our goal is to find an optimal con-
trol policy � ∗(zti) and a worst disturbance policy υ∗(zti)

such that C(zt,�
∗(zti), υ(zti)) ≤ C(zt,�

∗(zti), υ
∗(zti)) ≤

C(zt,�(zti), υ
∗(zti)) [25], [26].

In order to develop the DPGETC control scheme, the action-
state function, i.e., the so-called Q-function, is defined as [39]

Q (zt, a, h) = C(zt, a, h)+
∞∑

l=t+1

C(zl,�(El + zl), υ(El + zl))

(6)

where Q(0, 0, 0) = 0, a ∈ U , and h ∈ D. Based on (4), (6)
can be rewritten as

Q(zt, a, h) = C(zt, a, h)

+ Q(zt+1,�(Et+1 + zt+1), υ(Et+1 + zt+1))

= C(zt, a, h)+ J (zt+1). (7)

The optimal Q-function satisfies

Q
∗(zt, a, h) = min

a
max

h

{C(zt, a, h)+ J ∗(zt+1)
}
. (8)

The saddle point solution (� ∗(zti), υ
∗(zti)) should satisfy the

following two conditions:

∂Q∗(zt,�
(
zti

)
, υ

(
zti

))

∂�
(
zti

) = 0

∂Q∗(zt,�
(
zti

)
, υ

(
zti

))

∂υ
(
zti

) = 0.

Then, the optimal control law and the worst disturbance law
are expressed as

� ∗(zti

) = arg min
a

Q
∗(zt, a, h) (9)

υ∗(zti

) = arg max
h

Q
∗(zt, a, h). (10)

It indicates that the optimal control law � ∗(zti) and the
worst disturbance law υ∗(zti) depend on the optimal Q-
function Q

∗(zt, a, h), but hard to obtain [26]. In the next
section, the DPGETC approach is introduced to conquer this
bottleneck.

III. EVENT-TRIGGERED CONTROLLER DESIGN

In this section, an event-triggered controller is developed
based on PGADP. In order to approximate the control law, the
Q-function and the disturbance law, the actor-critic-disturbance
framework is constructed. It is noticed that the weights of the
action and the disturbance networks are adjusted through the
gradients of the Q-function with respect to action and distur-
bance, respectively. Moreover, an event generator is adopted to
measure the event-triggering error. Once the event is occurred,
the current state zt is sampled as a new sampled state zti . The
diagram of the actor-critic-disturbance framework is shown in
Fig. 1.

A. Critic Network

The three-layer critic network is established to approxi-
mate the Q-function Q̂(z, a, h). Taking the sampled state zti ,
the action a and the disturbance h as the input of the critic
network. Then, we can obtain

Q̂i
(
zti , a, h

) = ŵiT
c σ

(
YT

c Zt

)
= ŵiT

c σ(�c)

where Zt = [zT
ti , aT, hT]T ∈ R

(n+m+s), �c = YT
c Zt, Yc ∈

R
(n+m+s)×lc , ŵi

c ∈ R
lc represents the weight vector from the
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hidden-to-output layer, lc denotes the number of nodes in the
hidden layer, and σ(·) = tanh(·) is the activation function. The
error function of the critic network is defined as

eic = Q̂i
(
zti , a, h

) − C(zti , a, h
)

− γ Q̂i
(
zti+1,�i

(
zti+1

)
, υi

(
zti+1

))

where 0 < γ < 1 is a discount factor. The objective function
is given by

Ei
c = 1

2
e2

ic. (11)

By employing the ER technique, the critic NN weight vector
is renovated by

ŵi+1
c = ŵi

c −
nr∑

p=1

ac

[
∂Ei

c,p

∂ŵi
c

]
(12)

where ac > 0 represents the learning rate, and nr denotes the
size of historical data.

B. Action Network

The action network is adopted to approximate the control
policy �(zti). Consider the input zti , the output of the action
network is given by

�̂i
(
zti

) = ŵiT
a σ

(
YT

a zti

)
= ŵiT

a σ(�a).

The involved parameters are defined similarly to the critic
network. Motivated by [38] and [45], the partial gradient of
the Q-function with respect to ŵi

a can be calculated as

∇ŵi
a
Q̂i = ∇ŵi

a
�̂i

(
zti

)∇aQ̂i
(
zti , a, h

)|a=�̂i(zti)
. (13)

Therefore, the action network weight vector is tuned by

ŵi+1
a = ŵi

a −
nr∑

p=1

aa∇ŵi
a
Q̂i,p (14)

where aa > 0 is the learning rate.

C. Disturbance Network

Taking the state zti as the input of disturbance network, the
output of the disturbance network is provided as

υ̂i
(
zti

) = ŵiT
d σ

(
YT

d zti

)
= ŵiT

d σ(�d)

where the parameters are defined analogous to the critic
network. Then, the partial gradient of the Q-function with
respect to ŵi

d can be calculated as

∇ŵi
d
Q̂i = ∇ŵi

d
υ̂i
(
zti

)∇hQ̂i
(
zti, a, h

)|h=υ̂i(zti)
. (15)

Then, the disturbance network weight vector is updated by

ŵi+1
d = ŵi

d −
nr∑

p=1

ad∇ŵi
d
Q̂i,p (16)

where ad > 0 is the learning rate.
According to (13)–(16), the control law and the disturbance

law are updated by using the gradients of the Q-function.
Therefore, the developed control scheme is a kind of the PG
approach [38], [39].

Remark 2: There are two important frameworks in PG-
based control methods, i.e., DPG and SPG. It is worth
mentioning that the ways of calculating the PG are differ-
ent, i.e., SPG employs both state and action spaces, but DPG
employs state space only. Therefore, the DPG method is more
efficient due to the strategies adopted in controller update are
deterministic, rather than stochastic.

Remark 3: Compared with conventional ADP-based con-
trol approaches, the advantages of the DPG-based control
scheme lie in that:

1) It is a data-based approach and the controller is renewed
by adopting the gradient of the Q-function; therefore, the
system functions are not needed in designing the control
policy;

2) The DPG-based control approach is not only suitable to
affine systems, but also nonaffine systems.

Remark 4: It noticed that traditional ADP-based control
methods abandon incoming data immediately after being used.
It might neglect rich experience and knowledge which can
be used later. Thus, to make full use of system data, the ER
technique is employed to improve the data usage efficiency by
reusing the sampled data and to break the temporal correlation
among historical data.

Remark 5: In RL/ADP, the value function is the expected
return when starting with the state z and following a policy � .
However, the Q-function is the expected return when starting
with z and the action a, and following the policy � , i.e.,
the information of action a is also required. In this article,
the DPGETC approach is developed based on the Q-function,
where both the control law and the disturbance law are updated
by the corresponding gradients of the Q-function. However,
the corresponding gradients cannot be obtained from the value
function directly. Therefore, it is feasible to use the Q-function
in this article. It is worth noticing that the Q-function and
the value function are both widely used in RL/ADP. Their
selection depends on the specific problem.

IV. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

Before the stability analysis, the following definitions and
assumptions are provided.

Definition 1: A function A : R≥0 → R≥0 is a K-function
if it is continuous, strictly increasing and A(0) = 0; it is a
K∞-function if it is a K-function and satisfies A(s) → ∞ as
s → ∞ [43].

Definition 2: A function B : R≥0 ×R≥0 → R≥0 is a KL-
function if, for each fixed t ≥ 0, the function B(·, t) is a
K-function, and for each fixed s ≥ 0, the function B(s, ·) is
decreasing with B(s, t) → 0 as t → ∞ [43].

Definition 3: Let φ be a KL-function, and ϕ1 and ϕ2 be
K-functions. For each initial state z0 ∈ R

n, all u ∈ R
m and

d ∈ R
s, system (3) is said to be ISS if the inequality

‖zt‖ ≤ φ(‖z0‖, t)+ ϕ1(ū)+ ϕ2(d̄) (17)

holds, where ū = sup{‖ut‖ : t ∈ N} < ∞ and d̄ =
sup{‖dt‖ : t ∈ N} < ∞ [42].

Definition 4: Let C 1,C 2, and C 3 be K∞-functions, and γe

and γd be K-functions. A continuous function V : R
n→R≥0
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is referred an ISS-Lyapunov function if the following inequal-
ities:

C 1(‖zt‖) ≤ V (zt) ≤ C 2(‖zt‖) (18)

and

V (F (zt,�(zt + Et), υ(zt + Et)))− V (zt)

≤ −C 3(‖zt‖)+ max{γe(‖Et‖), γd(‖dt‖)} (19)

hold.
Assumption 2: There exists positive constants l1 and l2, and

a continuous function ζ̃ such that

‖F (zt,�(zt + Et), υ(zt + Et))‖ ≤ l1‖Et‖ + l2‖zt‖ (20)

and

‖Et‖ ≤ ‖zt‖ ≤ ζ̃ (ū) (21)

hold [41].
Lemma 1: Assume C 4(·) = C 3(C

−1
2 (·)), then according

to (19), the inequality

V (F (zt, �(zt + Et), υ(zt + Et)))− V (zt)

≤ −C 4(V (zt))+ max{γe(‖Et‖), γd(‖dt‖)} (22)

holds.
Proof: According to (18), we have

C−1
2 (V (zt)) ≤ ‖zt‖. (23)

Since C 3(·) is a K∞-function, we can get

C 3

(
C−1

2 (V (zt))
)

≤ C 3(‖zt‖). (24)

By using (24), (19) becomes

V (F (zt,�(zt + Et), υ(zt + Et)))− V (zt)

≤ −C 3

(
C−1

2 (V (zt))
)

+ max{γe(‖Et‖), γd(‖dt‖)}. (25)

Letting C 4(·) = C 3(C
−1
2 (·)). Then, we can get (22). The

proof is completed.
Lemma 2: Define


z = {zt : V (zt) ≤ �} (26)

where � = C−1
4 ◦ η−1(max{γe(‖Et‖), γd(‖dt‖)}), η is a K∞-

function. If there exists an integer t0 ∈ N such that zt0 ∈ 
z,
then we have zt ∈ 
z, t ≥ t0.

Proof: Suppose that zt0 ∈ 
z. Then, we can get V (zt0) ≤ �.
From Lemma 1, we can obtain

V
(
F
(
zt0 , �

(
zt0 + Et0

)
, υ

(
zt0 + Et0

))) − V
(
zt0

)

≤ −C 4
(
V
(
zt0

)) + max
{
γe
(∥∥Et0

∥∥), γd
(∥∥dt0

∥∥)}. (27)

According to the proof of [43, Lemma B.1], we can conclude
that Id −C 4 and Id −η are K-functions. Then, (27) becomes

V
(
zt0+1

) ≤ Id
(
V
(
zt0

)) − C 4
(
V
(
zt0

))

+ max
{
γe
(∥∥Et0

∥∥), γd
(∥∥dt0

∥∥)}

≤ (Id − C 4)
(
V
(
zt0

)) + max
{
γe
(∥∥Et0

∥∥), γd
(∥∥dt0

∥∥)}

≤ (Id − C 4)(�)+ max
{
γe
(∥∥Et0

∥∥), γd
(∥∥dt0

∥∥)}.
(28)

Since Id − η is a K-function and using η ◦ C 4(�) =
max{γe(‖Et‖), γd(‖dt‖)}, we have

V
(
zt0+1

) ≤ (Id − C 4)(�)+ max
{
γe
(∥∥Et0

∥∥), γd
(∥∥dt0

∥∥)}

= −C 4(�)+ η ◦ C 4(�)+ � − η ◦ C 4(�)

+ max
{
γe
(∥∥Et0

∥∥), γd
(∥∥dt0

∥∥)}

= −(Id − η) ◦ C 4(�)+ � − η ◦ C 4(�)

+ max
{
γe
(∥∥Et0

∥∥), γd
(∥∥dt0

∥∥)}

= −(Id − η) ◦ C 4(�)+ �

≤ �. (29)

Hence, we know that zt0+1 ∈ 
z. By using the mathematical
induction, we have V (zt0+j) ≤ � for all j ∈ N. This means
that zt ∈ 
z for all t ≥ t0. The proof is completed.

Theorem 1: Suppose that the system (3) admits an ISS-
Lyapunov function V . If there exists a continuous function
ζ satisfies

‖Et‖ ≤ ζ(ū) (30)

then the system (3) is ISS.
Proof: Letting t1 = min{t ∈ N : zt ∈ 
z} ≤ ∞. According

to Lemma 2, we have

V (zt) ≤ ψ(max{γe(‖Et‖), γd(‖dt‖)}) ∀t ≥ t1 (31)

where ψ(·) = C−1
4 ◦ η−1(·). Then, we have η ◦ C 4(V (zt)) ≤

max{γe(‖Et‖), γd(‖dt‖)}. When t < t1, we can obtain

max{γe(‖Et‖), γd(‖dt‖)} < η ◦ C 4(V (zt)). (32)

Thus, considering (32) and Lemma 1, we have

V (F (zt, �(zt + Et), υ(zt + Et)))− V (zt)

≤ −C 4(V (zt))+ max{γe(‖Et‖), γd(‖dt‖)}
= −(Id − η) ◦ C 4(V (zt))− η ◦ C 4(V (zt))

+ max{γe(‖Et‖), γd(‖dt‖)}
≤ −(Id − η) ◦ C 4(V (zt)). (33)

According to the proof of [41, Th. 1], for all 0 ≤ t ≤ t1 + 1,
there exists a KL-function C 5 such that

V (zt) ≤ C 5(V (z0), t) (34)

holds. According to (31) and (34), we can get (35), shown at
bottom of this page. Hence, we further get

V (zt) ≤ max{C 5(V (z0), t), ψ(max{γe(‖Et‖), γd(‖dt‖)})}
(36)

V (zt) ≤
⎧
⎨

⎩

C 5(V (z0), t), 0 ≤ t < t1
max{C 5(V (z0), t), ψ(max{γe(‖Et‖), γd(‖dt‖)})}, t1 ≤ t ≤ t1 + 1
ψ(max{γe(‖Et‖), γd(‖dt‖)}), t > t1 + 1

(35)
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for all t ∈ N. According to (18), we have

‖zt‖ ≤ C−1
1 (V (zt))

≤ C−1
1 (max{C 5(V (z0), t),

ψ(max{γe(‖Et‖), γd(‖dt‖)})}).
According to (30), we can further derive that

‖zt‖ ≤ C−1
1 (C 5(V (z0), t))

+ C−1
1 (ψ(max{γe(‖Et‖), γd(‖dt‖)}))

≤ C−1
1 (C 5(C 2(‖z0‖), t))+ C−1

1 ◦ ψ ◦ γe ◦ ζ(ū)
+ C−1

1 ◦ ψ ◦ γd(d̄). (37)

According to (37) and Definition 3, we know that system (1)
is ISS. The proof is completed.

Lemma 3: Consider Assumption 2 and suppose the
system (3) admits an ISS-Lyapunov function. The triggering
condition

‖Et‖ ≤ ET = 1 − (l1 + l2)t−ti

1 − (l1 + l2)
l2
∥∥zti

∥∥, (l1 + l2) 
= 1 (38)

guarantees the system (3) to be ISS.
Proof: Based on (21) and (38), we can get

‖Et‖ ≤ 1 − (l1 + l2)t−ti

1 − (l1 + l2)
l2ζ̃ (ū). (39)

Hence, we can find a continuous function

ζ(s) = 1 − (l1 + l2)t−ti

1 − (l1 + l2)
l2ζ̃ (s) (40)

to satisfy the inequality (30) in Theorem 1. Thus, the triggering
condition (38) guarantees that the system (3) to be ISS. The
proof is completed.

Remark 6: This article studies the ZSG problem for DT
systems, rather than CT systems. In fact, for DT systems,
the intersample time �t is greater than 0. By introducing the
event-triggering mechanism, the sampling time interval in DT
systems is always integral multiple of the intersample time
�t. Therefore, even if the event is triggered at every sampling
time, the minimal intersample time satisfies τmin = �t. Hence,
the Zeno behavior will not happen.

V. CONVERGENCE ANALYSIS OF NN IMPLEMENTATIONS

In this section, the convergence analysis of the NN weights
is provided. Let w∗

c , w∗
a, and w∗

d be the optimal weights of the
critic, the action and the disturbance networks, respectively.
Define the network weight estimation errors as w̃i

c = ŵi
c −

w∗
c , w̃i

a = ŵi
a − w∗

a, and w̃i
d = ŵi

d − w∗
d, respectively.

Assumption 3: The activation function σ(·), the reconstruc-
tion error of the critic network δc, and the optimal weights w∗

c ,
w∗

a and w∗
d are norm-bounded as

‖σ(·)‖ ≤ σ̄ , ‖δc‖ ≤ δ̄c,
∥∥w∗

c

∥∥ ≤ wcm∥∥w∗
a

∥∥ ≤ wam,
∥∥w∗

d

∥∥ ≤ wdm

where σ̄ , δ̄c, wcm, wam, and wdm are positive constants.
Theorem 2: Consider the nonlinear system (3), the critic

network, the action network and the disturbance network are

trained by (12), (14), and (16), respectively. Then, the network
weight estimation errors w̃c, w̃a, and w̃d are UUB.

Proof: According to (13) and (15), we have

∇ŵi
a
Q̂i = σ(�a)ŵ

iT
c ∇σ(�c)Y

T
c Aa, (41)

∇ŵi
d
Q̂i = σ(�d)ŵ

iT
c ∇σ(�c)Y

T
c Ad, (42)

where Aa = (∂Zt/∂�̂i) =

⎡

⎢⎢⎢⎢⎣

0n×m

· · ·
Im×m

· · ·
0s×m

⎤

⎥⎥⎥⎥⎦
, Ad = (∂Zt/∂υ̂i) =

⎡

⎢⎢⎢⎢⎣

0n×s

· · ·
0m×s

· · ·
Is×s

⎤

⎥⎥⎥⎥⎦
, ∇σ(Y) = ([∂σ(Y)]/∂Y) ∈ R

lc×lc for Y ∈ R
lc , and

I is an identity matrix. Based on (41) and (42), the network
weight updating laws become

w̃i+1
c = w̃i

c − ac

nr∑

p=1

σ
(
�c,p

)
eiT

c,p, (43)

w̃i+1
a = w̃i

a − aa

nr∑

p=1

σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p (44)

w̃i+1
d = w̃i

d − ad

nr∑

p=1

σ
(
�d,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAd,p. (45)

Select a Lyapunov function candidate as

L = Lc + La + Ld

= 1

ac
tr
{

w̃iT
c w̃i

c

}
+ tr

{
w̃iT

a w̃i
a

}
+ tr

{
w̃iT

d w̃i
d

}
. (46)

Consider the first term of (46), we have

�Lc = 1

ac
tr
{

w̃(i+1)T
c w̃i+1

c − w̃iT
c w̃i

c

}

= 1

ac
tr

⎧
⎨

⎩

⎛

⎝w̃iT
c − ac

nr∑

p=1

ei
c,pσ

T(�c,p
)
⎞

⎠

×
⎛

⎝w̃i
c − ac

nr∑

p=1

σ
(
�c,p

)
eiT

c,p

⎞

⎠ − w̃iT
c w̃i

c

⎫
⎬

⎭

= tr{�Lc1 +�Lc2} (47)

where

�Lc1 = tr

⎧
⎨

⎩−2w̃iT
c

nr∑

p=1

σ
(
�c,p

)
eiT

c,p

⎫
⎬

⎭

�Lc2 = tr

⎧
⎨

⎩ac

nr∑

p=1

ei
c,pσ

T(�c,p
) nr∑

p=1

σ
(
�c,p

)
eiT

c,p

⎫
⎬

⎭.

Define �ci = w̃iT
c σ(�c) and δc = �ci − ei

c. Considering �Lc1
and applying the Cauchy–Schwarz inequality, we can obtain
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�Lc1 = tr

⎧
⎨

⎩−2
nr∑

p=1

w̃iT
c σ

(
�c,p

)
eiT

c,p

⎫
⎬

⎭

= tr

⎧
⎨

⎩−2
nr∑

p=1

�ci,p�
T
ci,p + 2

nr∑

p=1

�ci,pδ
T
c,p

⎫
⎬

⎭

≤ −2
nr∑

p=1

∥∥�ci,p
∥∥2 +

nr∑

p=1

∥∥�ci,p
∥∥2 +

nr∑

p=1

∥∥∥δT
c,p

∥∥∥
2

= −
nr∑

p=1

∥∥�ci,p
∥∥2 +

nr∑

p=1

∥∥∥δT
c,p

∥∥∥
2

≤ −
nr∑

p=1

∥∥�ci,p
∥∥2 + nr δ̄

2
c . (48)

Considering the second term �Lc2, we can derive

�Lc2 = tr

⎧
⎨

⎩ac

nr∑

p=1

ei
c,pσ

T(�c,p
) nr∑

p=1

σ
(
�c,p

)
eiT

c,p

⎫
⎬

⎭

= ac

∥∥∥∥
nr∑

p=1

ei
c,pσ

T(�c,p
)∥∥∥∥

2

= ac

∥∥∥∥
nr∑

p=1

�ci,pσ
T(�c,p

) −
nr∑

p=1

δc,pσ
T(�c,p

)∥∥∥∥
2

≤ 2ac

∥∥∥∥
nr∑

p=1

�ci,pσ
T(�c,p

)∥∥∥∥
2

+ 2ac

∥∥∥∥
nr∑

p=1

δc,pσ
T(�c,p

)∥∥∥∥
2

.

(49)

Let �M = [�ci,1, . . . , �ci,nr ], σcM =
[σT(�c,1), . . . , σ

T(�c,nr )], and δM = [δc,1, . . . , δc,nr ],
and assume that σ̄cM and δ̄M are the norm bounds of σcM and
δM , respectively. Then, we have

�Lc2 ≤ 2ac

∥∥∥�Mσ
T
cM

∥∥∥
2 + 2ac

∥∥∥δMσ
T
cM

∥∥∥
2

≤ 2acσ̄
2
cM

nr∑

p=1

∥∥�ci,p
∥∥2 + 2acσ̄

2
cM

nr∑

p=1

∥∥δc,p
∥∥2

≤ 2acσ̄
2
cM

nr∑

p=1

∥∥�ci,p
∥∥2 + 2nracσ̄

2
cM δ̄

2
c . (50)

According to (48) and (50), we can get

�Lc ≤ −
(

1 − 2acσ̄
2
cM

) nr∑

p=1

∥∥�ci,p
∥∥2 + 2nracσ̄

2
cM δ̄

2
c

+ nr δ̄
2
c . (51)

Consider the second term of (46), we have

�La = tr{�La1 +�La2} (52)

where

�La1 = tr

⎧
⎨

⎩−2aaw̃iT
a

nr∑

p=1

σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

⎫
⎬

⎭

�La2 = tr

⎧
⎨

⎩a2
a

nr∑

p=1

AT
a,pYc,p∇σT(�c,p

)
ŵi

cσ
T(�a,p

)

×
nr∑

p=1

σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

⎫
⎬

⎭.

For �La1, we can derive that

�La1 = aatr

⎧
⎨

⎩

nr∑

p=1

(
w̃i

a − σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

)T

×
(

w̃i
a − σ

(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

)
⎫
⎬

⎭

− aatr

⎧
⎨

⎩

nr∑

p=1

(
σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

)T

×
(
σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

)
⎫
⎬

⎭

− aanrtr
{

w̃iT
a w̃i

a

}

= aa

nr∑

p=1

∥∥∥w̃i
a − σ

(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

∥∥∥
2

− aa

nr∑

p=1

∥∥∥σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

∥∥∥
2

− aanr
∥∥w̃i

a

∥∥2

≤ aa

nr∑

p=1

∥∥∥σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

∥∥∥
2

+ aanr
∥∥w̃i

a

∥∥2
. (53)

For �La2, we can get

�La2 = tr

⎧
⎨

⎩a2
a

nr∑

p=1

AT
a,pYc,p∇σT(�c,p

)
ŵi

cσ
T(�a,p

)

×
nr∑

p=1

σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p

⎫
⎬

⎭

= a2
a

∥∥∥∥
nr∑

p=1

σ
(
�a,p

)
ŵiT

c ∇σ (�c,p
)
YT

c,pAa,p
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2

. (54)

Let σaM = [σ(�a,1), . . . , σ (�a,nr )], �a =
[ŵiT

c ∇σ(�c,1)YT
c,1Aa,1, . . . , ŵiT

c ∇σ(�c,nr )Y
T
c,nr

Aa,nr ], σ̄aM

be the norm bound of σaM , and λ�a be the maximum
eigenvalue of �a�

T
a . Then, �La2 becomes

�La2 = a2
a

∥∥∥σaM�
T
a

∥∥∥
2 ≤ a2

aλ�a σ̄
2
aM. (55)

According the proof of [44, Th. 2], let w̄c, w̄a, w̄d, σ̄1, ȳc, Āa,
and Ād be the upper-bounds of w̃c, w̃a, w̃d, ∇σ(·), Yc, Aa, and
Ad, respectively. Then, we have
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∥∥∥σ
(
�a,p

)
w̃iT

c ∇σ (�c,p
)
YT

c,pAa,p

∥∥∥
2 ≤ σ̄ 2w̄2

c σ̄
2
1 ȳ2

c,pĀ2
a,p =�1,p

∥∥∥σ
(
�a,p

)
wiT

c ∇σ (�c,p
)
YT

c,pAa,p

∥∥∥
2 ≤ σ̄ 2w2

cmσ̄
2
1 ȳ2

c,pĀ2
a,p =�2,p

∥∥∥σ
(
�d,p

)
w̃iT

c ∇σ (�c,p
)
YT

c,pAd,p

∥∥∥
2 ≤ σ̄ 2w̄2

c σ̄
2
1 ȳ2

c,pĀ2
d,p =�3,p

∥∥∥σ
(
�d,p

)
wiT

c ∇σ (�c,p
)
YT

c,pAd,p

∥∥∥
2 ≤ σ̄ 2w2

cmσ̄
2
1 ȳ2

c,pĀ2
d,p =�4,p.

Then, we can get

�La ≤ aanrw̄2
a + aa

nr∑

p=1

�1,p + aa

nr∑

p=1

�2,p + a2
aλ�a σ̄

2
aM.

(56)

Let σdM = [σ(�d,1), . . . , σ (�d,nr )], �d =
[ŵiT

c ∇σ(�c,1)YT
c,1Ad,1, . . . , ŵiT

c ∇σ(�c,nr )Y
T
c,nr

Ad,nr ], σ̄dM

be the norm bound of σdM , and λ�d be the maximum
eigenvalue of �d�

T
d . Then, by using the similar process, we

have

�Ld ≤ adnrw̄2
d + ad

nr∑

p=1

�3,p + ad

nr∑

p=1

�4,p + a2
dλ�d σ̄

2
dM.

(57)

Denote

P1 = aanrw̄2
a + aa

nr∑

p=1

�1,p + aa

nr∑

p=1

�2,p + a2
aλ�a σ̄

2
aM

P2 = adnrw̄2
d + ad

nr∑

p=1

�3,p + ad

nr∑

p=1

�4,p + a2
dλ�d σ̄

2
dM.

Then, according to (51), (56), and (57), we can get

�L = �Lc +�La +�Ld

≤ −
(

1 − 2acσ̄
2
cM

) nr∑

p=1

∥∥�ci,p
∥∥2

+ 2nracσ̄
2
cM δ̄

2
c + nr δ̄

2
c + P1 + P2

≤ −
(

1 − 2acσ̄
2
cM

) nr∑

p=1

∥∥�ci,p
∥∥2 + P3 (58)

where P3 = 2nracσ̄
2
cM δ̄

2
c + nr δ̄

2
c +P1 +P2. Therefore, if ac <

(1/[2σ̄ 2
cM]) holds, and �ci,p lies outside the compact set

��ci,p =
{
�ci,p :

∥∥�ci,p
∥∥ ≤ P3

1 − 2acσ̄
2
cM

}

we have �L < 0. The proof is completed.
Remark 7: In fact, Assumption 3 is widely used in previous

papers [41], [44], [45]. The rationalities of Assumption 3 are
explained as follows.

1) In the NN implementation, the activation function σ(·)
is usually selected as tanh(·). Therefore, it is reasonable
to assume that it is norm bounded.

2) It is noticed that the NN weights ω∗
c , ω∗

a , and ω∗
d are

optimal weights. In addition, δc is the reconstruction
error of the critic NN. Since they cannot be infinite
in practice, it is reasonable to assume that they are
norm-bounded.

TABLE I
PARAMETERS OF TORSIONAL PENDULUM SYSTEM

Remark 8: The difference between the developed DPGETC
method and the existing methods [26], [37], [39], [41],
and [45] are outlined as follows.

1) On the one hand, unlike [37] which solved the ZSG
problem for CT systems, the developed DPGETC
method can be applied to DT systems. On the other
hand, different from [41] which tackled the optimal
control problem with the dual heuristic dynamic pro-
gramming (DHP)-based ETC approach, this article con-
sidered the ZSG problem. The developed data-based
DPGETC approach updates the control law and the
disturbance law by the corresponding gradients of the
Q-function. Therefore, the model NN is not required
anymore. Furthermore, the ER technique is adopted to
design novel NN weight updating laws to improve the
data usage efficiency.

2) This article extends the DPGADP method to solve the
ZSG problem under the event-triggering mechanism.
Compared with [26], [39], and [45], the control law
and the disturbance law are renovated aperiodically at
triggering instants only to reduce the computational and
communication burden.

Remark 9: This article investigates the ZSG problem rather
than the non-ZSG problems. In ZSG, two players compete
with each other since the goals of the two players are com-
pletely opposite, i.e., one tries to minimize the performance
index function and another one tries to maximize it. However,
for nonzero-sum games, all players have their individual con-
trol objectives and an overall goal, i.e., they are not only
competitive, but also cooperative [46]–[49].

VI. SIMULATION STUDIES

In this section, two simulation examples are employed to
verify the effectiveness of the DPGETC scheme.

A. Example 1

Consider the torsional pendulum system given by

dθ

dt
= dW

Jt
dW

dt
= ut − Mgltsinθ − fd

dθ

dt
+ dt.

The parameters and corresponding initial values of the tor-
sional pendulum system are given in Table I. Inspired by [45],
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TABLE II
CONTROL PARAMETERS

Fig. 2. Trajectories of system states z1 and z2 under DPGETC and DPGTTC
methods of Example 1.

Fig. 3. Norm value of weight vectors of Example 1.

the torsional pendulum system is discretized as
[

z1(t+1)
z2(t+1)

]
=
[

0.1z2t + z1t

−0.49sin(z1t)− 0.1fdz2t + z2t

]

+
[

0
0.1

]
ut +

[
0

0.1

]
dt

where zt = [z1t, z2t]T = [θt,W t]T, ut is the control input, and
dt is the disturbance. The initial state of the torsional pendulum
system and the control parameters are provided in Table II. The
structure of the critic network, the action network, and the dis-
turbance network are selected as 4–10–1, 2–10–1, and 2–10–1,
respectively. The activation functions are selected as tanh. The
initial weights of all NNs are randomly chosen within [−1, 1].

The simulation results are exhibited in Figs. 2–6. The
evolution of system states under the DPGETC method and
DPG-based time triggered control (DPGTTC) approach is
revealed in Fig. 2. We can find that system states approach
to a small region of zero after 50 s. The norms of the weight
vectors are provided in Fig. 3, which displays that the weights

Fig. 4. Trajectories of the control input and the disturbance input of
Example 1.

Fig. 5. Evolution of the triggering condition of Example 1.

Fig. 6. Comparison of sample numbers in Example 1.

of NNs remain unchanged after 100 s. Fig. 4 indicates that
the control law and the disturbance law are aperiodic updated
and reach zero after 50 s. The event-triggering error ‖Et‖ and
threshold ET are depicted in Fig. 5, which explicitly displays
that the event-triggering error will converge to zero. A com-
parison of the sample number between the DPGETC method
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Fig. 7. Trajectories of system states z1 and z2 under DPGETC and DPGTTC
methods of Example 2.

and the DPGTTC method is revealed in Fig. 6. Compared
with 200 samples in the time-triggered method, the DPGETC
method needs 40 samples only, which means that it saves 80%
computation. Hence, the validity of the DPGETC approach is
verified.

Remark 10: The parameters l1 and l2 in the triggering con-
dition (38) play an important role on the control performance
since they determine the triggering threshold ET directly. If
the triggering threshold ET is too small, the control inputs
are updated with high frequency, which brings a large amount
of computation. However, if the triggering threshold is too
large, the control inputs are updated with a low frequency,
but the system may be unstable. Therefore, we need to select
these two parameters appropriately with repeatitive simula-
tions to tradeoff the control performance and the computational
burden.

Remark 11: It is noticed that the selection of the NN struc-
ture and the historical data size are challenging since they
affect the control performance directly. In this article, we select
the NN structure and the historical data size by “trial and error”
with repetitive simulations.

B. Example 2

Consider the nonaffine nonlinear system

z1(t+1) = 0.97z1t + 0.97z2tut + 0.97dt

z2(t+1) = 0.97z2t + 0.97
(

1 + z2
1t

)
ut + 0.97u3

t + 0.97d2
t .

The control parameters are displayed in Table II. In this
example, the structure of NNs and the activation functions
are the same as those of Example 1. We randomly initialize
the NN weights within [−0.5, 0.5]. Simulation results are pro-
vided in Figs. 7–11. Fig. 7 presents that the state trajectories
under the DPGETC method and DPGTTC approach station-
ary points after 250 s. We can discover that the norms of
weight vectors are convergent in Fig. 8. The curves of the ETC
law and the disturbance law are given in Fig. 9. It is distinct
that both of them are segmented signals and arrive to a small
region of zero after 200 s. The event-triggering error ‖Et‖ and
threshold ET are depicted in Fig. 10, which shows that the
event-triggering error will converge to zero. The sample num-
bers of the DPGETC approach and the DPGTTC approach
are comparatively displayed in Fig. 11. We can conclude

Fig. 8. Norm value of weight vectors of Example 2.

Fig. 9. Trajectories of the control input and the disturbance input of
Example 2.

Fig. 10. Evolution of the triggering condition of Example 2.

that the time triggered-based controller updates 350 times,
and the DPGETC-based controller updates 24 times only.
From the above analysis, the developed DPGETC method
greatly reduces the computational and communication burden.

Remark 12: The convergence rate and the algorithm com-
plexity depend on the parameters of the NN, i.e., the NN
structure and the learning rate. On the one hand, a simple NN
structure can reduce the complexity but may result in poor
approximation performance. Otherwise, if the NN structure is
complex, the approximation performance will be improved,
but the complexity will be increased. On the other hand, a
large learning rate will accelerate the convergence, but the NN
weights may not converge, and vice versa. Therefore, we need
to select these parameters based on repeatitive simulations to
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Fig. 11. Comparison of sample numbers in Example 2.

get a tradeoff. In fact, the convergence rate and the algorithm
complexity are mainly reflected in the training stage. Once the
optimal weights are obtained, we can implement the optimal
controller directly.

Remark 13: In the ETC approach, an event generator is
employed to monitor the event-triggering error. Once the error
exceeds the triggering threshold, an event is triggered and the
current state is sampled as a new sampled state. Moreover, the
control input is updated and remains unchanged until the next
triggering instant.

Remark 14: The main difference between the ETC
approach and the time-triggered approach is that the ETC
is updated aperiodically, rather than periodically as the time-
triggered one. In the ETC approach, only when the magnitude
of the event-triggering error reaches the prescribed thresh-
old, an event is triggered and the control input is updated.
Therefore, compared with the time-triggered method, the num-
ber of control input updating are reduced, and the computation
and communication resources are saved.

VII. CONCLUSION

In this article, the ZSG problem for DT nonlinear systems is
investigated by using the DPGETC approach. A proper event-
triggering condition is deduced to guarantee the ISS of the
closed-loop system. The control law and the disturbance law
are approximated by the action network and the disturbance
network, and are updated by the corresponding gradients of
the Q-function. Therefore, it is a data-based method and the
system dynamics are not required. Moreover, based on the ER
technique, new NN weight tuning laws are designed to ensure
the NN weight estimation errors to be UUB. Simulation stud-
ies show that the developed DPGETC method alleviates the
computational and communication burden. The main novelties
of the developed DPGETC control scheme lie in that: 1) the
ZSG problem of unknown nonaffine nonlinear systems is
addressed without requiring the model NN and 2) the designed
controllers are updated aperiodically to reduce the computa-
tional and communication burden. The inadequacies of this
control approach and the related future work are provided as
follows.

1) It is noticed that Assumptions 2 and 3 are necessary
to ensure the stability of the closed-loop system. In our
future work, we will try to relax these assumptions.

2) This article adopts the ETC approach to reduce the
computational and communication burden. However, it
requires hardware equipment to monitor whether the
triggering condition is satisfied, and then triggering the
next sampling in real time, which is not available in
many practical systems. In our future work, we will
try to develop the ADP-based self-triggered control
approach since it calculates the next sampling time based
on the latest triggering instant and system dynamics
without additional monitoring equipments.
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Riemannian Mean Shift-Based Data Fusion Scheme
for Multi-Antenna Cooperative Spectrum Sensing

Yongwei Zhang , Shunchao Zhang , Yonghua Wang , Member, IEEE, Jiawei Zhuang, and Pin Wan

Abstract—In this article, the multi-antenna cooperative spec-
trum sensing problem in cognitive radio networks is investigated
over Riemannian manifold. At the beginning, a signal matrix is
constructed by using the sensing signals from secondary users
(SUs) and the corresponding covariance matrix is calculated.
Subsequently, the covariance matrices are transmitted to the
fusion center and mapped to points on the manifold. In order to
reduce the impact of aberrant SUs, a data fusion scheme based
on Riemannian mean shift algorithm is developed. After data
fusion, the representative points are obtained to train a classifier.
In order to realize clustering directly over Riemannian manifold,
a novel Riemannian distance based particle swarm optimization
(RDPSO) algorithm, is proposed to train a classifier, which is
employed to determine the state of primary user (PU). Finally,
in simulation part, the validity of the proposed scheme is verified
under different scenarios.

Index Terms—Cognitive radio networks, multi-antenna coop-
erative spectrum sensing, Riemannian mean, Riemannian
distance.

I. INTRODUCTION

W ITH the continuous development of wireless com-
munication network, spectrum resource is becoming

increasingly scarcity [1]–[3]. However, most of the spectrum
resources are not using sufficient [4]. In order to alleviate
the shortage of spectrum resources, cognitive radio networks
(CRN) have emerged [5], [6]. Different from traditional
methods, CRN introduces cognitive radio (CR) technology
to enable secondary users (SUs) to perceive the status of
authorized channel. The SU can opportunistically access the
available channel for communication when the primary user
(PU) is not on the channel [7]. There are several spectrum
sensing algorithms, such as energy detection (ED) [8], [9],
matched filtering detection (MFD) [10], [11] and cyclostation-
ary feature detection (CFD) [12], [13] have been proposed.
However, these methods are restricted in practical applica-
tion due to some shortcomings, such as require the prior
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information of the PU, susceptible to noise uncertainty and
require a large amount of computation.

In the modern CRN, more and more communication devices
adopt multiple antennas to improve link reliability and com-
munication quality [14]–[16]. Multi-antenna spectrum sensing
has become a research hotspot in the field of spectrum sens-
ing over the past decade. In [17], a improved energy detector
which uses an arbitrary positive power of amplitudes of the
PU’s signal samples was developed for multi-antenna cooper-
ative spectrum sensing. The mathematical expressions of the
probabilities of the false alarm and the missed detection for the
developed approach were deduced. In [18], a detection scheme
based on eigenvalue weight was proposed for multi-antenna
CRN. Based on Neyman-Pearson criterion, the eigenvalue
based-likelihood ratio test was analyzed and a simple closed-
form expression was deduced. In [19], the optimal Wald
test based sequential Bartlett spectral detector was designed
for multi-antenna cooperative spectrum sensing (CSS). It is
suitable for single/multiple PU scenario or multiple-input
multiple-output wireless systems. In [20], a multi-antenna CSS
approach based on the expectation maximization (EM) algo-
rithm was developed to detect the PU signal. This method
can be regarded as joint detection and estimation, which used
EM algorithm to detect PU signal and estimated the unknown
channel frequency response and the noise variance of multiple
subbands iteratively. In [21], a multi-user multiple-input and
multiple-output based CR approach was developed for Internet
of Things, which used weighted-eigenvalue detection tech-
nique to analyze sensing, system throughput, energy efficiency
and expected lifetime. It is noticed that the above CSS meth-
ods need to derive an accurate threshold to judge the state
of the channel, which is difficult to achieve in a complex
environment.

In recent years, there are some machine leaning based
spectrum sensing approaches have been present to solve this
problem [22]–[24]. In [22], several familiar machine learn-
ing algorithms, such as K-means clustering, Gaussian mixture
model and K-nearest-neighbor were adopted to develop a
CSS scheme. This method used signal energy as a feature
and trained a classifier to judge whether the PU exists or
not. In [23], a support vector machine-based CSS model was
presented. In order to reduce the cooperation cost and improve
the sensing performance, CR users were appropriately grouped
using energy data samples and support vector machine mod-
els. In [24], a multiple-antenna CSS was proposed by using the
wavelet transform algorithm and the Gaussian mixture model.
The noise of the signal was removed by wavelet transform

2332-7731 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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and the Gaussian mixture model was adopted to obtain a
classifier to detect the spectrum hole. In general, compared
with traditional sensing methods, the machine learning based
spectrum sensing method has the advantages of high sens-
ing accuracy and strong adaptability to environment. By using
the feature vector and the clustering algorithm, a classifier is
trained to judge the channel state. Therefore, choosing suitable
feature vector and clustering algorithm are essential to acquire
expected detection performance.

It is well known that spectrum sensing can be regarded as
a signal detection problem. By analyzing the probability dis-
tribution of the detection data, the existence of the PU can
be determined. Under the background of information geom-
etry (IG), the spectrum sensing problem can be converted to
a geometric problem in manifold, and the geometric method
can be adopted to analyze the properties of probability distri-
bution function clusters. In recent years, several scholars study
the spectrum sensing problem based on IG theory. In [26], a
Riemannian distance (RD) detector which does not require the
noise statistical characteristics and the priori knowledge of PU,
was designed to estimate the channel state by using the RD
and the Riemannian mean. In [27], a CSS scheme based on
empirical mode decomposition (EMD) and IG was proposed
to enhance the detection performance under complex elec-
tromagnetic environments. The EMD algorithm was adopted
to denoise the signals collected by the SUs and the covari-
ance matrices were calculated and mapped onto the manifold.
Subsequently, the geodesic distance between two points on the
manifold was used as a signal feature, and the K-medoids clus-
tering algorithm was adopted to train a classifier to determine
whether the PU exists or not. However, these methods use the
geometric distance value on the manifold as a signal feature
only and cannot be used directly in the manifold space.

In this paper, unlike previous CSS approaches which are
suitable for vector space only, we propose a novel spec-
trum sensing method that can be employed on manifold space
directly. In actual scenarios, SU may be interfered by the envi-
ronment and receives aberrant signal data. If these data are
used directly, the sensing performance of the whole CRN will
be affected. Therefore, a novel data fusion method based on
Riemannian mean shift (RMS) algorithm is developed to elim-
inate the aberrant data. Finally, a RD-based particle swarm
optimization (RDPSO) algorithm which works on manifold
space, is designed to acquire a classifier to perceive the state
of PU. The innovations of this paper are given as follows.

1) This article develops a novel data fusion approach to
eliminate the aberrant data by using the RMS algo-
rithm. Traditional methods [24] and [27] use denoising
algorithms to reduce environmental interference, but it
may remove some useful information in the signal. The
proposed data fusion scheme can exclude the aberrant
data directly and is suitable on manifold space.

2) A novel RDPSO clustering algorithm is developed,
which uses RD to estimate the two points on the
manifold.

3) By using the sample points on the manifold and the
RDPSO algorithm, an RMS based RDPSO (RMS-
RDPSO) approach is proposed to train a classifier for

Fig. 1. The scenario of CRN.

determining the state of the channel. Different from
existing methods [25] and [26], the developed CSS
scheme is adaptive, it does not need to derive a precise
threshold and can be used on manifold space.

The structure of this article is given follows. The scenario of
the multi-antenna CSS is introduced in Section II. Section III
develops an RMS-RDPSO approach for CSS. The validity of
the RMS-RDPSO approach is tested under different scenarios
in Section IV. Finally, a conclusion is provided in Section V.

II. MULTI-ANTENNA COOPERATIVE SPECTRUM SENSING

IN COGNITIVE RADIO NETWORK

In this section, we study a CRN system which contains one
PU with single antenna and L SUs with P antennas [28].
The structure of the CRN system is provided in Fig. 1. In
CSS scenario, in order to guarantee the communication of the
PU, the CRN needs to judge the channel state before allow-
ing the SUs to access the spectrum. Therefore, SUs should
transmit their sensing data to fusion center (FC) for acquir-
ing a global decision to identify whether the PU is exist. In
summary, the spectrum sensing can be regarded as a binary
hypotheses testing problem, which is formulated as

H0 : ypl (n) = zpl (n), n = 1, . . . ,N ,

H1 : ypl (n) = hpl (n)x (n) + zpl (n), n = 1, . . . ,N , (1)

where ypl (n) represents the signal received from the pth
antenna of lth SU, x (n) represents the signal transmitted by
the PU and obeys the Gaussian distribution with mean zero
and variance σ2x , i.e., x (n) ∼ N (0, σ2x ), and zpl (n) represents
the Gaussian white noise and satisfies zpl (n) ∼ N (0, σ2lp),
l = 1, 2, . . . ,L, p = 1, 2, . . . ,P . N represents the number of
sample points, hpl (n) = 1 represents the channel gain [29],H0

andH1 stand for the absence and presence of PU, respectively.
In this paper, we use the probabilities of detection Pd and

the false alarm Pf to reflect the sensing performance, which
are defined as

Pd = P [H1|H1], (2)

Pf = P [H1|H0]. (3)
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Fig. 2. The structure of the developed RMS-RDPSO scheme.

III. MULTI-ANTENNA COOPERATIVE SPECTRUM SENSING

BASED ON RMS-RDPSO SCHEME

In this section, the structure of the developed RMS-RDPSO
scheme is provided in Fig. 2. To begin with, the FC collects
the sensing data from each SU and maps the corresponding
covariance matrices to coordinate points on the manifold. In
order to reduce the interference of aberrant SUs, the RMS
algorithm is developed to fuse the coordinate points to a ref-
erence point. Moreover, the RDPSO algorithm is adopted to
cluster directly on manifold. Finally, a data set which con-
tains the reference points is collected to obtain a classifier to
determine whether the PU exists.

Remark 1: The received signal from each SU with P anten-
nas can form a signal matrix. Then, we can calculate the
covariance matrices of all the signal matrices. It is noticed that
under the background of IG theory, the covariance matrix can
be regarded as a point on the Riemannian manifold. Therefore,
we can use the RD to measure the distance between two points
on the manifold. Since the SUs may be interfered by the envi-
ronment and receive aberrant signal data. We develop an RMS
algorithm to remove the abnormal data. It is well known that

the spectrum sensing is a binary hypothesis problem, i.e., the
PU is present or PU is absent. Hence, we propose the RDPSO
algorithm to train a classifier to judge whether the PU exists.
It is worth mentioning that the developed RDPSO algorithm
is worked on manifold space directly. Therefore, the spectrum
sensing problem is solved on the Riemannian manifold.

A. Multi-Antenna Cooperative Spectrum Sensing Over
Riemannian Manifold

In this section, the multi-antenna spectrum sensing problem
is analyzed in manifold space. The received signal of the pth
antenna of the lth SU is expressed as

y
p
l = [y

p
l (1), . . . , y

p
l (N )]T. (4)

Therefore, the signal matrix of lth SU is given as

Yl =

⎡
⎢⎢⎢⎣
y1l (1) y1l (2) · · · y1l (N )
y2l (1) y2l (2) · · · y2l (N )

...
...

. . .
...

yPl (1) yPl (2) · · · yPl (N )

⎤
⎥⎥⎥⎦. (5)
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The corresponding covariance matrix is calculated by

Ĉl =
1

N
YlY

T
l , (6)

where Ĉl ∈ R
P×P . Then, the binary hypotheses can be

reformulated as

H0 : Ĉl = σ2RI,

H1 : Ĉl = Ĉβ + σ2RI, (7)

where Ĉβ ∈ R
P×P represents the covariance matrix of PU

signal, I ∈ R
P×P represents the identity matrix, σ2R =

diag[σ2l1, . . . , σ
2
lP ]. According [26], we find that Ĉl obeys

the Wichter distributions W(P, σ2RI) and W(P, Ĉβ + σ2RI)
in the case of H0 and H1, respectively. Under the back-
ground of IG theory, the Wichter distributions W(P, σ2RI) and
W(P, Ĉβ + σ2RI) can be mapped into the statistical mani-
fold and the covariance matrices σ2RI and Ĉβ + σ2RI can be
considered as the corresponding coordinates.

In this paper, the RD is employed to estimate the distance
between two points on the manifold. Assume that Ξ1 and Ξ2

are two points on the manifold. Then, the RD between Ξ1 and
Ξ2 is calculated as

R2
D (Ξ1,Ξ2) =

∥∥∥∥log
(
Ξ
− 1

2
1 Ξ2Ξ

− 1
2

1

)∥∥∥∥2
=
∥∥∥log(Ξ−1

1 Ξ2

)∥∥∥2
= tr

(
log2

(
Ξ−1
1 Ξ2

))

=

Ne∑
i=1

log2(λi ), (8)

where ‖ · ‖ is the Frobenius norm and λi is ith eigenvalue of
the matrix Ξ−1

1 Ξ2.

B. RMS-Based Data Fusion

In actual environment, SUs may be affected by the environ-
ment noise and send aberrant data to the FC. To ensure the
performance of spectrum sensing, an RMS-based data fusion
approach is adopted to reduce the interference of aberrant
points. It is well known that mean shift is a crucial clustering
algorithm for obtaining representative centers of the disturbed
data and widely used in many fields since it easy to implement
while owning good convergence property. However, tradi-
tional mean shift algorithm works on vector space only. To
achieve fusing directly on manifold, inspired by [30], the RMS
algorithm is adopted.

Assume that the matrix set in the FC is expressed as

Ψ =
{
Ĉ1, . . . , ĈM

}
, (9)

where M represents the size of data set. The kernel density
estimator is defined as

f̂ (Φ) =
zk ,h
M

M∑
i=1

k

⎛
⎝R2

D

(
Φ, Ĉi

)
h2

⎞
⎠, (10)

Algorithm 1: RMS Algorithm
Input: Random initial center point Φj . Let j = 0 and

ε > 0. Initial the maximum number of iteration
T1.

Output: Φj

1 while j < T1 do
2 Calculate the mean shift vector mh(Φj ) by

mh (Φj ) =

∑M
i=1 g(

R2
D (Φj ,Ĉi )

h2 )logΦj
(Ĉi )∑M

i=1 g(
R2

D (Φj ,Ĉi )

h2 )
. (16)

Update the center point as

Φj+1 = exp(log(Φj ) +mh (Φj )). (17)

if ‖mh (Φj )‖ < ε then
3 break
4 end
5 end

where Φ is the center of the data, k(·) is a profile function
satisfying k(t) ≥ 0 for t ≥ 0, h is bandwidth parameter, and
zk ,h is a constant which ensures that f̂ (Φ) integrates to one.
The gradient of the f̂ (Φ) with respect to Φ is calculated as

∇f̂ (Φ) = 1

M

M∑
i=1

∇k
⎛
⎝R2

D

(
Φ, Ĉi

)
h2

⎞
⎠

= − 1

M

M∑
i=1

g

⎛
⎝R2

D

(
Φ, Ĉi

)
h2

⎞
⎠∇R2

D

(
Φ, Ĉi

)
h2

, (11)

where g(·) = −k ′(·) and k ′(·) is the tangent at k(·). Inspired
by [30], we know that the gradient of the RD satisfies

∇R2
D

(
Φ, Ĉi

)
= −2logΦ

(
Ĉi

)
. (12)

Therefore, according to (11) and (12), we can obtain

∇f̂ (Φ) = 2

M

M∑
i=1

g

⎛
⎝R2

D

(
Φ, Ĉi

)
h2

⎞
⎠ logΦ

(
Ĉi

)
h2

. (13)

Therefore, the mean shift vector can be defined as

mh (Φ) =

∑M
i=1 g

(
R2

D

(
Φ,Ĉi

)

h2

)
logΦ

(
Ĉi

)
∑M

i=1 g

(
R2

D

(
Φ,Ĉi

)

h2

) . (14)

It is noticed that the mean shift vector always point toward
the direction of maximum increase in the density. Thus, the
center Φj is updated by

Φj+1 = exp
(
log
(
Φj
)
+mh

(
Φj
))
. (15)

The complete algorithm of the RMS is given in Algorithm 1.
The developed RMS algorithm can directly fuse data points

on manifold. After data fusion, the interference of the aberrant
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points can be avoided. The convergence of the RMS algorithm
is analyzed in Lemma 1.

Lemma 1: Suppose that the kernel K has a con-
vex and monotonically decreasing profile, the sequence
{f̂ (Φj )}j=1,2,..., is convergent and monotonically non-
decreasing if the bandwidth h is less than the injectivity
radius.

Proof: Since the size of data set M is finite, the value
of f̂ (Φj ) is bounded. Hence, if f̂ (Φj+1) ≥ f̂ (Φj ) is sat-
isfies, then the sequence {f̂ (Φj )}j=1,2,..., is convergent and
monotonically non-decreasing. According to (10), we can get

f̂
(
Φj+1

)− f̂
(
Φj
)

=
zk ,h
M

M∑
i=1

[
k

(
R2

D (Φj+1, Ĉi )

h2

)
− k

(
R2

D (Φj , Ĉi )

h2

)]
.

The convexity of the profile k implies that

k(x2) ≥ k(x1) + k ′(x1)(x2 − x1) (18)

for any x1, x2 ∈ R. By using g(·) = −k ′(·), (18) becomes

k(x2)− k(x1) ≥ g(x1)(x1 − x2). (19)

Based on (19), we have

f̂
(
Φj+1

)− f̂
(
Φj
)

=
zk ,h
Mh2

M∑
i=1

⎡
⎣g
⎛
⎝R2

D

(
Φj , Ĉi

)
h2

⎞
⎠(R2

D

(
Φj , Ĉi

)

−R2
D

(
Φj+1, Ĉi

))⎤⎦.
From [30], we know that if the bandwidth h is less than the
injectivity radius, then we have

zk ,h
Mh2

M∑
i=1

⎡
⎣g
⎛
⎝R2

D

(
Φj , Ĉi

)
h2

⎞
⎠(R2

D

(
Φj , Ĉi

)

−R2
D

(
Φj+1, Ĉi

))⎤⎦ ≥ 0.

Therefore f̂ (Φj+1) ≥ f̂ (Φj ) is satisfied. The proof is
completed.

C. Cooperative Spectrum Sensing Based on RDPSO
Algorithm

In this part, a classifier is trained to judge whether SUs
can access the channel. It is well known that particle swarm
optimization (PSO) is a popular optimization algorithm, which
finds the optimal solution through cooperation and information
sharing among individuals in the group. Moreover, PSO algo-
rithm can find the class center of the sample by minimizing
the sum of the distances from each sample to the particle.
Traditional PSO algorithm is used in vector space only. In
order to achieve clustering on manifold, the RDPSO algorithm

Fig. 3. The ROC curves of several approaches in Co1.

is developed. Before moving on, a data set which includes the
fused samples is built as

Φ̄ =
{
Φ1, . . . ,ΦQ

}
, (20)

where Φq ∈ R
P×P denotes the qth sample in Φ̄ and Q denotes

the size of fused data set. For the spectrum sensing problem,
the RDPSO requires to find two centers on the manifold which
represent PU is absent and PU is active, respectively.

Suppose that there Np particles in Riemannian manifold.
Xi and Vi represent the position and velocity of i th particle,
respectively. In each iteration, the position and velocity of each
particle are renovated by

Vi (t + 1) = ωVi (t) + r1c1(Pbesti (t)−Xi (t))
+ r2c2(Gbest −Xi (t)), (21)

Xi (t + 1) = Xi (t) + Vi (t + 1), (22)

where t represents the iteration index, ω represents the inertia
weight, Pbesti represents the individual best of ith parti-
cle, and Gbest represents the global best. c1 and c2 are
non-negative acceleration coefficients, r1 and r2 are positive
constants and randomly selected within [0, 1].

In traditional PSO algorithm, it is inevitable to calculate
the fitness value of the particle to evaluate the performance of
the particle. In fact, the particles represent the class centers
for spectrum sensing problem. Therefore, we use the sum of
the geodesic distances between the particles and each sample
as the fitness value. The details of the RDPSO algorithm is
described in Algorithm 2.

After the training is completed, we can obtain a classifier as

F
(
T̂
)
=
R2

D

(
Υ1, T̂

)
R2

D

(
Υ2, T̂

) , (23)

where T̂ represents the data on the manifold which required to
be classified, Υ1 and Υ2 are the cluster centers. If F(T̂) > ξ,
then the PU is presence and the SUs cannot use the channel.
Otherwise, the SUs can access the spectrum. ξ is a positive
constant, which used to determine Pd and Pf .

D. Complexity Analysis

The complexity of the RMS algorithm is given by O(M ×
T1), where M is the number of data set, T1 is the number of
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Algorithm 2: RDPSO Algorithm
Input: Initial the individual best Pbesti , the global best

Gbest, the position and velocity of each particle
Xi (t) and Vi (t), and the maximum number of
iteration T2.

Output: Gbest
1 Let t = 0;
2 while t < T2 do
3 Obtain the fitness value of the Gbest by

FG =

Q∑
q=1

R2
D (Φq ,Gbest).

4 for i = 0→ Np do
5 Obtain the fitness values of the i th particle and

the Pbesti by

6 Fi =
Q∑

q=1

R2
D (Φq ,Xi (t)),

7 Fip =

Q∑
q=1

R2
D (Φq ,Pbesti ).

8 if Fi < Fip then
9 Pbesti ← Xi (t)

10 if Fip < FG then
11 Gbest ← Pbesti
12 end
13 end
14 end
15 for i = 0→ Np do
16 Update the position and velocity of each particle

by (21) and (22)
17 end
18 if Gbest is convergent then
19 break
20 end
21 end

Fig. 4. The ROC curves of several approaches in Co2.

iteration. It is noticed that the complexity of the RMS algo-
rithm can be rewritten as O(M) as the number of data set
increase.

The complexity of the RDPSO algorithm is calculated as
O(T2 × (Q +Np × 2Q +Np)), where T2 is the number of

Fig. 5. The ROC curves of several approaches in Co3.

Fig. 6. The ROC curve of the RMS-RDPSO approach with different SNR.

iteration, Np is the number of particle, and Q is the number of
fused date set. Therefore, with the Q increase, the complexity
of the RDPSO algorithm becomes O(Q).

Remark 2: Different from the existing approaches [28]
and [31] which used unsupervised clustering algorithms, such
as K-mean and fuzzy-c mean algorithms for CSS, this paper
develops an RDPSO algorithm. It is noticed that the unsu-
pervised clustering algorithms are sensitive to the choice
of initial point, which require several attempts to achieve
good performance. However, the RDPSO algorithm can obtain
excellent performance by randomly initializing the velocity
and the position of the particles. Moreover, this paper devel-
ops an RMS algorithm to eliminate the aberrant data, which
further improves the sensing performance.

Remark 3: It is noticed that the distribution of the test-
statistic and the threshold are not required in this approach. In
this paper, we adopted sensing data and the developed RDPSO
algorithm to obtain a classifier to determine whether the PU
exists. Compared with traditional approaches which require to
derive a precise threshold, this approach is more adaptive. This
is because a precise threshold is hard to obtain on complex
environment.

Remark 4: Compared with the single-input and single-
output based scheme, the advantages of the multiple-input
and multiple-output based scheme lies in that: 1) multiple-
input and multiple-output based scheme can obtain higher data
transmission rate and more reliable link transmission through
multiplexing gain and diversity gain without increasing the
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Fig. 7. The cost value of the RMS-RDPSO approaches in Co1.

Fig. 8. The ROC curves of several approaches in Co4.

Fig. 9. The ROC curves of several approaches in Co5.

system bandwidth and transmission power. 2) multiple-input
and multiple-output technology allows SUs to obtain useful
data and reduces the effects of multipath fading, shading and
receiver uncertainty.

IV. SIMULATION ANALYSIS

A. SUs in Same Condition

In this section, the validity of the RMS-RDPSO based
CSS approach is analyzed on the conditions of Co1, Co2
and Co3, where Co1, Co2 and Co3 represent SNR =
[−12dB,−12dB], SNR = [−14dB,−14dB] and SNR =
[−16dB,−16dB], respectively. The SNR is the signal to noise
ratio of the antennas of the SU. Let the number of the SUs that
participate the data fusion be M = 10, the number of antennas

Fig. 10. The ROC curves of several approaches in Co6.

Fig. 11. The ROC curves of the RMS-RDPSO scheme under different number
of SUs.

Fig. 12. The ROC curves of the RMS-RDPSO scheme under different number
of antennas.

be P = 2, and the number of sample points be N = 1000,
respectively. By applying the RMS algorithm, the data set
Φ̄ = {Φ1, . . . ,Φ1000} which contains 1000 fused samples
is prepared. After RDPSO optimization, the class centers are
given as

Υ1 =

[
11.2338, 0.7418
0.7418, 11.3071

]
, Υ2 =

[
10.3258,−0.2695
−0.2695, 10.3258

]
.

Under the conditions of Co1, Co2 and Co3, the experiment
results of the RMS-RDPSO based CSS scheme and other
previous methods, i.e., EMD-RDFCM, DARDMM, IQDMM,
and IQRMET [24], [27], [28], [31], are shown in Fig. 3–5,
respectively. The simulation results expound that the RDPSO
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TABLE I
THE Pd OF DIFFERENT APPROACHES WHEN SUS IN SAME CONDITION

TABLE II
THE Pd OF DIFFERENT APPROACHES WHEN SUS IN DIFFERENT CONDITION

method obtain superior performance in contrast to conven-
tional approaches. It is worth noticed that the RMS-RDPSO
achieve better result than RDPSO, which means that the RMS-
based data fusion method is valid. The detailed data are given
in Table I. In the case of Co1,Pf = 0.1, compared with
previous approaches, the Pd of the RMS-RDPSO scheme is
improved by 4.51%, 55.95%, 59.20%, 68.64%, and 70.08%,
respectively. Fig. 6 shows the receiver operating characteris-
tic (ROC) curve of the RMS-RDPSO approach with different
SNR. We can observe that when Pf = 0.2, the Pd will rise
with the SNR increase. The convergence of the cost value for
the RDPSO algorithm under Co1 is displayed in Fig. 7. We
can know that the developed RDPSO algorithm is converged.

Remark 5: It is worth mentioning that the existing algo-
rithms DARDMM, DARIG, and IQDDM are worked on
Euclidean space, which use Euclidean distance to measure the
distance between two points. However, the developed RMS-
RDPSO approach can be applied on manifold space, which is
an extension of the previous methods. Furthermore, the RMS
algorithm is developed to eliminate the aberrant data, which
further improves the sensing performance.

Remark 6: In this paper, the cost value of the RDPSO algo-
rithm is the sum of the distances between the particle and
all the sample points. Therefore, as the number of iteration
increase, the particle is closer to the class center, so the cost
value will decrease.

B. SUs in Different Conditions

In this part, we will verify the validity of the RMS-RDPSO
scheme on the conditions of Co4, Co5 and Co6, where Co4,
Co5 and Co6 represent SNR = [−12dB,−12.5dB], SNR =
[−14dB,−14.5dB] and SNR = [−16dB,−16.5dB], respec-
tively. The experimental results are given in Fig. 8–10, where
we can conclude that compared with previous approaches, the

TABLE III
THE Pd OF THE RMS-RDPSO SCHEME IN DIFFERENT NUMBER OF SU

TABLE IV
THE Pd OF THE RMS-RDPSO SCHEME IN DIFFERENT NUMBER OF

ANTENNAS

RMS-RDPSO scheme can acquire the best sensing results. The
Pd of serval approaches are displayed in Table II. In the case
of Co4,Pf = 0.1, we can calculate that the Pd of the RMS-
RDPSO scheme is enhanced by 4.08%, 84.41%, 109.26%,
84.41%, and 110.59%, respectively. According to the results
of Sections IV-A and IV-B, we can find that the RMS-
RDPSO approach acquires the best detection performance than
conventional schemes under two different scenario.

C. Different Number of SUs

In this section, we verify the performance of the developed
RMS-RDPSO scheme when the number of the SU is different.
The ROC curves and Pd are shown in Fig. 11 and Table III,
respectively. According to the experimental data, we can find
that the sensing performance is better with the increase of SU.

D. Different Number of Antennas

In this section, we analyze the influence of the number of
antennas on the performance of the RMS-RDPSO scheme. The
simulation results are shown in Fig. 12 and Table IV. We can
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find that with the number of antennas increase, the Pd of the
RMS-RDPSO scheme is raised.

V. CONCLUSION

In this article, an RMS-RDPSO scheme is proposed to deal
with the spectrum sensing problem in CRN. To improve the
sensing performance, a data fusion scheme based on RMS
algorithm is adopted to eliminate the aberrant data in FC.
Then, an RDPSO clustering algorithm is developed to clus-
ter samples on manifold space. After the classifier is trained,
we adopt it to judge whether the PU exists or not. Finally, the
detection performance of the RMS-RDPSO scheme is verified
under two different conditions. The main contributions of this
paper are on adopting an RMS-based data fusion scheme to
eliminate the aberrant data and developing an RDPSO clus-
tering algorithm to train a classifier on manifold. It is worth
mentioning that the RMS-RDPSO scheme approach can use on
manifold directly and acquires the better sensing performance
than previous approaches. In our future work, since the sce-
nario of this paper is ideal, we will consider more complex
scenarios, such as the primary network traffic model, the
energy consumption, the spatial diversity of the SU is not
enough, and the SUs are mobile.
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A B S T R A C T

In this article, we propose a dynamic event-triggered neuro-optimal control scheme (DETNOC)
for uncertain nonlinear systems subject to unknown dead-zone and disturbances through the
design of a composite control law. An integral sliding mode-based discontinuous control law is
utilized to compensate for the effects of unknown dead-zone, disturbance, and a component of
uncertainties. As a result, a system dynamics that evolves free of these effects during the sliding
mode is obtained. Then, an adaptive dynamic programming-based dynamic event-triggered
optimal control law is designed to stabilize the sliding mode dynamics with the help of critic-
only neural network architecture. Finally, stability analysis of the closed-loop system is provided
and the effectiveness of the developed DETNOC scheme is verified.

. Introduction

Due to the inherent properties of actuators, dead-zone is one of the prevalent constraints in practical systems. It widely exists
n electrical servomotors, hydraulic actuator, power generators, etc. The existence of dead-zone can severely degrade the control
erformance, cause the system instability, and even lead to safety accidents if not appropriately compensated or tackled. Owing
o its distinguished features, such as a simple structure, ease of implementation, inherent robustness, and fast dynamic response,
liding mode control (SMC) has been extensively studied and applied to address dead-zone constraints [1,2]. However, it is worth
entioning that the stability of the closed-loop system is a fundamental requirement in controller design. Additionally, the designed

ontroller is expected to achieve a significant level of optimality.
Optimal control is an effective methodology to optimize a pre-defined performance index function [3,4]. To achieve the above

ontrol objective, many methods design a composite control law consists of a discontinuous control law and an optimal control law
y integrating SMC and optimal control approaches [5]. For uncertain linear systems, Das and Mahanta [6] proposed an optimal
econd-order SMC method. In this method, the discontinuous control law was designed by combining the terminal sliding mode
nd integral sliding mode surfaces (SMSs). Additionally, the optimal control law was obtained by solving the algebraic Riccati
quation (ARE). In [7], an optimal integral SMC (ISMC) method was proposed, in which the discontinuous and optimal control laws
ere designed by using ISMC and solving the ARE, respectively. In the aforementioned methods, the discontinuous control law is
mployed to mitigate the impact of uncertainties and disturbances, resulting in the attainment of linear sliding mode dynamics. On
he other hand, the optimal control law is utilized to stabilize the linear sliding mode dynamics (SMD) while achieving a significant
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level of optimality. In the case of nonlinear systems, the resulting sliding mode dynamics are nonlinear. To obtain the optimal
control law, the Hamilton–Jacobi-Bellman (HJB) equation needs to be solved. However, the HJB equation is a partial differential
equation that is often impossible to solve analytically due to its complexity [8–10]. To address this challenge, the adaptive dynamic
programming (ADP) technique, inspired by reinforcement learning (RL), has been developed. ADP leverages approximators, such as
neural networks (NNs) [11] or fuzzy logic systems [12] to compute forward-in-time and finds an approximate solution to the HJB
equation.

Recently, numerous RL or ADP-based methods have emerged to solve the HJB equation and derive the optimal control law [13–
9]. It should be mentioned that these approaches typically employ time-triggered control (TTC) strategies, which can result in
nnecessary computational burdens and inefficient use of communication resources and bandwidth [20–22]. Fortunately, there has
een a growing interest in the development of event-triggered control (ETC) methods, as they offer the capability to address these
hallenges. Numerous promising results have been reported in this area [23–25]. Nevertheless, the event-triggering condition will
ecome conservative as the sampling error decreases, leading to several unnecessary triggering [26–30]. To overcome this deficiency,
u et al. [26] developed an ADP-based dynamic event-triggered optimal control (DETOC) method for nonlinear systems, where an

nternal dynamic variable was introduced to establish a dynamic event-triggering condition for determining the occurrence of events.
ou et al. [27] developed a dynamic event-triggered optimal tracking control (DETOTC) method by using ADP. This method utilized
n auxiliary dynamic variable to construct a dynamic triggering rule. Yang et al. [28] developed an RL-based decentralized DETOC
ethod for interconnected nonlinear systems, where the triggering rule relied on the system states and the variables generated by

ime-based differential equations. Tan et al. [29] proposed an ADP-based DETOTC method for uncertain nonlinear systems. This
ethod designed a composite control law, in which a discontinuous law was used to compensate uncertain terms and acquire the
onlinear SMD, and the ADP-based DETOC law was designed to stabilize the nonlinear SMD.

Although there have been several reports on ADP-based DETOC methods for addressing optimal control problems, it is important
o note that research in this area is still in its early stages. The practical and theoretical significance motivates us to develop the ADP-
ased dynamic event-triggered neuro-optimal control (DETNOC) scheme for uncertain nonlinear systems with unknown dead-zone
nd disturbances. The novelties and contributions of this work are outlined below.

1. Unlike the existing methods [26–29,31] that addressed optimal control problem without input dead-zone, the ISMC and
ADP are combined to investigate optimal control problems for uncertain nonlinear systems with unknown dead-zone and
disturbances.

2. Different from existing method [32,33] which constructed auxiliary systems to address the control problems for nonlinear
systems with mismatched uncertainties, this paper designs a modified value function to address the effect of the mismatched
component of uncertainties.

3. Compared to existing event-triggered mechanisms [20,23,24], this scheme adopts a dynamic event-triggered mechanism by
introducing a dynamic variable, which effectively reduces the computational burden and saves communication resources.

The remaining sections of this paper are structured as follows. Section 2 presents the problem statement. In Section 3, we
evelop an ADP-based DETNOC method and provide a stability analysis. Section 4 includes two simulation examples to illustrate
he effectiveness of the proposed ADP-based DETNOC method. Finally, Section 5 provides a brief conclusion.

. Problem statement

Consider a class of nonlinear systems

̇ = 𝑎() + 𝑏()
(

D(𝑢) + 𝜚
)

+() (), (1)

where  ∈ R𝑛 is the system state with 0 = (0), 𝑢 = [𝑢1,… , 𝑢𝑖,… , 𝑢𝑚]𝖳 ∈ R𝑚 is the control input, 𝑎() ∈ R𝑛, 𝑏() ∈ R𝑛×𝑚 and
() ∈ R𝑛×𝑞 are continuously differentiable functions, 𝜚 ∈ R𝑚 is the disturbance,  () ∈ R𝑞 is the unknown perturbation, and
D(𝑢) = [D1(𝑢1),… ,D𝑖(𝑢𝑖),… ,D𝑚(𝑢𝑚)]𝖳 ∈ R𝑚 is the output of the dead-zone with

D𝑖(𝑢𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑚𝑟(𝑢𝑖 − 𝑜𝑟) if 𝑢𝑖 ≥ 𝑜𝑟,
0 if 𝑜𝑙 < 𝑢𝑖 < 𝑜𝑟,
𝑚𝑙(𝑢𝑖 − 𝑜𝑙) if 𝑢𝑖 ≤ 𝑜𝑙 ,

(2)

where 𝑚𝑟, 𝑚𝑙 ∈ R are the slops of dead-zone and 𝑚𝑟 = 𝑚𝑙 = 𝑚, and 𝑜𝑟, 𝑜𝑙 ∈ R denote the bounded unknown parameters of dead-zone.
Furthermore, the model (2) can be described as

D𝑖(𝑢𝑖) = 𝑚𝑢𝑖 + 𝑑𝑖(𝑢𝑖) (3)

where 𝑑𝑖(𝑢𝑖) is written as

𝑑𝑖
(

𝑢𝑖(𝑡)
)

=

⎧

⎪

⎨

⎪

⎩

−𝑚𝑜𝑟 if 𝑢𝑖 ≥ 𝑜𝑟,
−𝑚𝑢𝑖 if 𝑜𝑙 < 𝑢𝑖 < 𝑜𝑟,
−𝑚𝑜𝑙 if 𝑢𝑖 ≤ 𝑜𝑙 .

(4)

Let 𝑑(𝑢) = [𝑑1(𝑢1),… , 𝑑𝑖(𝑢𝑖),… , 𝑑𝑚(𝑢𝑚)]𝖳. Then, the system (1) can be formulated as

̇ =  () +  ()
(

𝑚𝑢 + 𝑑(𝑢) + 𝜚
)

+() (). (5)
2

𝑎 𝑏
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For the uncertain term () (), it can be composed of two components

() () =

matched component
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑏()+

𝑏 ()() () +

mismatched component
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝐼𝑛 − 𝑏()+

𝑏 ())() (), (6)

Hence, the system (1) can further be rewritten as

̇ = 𝑎() + 𝑏()(𝑚𝑢 + 𝜌) + ℎ() (), (7)

where 𝜌 = 𝑑(𝑢) + 𝜚 + +
𝑏 ()() () and ℎ() = (𝐼𝑛 − 𝑏()+

𝑏 ())().

3. Controller design based on ISMC and ADP

In this paper, to guarantee the stability of system (1) with considerable optimal performance, a composite control input is
designed as

𝑢 = 𝑢𝑑 + 𝜃̂𝑢𝑐 , (8)

where 𝑢𝑑 is the discontinuous control input employed to eliminate the influences of dead-zone, disturbance, and the matched
component of uncertainties via ISMC, 𝑢𝑐 is the DETOC input designed to stabilize the SMD by using ADP-based dynamic ETC (DETC)
method, and 𝜃̂ is the adaptive term to approximate the reciprocal of the unknown slope parameter 𝑚.

Remark 1. Indeed, it is well known that ISMC is an effective technique to deal with the dead-zone, disturbance, and uncertainties
effects [1,2,34,35]. Furthermore, the stability of the closed-loop system is only the foundation, and the control performance should
also be considered in the process of controller design. Recently, ADP has emerged as a powerful method widely employed to solve
optimal control problems. Hence, this paper combines ISMC and ADP to develop a DETNOC method and design a composite control
law for nonlinear systems with the unknown dead-zone, disturbance, and uncertainties.

Remark 2. Recently, many ADP-based ETC methods have been investigated to solve optimal control, robust control, and fault-
tolerant control problems [3]. It is worth noting that these control schemes are implemented under the static event-triggering strategy
relating on the current values of system state and sampling error [26]. Different from the ADP-based static event-triggering strategy,
the ADP-based dynamic event-triggered strategy designs an internal signal in the basis of static event-triggering rule. As a result,
larger sampling intervals can be generated by the ADP-based dynamic event-triggering rule compared to the static one, which can
further reduce the wastage of computation and communication resources.

3.1. Discontinuous control design

On the basis of the SMC technique, an integral type sliding mode function is formulated as

S(, 𝑡) = () − (0) − ∫

𝑡

0
M()

(

𝑎() + 𝑏()𝑢𝑐 ()
)

𝑑𝜏, (9)

where () ∈ R𝑚 is a design function and M() = 𝜕()∕𝜕 ∈ R𝑚×𝑛. The time derivative of S(, 𝑡) is derived by

Ṡ
(

, 𝑡
)

= M()̇ −M()
(

𝑎() + 𝑏()𝑢𝑐
)

= M()
(

𝑎() + 𝑏()(𝑚𝑢 + 𝜌) + ℎ() ()
)

−M()
(

𝑎() + 𝑏()𝑢𝑐
)

= M()
(

𝑏()(𝑚𝑢 + 𝜌 − 𝑢𝑐 ) + ℎ() ()
)

= M()
(

𝑏()(𝑚𝑢𝑑 + 𝑚𝜃̂𝑢𝑐 + 𝜌 − 𝑢𝑐) + ℎ() ()
)

. (10)

To maintain the system trajectory on the SMS, the discontinuous control law is designed as

𝑢𝑑 = −𝐾sgn
(

𝛯()
)

, (11)

where 𝛯() = 𝖳
𝑏 ()M𝖳()S, 𝐾 denotes the sliding mode gain, and

sgn
(

𝛯()
)

=
[

sgn1(𝛯1()),… , sgn𝑚(𝛯𝑚())
]𝖳,

where sgn𝑖(⋅) is the sign function.

Remark 3. The control law 𝑢𝑑 = −𝐾sgn(𝛯()) aims to maintain the system trajectory on the SMS and achieve the SMD without
the effects from dead-zone, disturbance, and the matched component of uncertainties, thereby enhancing the robustness of the
nonlinear systems. Specifically, the function sgn(⋅) is employed to resist parameter changes and perturbations, the sliding mode gain
𝐾 is selected in accordance with the magnitude of these changes and perturbations. Moreover, the form of (11) is straightforward
3

to implement and is widely used in the ISMC control field [29,34,35].
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w

L

Theorem 1. Considering the nonlinear system (1), the sliding mode function (9), Assumptions 1 and 2, the adaptive term is turned by
̇̂𝜃 = − 1

𝛾S
𝖳M()𝑏()𝑢𝑐 , the discontinuous control law can maintain the system trajectory on the SMS, that is, S = 0.

roof. Select a Lyapunov function candidate as

𝐿1 =
1
2𝑚

S𝖳S + 𝛾𝜃2. (12)

here 𝜃 = 𝜃̂ − 𝜃 is the approximation error. Taking the time derivation of 𝐿1, we have

𝐿̇1 =
1
𝑚
S𝖳

{

M()
(

𝑎() + 𝑏()(𝑚𝑢 + 𝜌) + ℎ() ()
)

−M()
(

𝑎() + 𝑏()𝑢𝑐
)

}

+ 𝛾𝜃 ̇̂𝜃

= 1
𝑚
S𝖳

{

M()
(

𝑏()(𝑚𝑢 + 𝜌 − 𝑢𝑐) + ℎ() ()
)

}

+ 𝛾𝜃 ̇̂𝜃

= S𝖳M()𝑏()𝑢 + 1
𝑚
S𝖳M()𝑏()𝜌 + 1

𝑚
S𝖳M()ℎ() () − 1

𝑚
S𝖳M()𝑏()𝑢𝑐 + 𝛾𝜃 ̇̂𝜃, (13)

et 𝜃 = 1
𝑚 , we have

𝐿̇1 = S𝖳M()𝑏()𝑢 + 𝜃S𝖳M()𝑏()𝜌 + 𝛾𝜃 ̇̂𝜃 + 𝜃S𝖳M()ℎ() () − 𝜃S𝖳M()𝑏()𝑢𝑐
= −𝐾S𝖳M()𝑏()sgn

(

𝖳
𝑏 ()M𝖳()S

)

+ 𝜃̂S𝖳M()𝑏()𝑢𝑐 + 𝜃S𝖳M()𝑏()𝜌 + 𝛾𝜃 ̇̂𝜃

+ 𝜃S𝖳M()ℎ() () − 𝜃S𝖳M()𝑏()𝑢𝑐

= −𝐾S𝖳M()𝑏()sgn
(

𝖳
𝑏 ()M𝖳()S

)

+ 𝜃S𝖳M()𝑏()𝑢𝑐 + 𝜃S𝖳M()𝑏()𝜌 + 𝜃S𝖳M()ℎ() () + 𝛾𝜃 ̇̂𝜃, (14)

Then, recalling the turned rule ̇̂𝜃 = − 1
𝛾S

𝖳M()𝑏()𝑢𝑐 , 𝐿̇1 becomes

𝐿̇1 = −𝐾S𝖳M()𝑏()sgn
(

𝖳
𝑏 ()M𝖳()S

)

+ 𝜃S𝖳M()𝑏()𝑢𝑐 + 𝜃S𝖳M()𝑏()𝜌 + 𝜃S𝖳M()ℎ() () − 𝜃S𝖳M()𝑏()𝑢𝑐
= −𝐾S𝖳M()𝑏()sgn

(

𝖳
𝑏 ()M𝖳()S

)

+ 𝜃S𝖳M()𝑏()𝜌 + 𝜃S𝖳M()ℎ() ()

≤ −𝐾‖S𝖳M()𝑏()‖1 + 𝜃‖𝜌‖‖S𝖳M()𝑏()‖ + 𝜃S𝖳M()ℎ() ()

≤ − (𝐾 − 𝜃‖𝜌‖)‖S𝖳M()𝑏()‖ + 𝜃S𝖳M()ℎ() (). (15)

Inspired by [31,34], M() is chosen as +
𝑏 (), (15) becomes

𝐿̇1 ≤ −‖S‖(𝐾 − 𝜃‖𝜌‖) + 𝜃S𝖳+
𝑏 ()ℎ() ()

≤ −‖S‖(𝐾 − 𝜃̄𝜌̄ − 𝜃̄ℎ̄), (16)

where 𝜃 < 𝜃̄, 𝜌̄ and ℎ̄ are the norm-bound of 𝜌 and +
𝑏 ()ℎ() (), respectively. Thus, if 𝐾 > 𝜃̄(𝜌̄ + ℎ̄) is satisfied, the system

trajectory is maintained on SMS. □

According to the SMC theory, from S(, 𝑡) = Ṡ(, 𝑡) = 0, we can obtain the formulation of equivalent control law as

𝑢𝑑𝑒𝑞 = − 1
𝑚
𝜌 − (𝜃̂ − 1)𝑢𝑐 −

1
𝑚
(

M()𝑏()
)−1

M()ℎ() (). (17)

Substituting (17) and (8) into (1), the SMD is obtained as

̇ = 𝑎() + 𝑏()
(

𝑚(𝑢𝑑 + 𝜃̂𝑢𝑐) − 𝜌
)

+ ℎ() ()

= 𝑎() + 𝑏()𝑢𝑐 − 𝑏()
(

M()𝑏()
)−1

M()ℎ() () + ℎ() ()

= 𝑎() + 𝑏()𝑢𝑐 +
(

𝐼𝑛 − 𝑏()
(

M()𝑏()
)−1

M()
)

ℎ() (). (18)

Considering M() = +
𝑏 (), (18) becomes

̇ = 𝑎() + 𝑏()𝑢𝑐 +
(

𝐼𝑛 − 𝑏()+
𝑏 ()

)

ℎ() ()

= 𝑎() + 𝑏()𝑢𝑐 +
(

𝐼𝑛 − 𝑏()+
𝑏 ()

)(

𝐼𝑛 − 𝑏()+
𝑏 ()

)

() ()

= 𝑎() + 𝑏()𝑢𝑐 +
(

𝐼𝑛 − 𝑏()+
𝑏 ()

)

() (). (19)

Then, the SMD (19) is revised as

̇ = 𝑎() + 𝑏()𝑢𝑐 + ℎ() (). (20)

Assumption 1. The mismatched component ℎ() () satisfies ‖ℎ() ()‖ ≤ 𝛤 () and the input matrix function 𝑏() is
4

norm-bounded by ‖𝑏()‖ ≤ 𝑔̄, where 𝛤 () is a known function and 𝑔̄ is a positive constant.
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3.2. ADP-based DETOC design

In the following, a DETOC law 𝑢𝑐 is designed to stabilize the SMD (20). Through the design of a modified value function, the
control problem of the SMD is transformed into a DETOC problem of its nominal version, which is given by

̇ = 𝑎() + 𝑏()𝑢𝑐 . (21)

or the system (21), the value function is derived by

𝒱 (, 𝑢𝑐 ) = ∫

∞

𝑡

(

𝛤 () + ∇𝒱 𝖳()∇𝒱 () +𝖳𝑄 + 𝑢𝖳𝑐𝑅𝑢𝑐
)

𝑑𝜏, (22)

here 𝑄 ∈ R𝑛×𝑛 and 𝑅 ∈ R𝑚×𝑚 are positive definite symmetric matrices. Denote the optimal value function as 𝒱 ∗(), which satisfies

𝒱 ∗() = min
𝑢𝑐∈𝑅(𝛺)

𝒱 (, 𝑢𝑐), (23)

here 𝑅(𝛺) is the admissible control set over 𝛺. The 𝒱 ∗() is the solution of the following HJB equation

min
𝑢𝑐∈𝑅(𝛺)

ℋ
(

,∇𝒱 ∗(), 𝑢𝑐
)

= 0, (24)

here ℋ
(

,∇𝒱 ∗(), 𝑢𝑐
)

is the Hamiltonian for ∇𝒱 ∗() and 𝑢𝑐 , written as

ℋ
(

,∇𝒱 ∗(), 𝑢𝑐
)

= 𝒱 ∗𝖳()(𝑎() + 𝑏()𝑢𝑐) +𝖳𝑄 + 𝑢𝖳𝑐𝑅𝑢𝑐 + 𝛤 () + ∇𝒱 𝖳()∇𝒱 (), (25)

here ∇𝒱 ∗() ≜ 𝜕𝒱 ∗()∕𝜕. From (24). we have

𝜕ℋ
(

,∇𝒱 ∗(), 𝑢𝑐
)

𝜕𝑢𝑐

|

|

|

|𝑢𝑐=𝑢∗𝑐
= 0, (26)

hen, according to (26) and (25), it yields

𝑢∗𝑐 () = −1
2
𝑅−1𝖳

𝑏 ()∇𝒱 ∗(), (27)

ubstituting (27) into (24), we further obtain

ℋ
(

,∇𝒱 ∗(), 𝑢∗𝑐
)

= ∇𝒱 ∗𝖳()(𝑎() + 𝑏()𝑢∗𝑐 ) +𝖳𝑄 + 𝑢∗𝖳𝑐 𝑅𝑢∗𝑐 + 𝛤 () + ∇𝒱 ∗𝖳()∇𝒱 ∗() = 0. (28)

t is noted that the HJB equation (28) is a nonlinear partial differential equation, the analytical solution is extremely difficult or
ven impossible to be obtained. Many methods have been developed to solve the HJB equation using ADP-based time-triggered
echanism, and these methods design the TTC law which often involves heavy computational burden and wastes communication

esources. To overcome this shortcoming, we develop a DETNOC method in the following.
Denote {𝑡𝑠}∞𝑠=0 as a monotonically increasing sequence of triggering instants, where 𝑠 is the 𝑠th triggering instant. Let the

vent-triggered state as ̂𝑠 = (𝑡𝑠), the event-triggering error can be defined as

𝑒𝑠(𝑡) = ̂𝑠 −(𝑡). (29)

hen, the DETOC law is derived by

𝑢∗𝑐 (̂𝑠) = −1
2
𝑅−1𝖳

𝑏 (̂𝑠)∇𝒱 ∗(̂𝑠). (30)

nspired by [26,28], a dynamic event-triggering condition is designed as

𝑡𝑠+1 = inf
{

𝑡 > 𝑡𝑠|(𝑡) + 𝛽
(

(1 −𝜛2)𝖳𝑄 − 𝐿2
𝑢 𝑔̄

2
‖𝑒𝑠(𝑡)‖2

)

≤ 0
}

(31)

ith 𝑡0 = 0, where 𝛽 is a design parameter and (𝑡) is updated by

̇(𝑡) = −𝛼(𝑡) + (1 −𝜛2)𝖳𝑄 − 𝐿2
𝑢 𝑔̄

2
‖𝑒𝑠(𝑡)‖2 (32)

with (0) ≥ 0, where 𝛼 > 0 and 0 < 𝜛 < 1 are two design parameters, 𝐿𝑢 > 0 is the Lipschitz constant from the following
ssumption 2.

ssumption 2. For the optimal control law 𝑢∗𝑐 , there exists a Lipschitz constant 𝐿𝑢 such that

‖𝑢∗𝑐 () − 𝑢∗𝑐 (̂𝑠)‖ ≤ 𝐿𝑢‖ − ̂𝑠‖ = 𝐿𝑢‖𝑒𝑠(𝑡)‖. (33)

Lemma 1. Let (𝑡) be turned by (32), and the events be generated using the condition (31), then (𝑡) ≥ 0 for any 𝑡 ∈ [0,∞).

Proof. Based on the triggering condition (31), for any 𝑡 ∈ [0,∞), one has
( 2 𝖳 2 2 2)
5

(𝑡) + 𝛽 (1 −𝜛 ) 𝑄 − 𝐿𝑢 𝑔̄ ‖𝑒𝑠(𝑡)‖ ≥ 0. (34)
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If 𝛽 = 0, then (𝑡) ≥ 0 is true. If 𝛽 ≠ 0, by combining (31) and (34), we can derive

̇(𝑡) + 𝛼(𝑡) = (1 −𝜛2)𝖳𝑄 − 𝐿2
𝑢 𝑔̄

2
‖𝑒𝑠(𝑡)‖2 ≥ −

(𝑡)
𝛽

(35)

ith (0) ≥ 0. Then, by using the comparison lemma, we have

(𝑡) ≥ (0)𝑒−(𝛼+
1
𝛽 )𝑡, 𝑡 ∈ [0,∞). (36)

It implies that (𝑡) ≥ 0 for any 𝑡 ∈ [0,∞). □

Theorem 2. Considering the system (1), the SMD (20), Assumptions 1 and 2, the composite control law (8) with (11) and (30). By
esigning the dynamic event-triggering condition as (31), the closed-loop system (1) can be ensured to be asymptotically stable.

roof. Select a Lyapunov function candidate as

𝐿2(𝑡) = 𝒱 ∗() + (𝑡). (37)

ccording to Theorem 1, the trajectory of system (1) is maintained on the ISM surface, and then, the sliding mode dynamic system
19) can be obtained. Taking the time derivative of the 𝐿2(𝑡), it yields

𝐿̇2(𝑡) = ∇𝒱 ∗𝖳()
(

𝑎() + 𝑏()𝑢∗𝑐 (̂𝑠) + ℎ() ()
)

+ ̇(𝑡). (38)

ccording to (27), it reveals

∇𝒱 ∗𝖳()𝑎() = −∇𝒱 ∗𝖳()𝑏()𝑢∗𝑐 −𝖳𝑄 − 𝑢∗𝖳𝑐 𝑅𝑢∗𝑐 − 𝛤 () − ∇𝒱 ∗𝖳()∇𝒱 ∗(), (39)

ogether with (39), we have (40).

𝐿̇2(𝑡) = ∇𝒱 ∗𝖳()𝑏()𝑢∗𝑐 (̂𝑠) + ∇𝒱 ∗𝖳()ℎ() () − ∇𝒱 ∗𝖳()𝑏()𝑢∗𝑐 −𝖳𝑄 − 𝑢∗𝖳𝑐 ()𝑅𝑢∗𝑐 () − 𝛤 ()

− ∇𝒱 ∗𝖳()∇𝒱 ∗() + ̇(𝑡)

≤ −𝖳𝑄 − 𝑢∗𝖳𝑐 ()𝑅𝑢∗𝑐 () + ∇𝒱 ∗𝖳()𝑏()
(

𝑢∗𝑐 (̂𝑠) − 𝑢∗𝑐
)

+ ∇𝒱 ∗𝖳()ℎ() () − 𝛤 () − ∇𝒱 ∗𝖳()∇𝒱 ∗() + ̇(𝑡)

≤ −𝖳𝑄 − 𝑢∗𝖳𝑐 ()𝑅𝑢∗𝑐 () + 1
2
‖∇𝒱 ∗𝖳()‖2 + 1

2
‖𝑏()

(

𝑢∗𝑐 (̂𝑠) − 𝑢∗𝑐 ()
)

‖

2 + 1
2
‖∇𝒱 ∗𝖳()‖2 + 1

2
‖ℎ() ()‖2

− 𝛤 () − ∇𝒱 ∗𝖳()∇𝒱 ∗() + ̇(𝑡)

≤ −𝖳𝑄 − 𝑢∗𝖳𝑐 ()𝑅𝑢∗𝑐 () + 1
2
𝑔̄2‖

(

𝑢∗𝑐 (̂𝑠) − 𝑢∗𝑐 ()
)

‖

2 + 1
2
‖ℎ() ()‖2 − 𝛤 () + ̇(𝑡). (40)

et 𝑅 = 𝑟𝖳𝑟, and recalling Assumption 2, we get

𝐿̇2(𝑡) ≤ −𝖳𝑄 + 𝐿2
𝑢 𝑔̄

2
‖𝑒𝑠(𝑡)‖2 − ‖𝑟‖2‖𝑢∗𝑐 ()‖2 + ̇(𝑡)

≤ −𝜛2𝖳𝑄 − (1 −𝜛2)𝖳𝑄 + 𝐿2
𝑢 𝑔̄

2
‖𝑒𝑠(𝑡)‖2 − ‖𝑟‖2‖𝑢∗𝑐 ()‖2 + ̇(𝑡)

≤ −𝜛2𝖳𝑄 − (1 −𝜛2)𝖳𝑄 + 𝐿2
𝑢 𝑔̄

2
‖𝑒𝑠(𝑡)‖2 − ‖𝑟‖2‖𝑢∗𝑐 ()‖2 − 𝛼(𝑡) + (1 −𝜛2)𝖳𝑄 − 𝐿2

𝑢 𝑔̄
2
‖𝑒𝑠(𝑡)‖2

≤ −𝜛2𝖳𝑄 − 𝛼(𝑡) − ‖𝑟‖2‖𝑢∗𝑐 ()‖2, (41)

ince (𝑡) ≥ 0 based on Lemma 1, we further derive from (41) as

𝐿̇2(𝑡) ≤ −𝜛2𝖳𝑄 − ‖𝑟‖2‖𝑢∗𝑐 ()‖2 ≤ 0. (42)

herefore, the closed-loop system (1) can be guaranteed to be asymptotically stable. □

In the sequence, a three feedforward NN is used as a critic NN to approximate the optimal value function 𝒱 ∗() on the compact
by

𝒱 ∗() = 𝜗𝖳𝑣𝜙𝑣() + 𝜁𝑣(). (43)

here 𝜗𝑣 ∈ R𝑙𝑐 is the ideal weight vector, 𝑙𝑣 is the number of neurons, 𝜙𝑣() = [𝜙𝑣1(), 𝜙𝑣2(),… , 𝜙𝑣𝑙𝑐 ()]𝖳 is the activation function,
nd its element 𝜙𝑣𝑖() satisfy 𝜙𝑣𝑖() ∈ 𝐶1(𝛺) with 𝜙𝑣𝑖(0) = 0 and ∇𝜙𝑣𝑖(0) = 0, 𝑖 = 1, 2,… , 𝑙𝑐 , and 𝜁𝑣() ∈ R is the approximation
rror. Differentiating 𝒱 ∗() with respect to , it yields

∇𝒱 ∗() = ∇𝜙𝖳
𝑣 ()𝜗𝑣 + ∇𝜁𝑣(). (44)

nserting (44) into (30), we have

𝑢𝑐 (̂𝑠) = −1
2
𝑅−1𝖳

𝑏 (̂𝑠)
(

∇𝜙𝖳
𝑣 (̂𝑠)𝜗𝑣 + ∇𝜁𝑣(̂𝑠)

)

. (45)

Note that the ideal weight vector 𝜗 is unavailable, which causes the inability of implementing 𝑢𝑐 (̂𝑠). To solve the issue, an estimated
weight vector 𝜗̂ is employed to replace 𝜗, and then the approximation 𝒱 ∗() is expressed as

̂ ̂𝖳
6

𝒱 () = 𝜗𝑣𝜙𝑣(). (46)
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Fig. 1. The control phase of the developed ADP-based DETNOC method.

In similar to (44), we deduce

∇𝒱 () = ∇𝜙𝖳
𝑣 ()𝜗̂𝑣. (47)

Then, the approximation DETOC law is given by

𝑢̂𝑐 (̂𝑠) = −1
2
𝑅−1𝖳

𝑏 (̂𝑠)∇𝜙̂𝖳
𝑣 (̂𝑠)𝜗𝑣. (48)

Replacing simultaneously 𝒱 ∗() and 𝑢∗𝑐 () in Hamiltonian (27) with 𝒱 ∗() and 𝑢𝑐 (̂𝑠), the approximate Hamiltonian is expressed
as

ℋ̂
(

,∇𝒱 (), 𝑢̂∗𝑐 (̂𝑠)
)

= 𝜗̂𝖳𝑣∇𝜙𝑣()
(

𝑎() + 𝑏()𝑢̂𝑐 (̂𝑠)
)

+𝖳𝑄 + 𝑢̂𝖳𝑐 (̂𝑠)𝑅𝑢̂𝑐 (̂𝑠) + 𝛤 () + 𝜗̂𝖳𝑣∇𝜙𝑣()∇𝜙𝖳
𝑣 ()𝜗̂𝑣. (49)

According to (28), ℋ
(

,∇𝒱 ∗(), 𝑢∗𝑐
)

= 0. Thus, there exists an error between (28) and (49). Let 𝑒𝑣 be the error, we have

𝑒𝑣 = ℋ̂
(

,∇𝒱 (), 𝑢̂𝑐 (̂𝑠)
)

−ℋ
(

,∇𝒱 ∗(), 𝑢∗𝑐
)

= 𝜗̂𝖳𝑣𝜑𝑣 +𝖳𝑄 + 𝑢̂𝖳𝑐 (̂𝑠)𝑅𝑢̂𝑐 (̂𝑠) + 𝛤 () + 𝜗̂𝖳𝑣∇𝜙𝑣()∇𝜙𝖳
𝑣 ()𝜗̂𝑣, (50)

here 𝜑𝑣 = ∇𝜙𝑣()
(

𝑎() + 𝑏()𝑢̂𝑐
)

. The training objective of the critic NN is to make 𝑒𝑣 → 0 through tuning 𝜗̂𝑣 → 𝜗𝑣. To achieve
this objective, we should minimize the square function defined as 𝐸𝑣 = 0.5𝑒𝖳𝑣 𝑒𝑣 via updating 𝜗̂𝑣. Based on the gradient descent
algorithm, 𝜗̂𝑣 is updated by

̇̂𝜗𝑣 = −𝛼𝑐
1

(1 + 𝜑𝖳
𝑣𝜑𝑣)2

(

𝜕𝐸𝑣

𝜕𝜗̂𝑣

)

= −𝛼𝑐
𝜑𝑣 + 2∇𝜙𝑣()∇𝜙𝖳

𝑣 ()𝜗̂𝑣
(1 + 𝜑𝖳

𝑣𝜑𝑣)2
𝑒𝑣. (51)

Let 𝜗̃𝑣 = 𝜗𝑣 − 𝜗̂𝑣 be the weight error vector, which can be guaranteed to be UUB with the updating law (51). The proof has been
provided in [11,20,24], so the detail is omitted here.

To illustrate the developed ADP-based DETNOC method, the control architecture is shown in Fig. 1, and the process of controller
design is provided in Algorithm 1.

3.3. Stability analysis

Assumption 3. ∇𝜙𝑣(), ∇𝜁𝑣() and 𝜗̃ are norm-bounded, i.e., ‖∇𝜙𝑣()‖ ≤ 𝜙̄𝑣, ‖∇𝜁𝑣()‖ ≤ 𝜁𝑣 and ‖𝜗̃‖ ≤ 𝜗̄, where 𝜙̄𝑣, 𝜁𝑣 and 𝜗̄𝑣
are positive constants.

Theorem 3. Considering the system (21), Assumptions 1–3, the approximate DETOC law (48), if the dynamic event-triggering
condition (31) is satisfied, the closed-loop system (21) is guaranteed to be UUB and (𝑡) is asymptotically stable.

Proof. Choose the Lyapunov function candidate as

𝐿3(𝑡) = 𝒱 ∗(̂𝑠)
⏟⏟⏟

𝐿31

+𝒱 ∗()
⏟⏟⏟

𝐿32

+ (𝑡)
⏟⏟⏟

𝐿33

(52)

Case 1: There is no event triggered, i.e., ∀𝑡 ∈ [𝑡𝑠, 𝑡𝑠+1). Differentiating (52), yields

𝐿̇31 = 0, (53a)

𝐿̇32 = ∇𝒱 ∗𝖳()
(

𝑎() + 𝑏()𝑢̂𝑐 (̂𝑠)
)

, (53b)

𝐿̇33 = ̇(𝑡), (53c)
7
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Algorithm 1 ADP-based DETNOC method
Step 1: Switch control law design

1-1: Construct the sliding mode function as

S(, 𝑡) = () − (0) − ∫

𝑡

0
M()

(

)𝑎() + 𝑏()𝑢𝑐 ()
)

𝑑𝜏.

1-2: Design the adaptive term 𝜃, which is updated by ̇̂𝜃 = −(1∕𝛾)S𝖳M()𝑏()𝑢𝑐 . Moreover, design a discontinuous control law
𝑢𝑑 = −𝐾sgn

(

𝛯()
)

to maintain the system trajectory on SMS for obtaining the SMD

̇ = 𝑎() + 𝑏()𝑢𝑐 + ℎ() ().

tep 2: Dynamic event-triggered control law design
2-1: According to the nominal version of the SMD, define the value function as

𝒱 (, 𝑢𝑐 ) = ∫

∞

𝑡

(

𝛤 () + ∇𝒱 𝖳()∇𝒱 () +𝖳𝑄 + 𝑢𝖳𝑐𝑅𝑢𝑐
)

𝑑𝜏.

2-1: Design a dynamic event-triggering strategy as

𝑡𝑠+1 = inf
{

𝑡 > 𝑡𝑠|(𝑡) + 𝛽
(

(1 −𝜛2)𝖳𝑄 − 𝐿2
𝑢 𝑔̄

2
‖𝑒𝑠(𝑡)‖2

)

≤ 0
}

.

2-2: Introduce a critic NN to approximate the optimal value function, the weight vector of the critic NN is updated by

̇̂𝜗𝑐 = −𝛼𝑐
1

(1 + 𝜑𝖳
𝑣𝜑𝑣)2

(

𝜕𝐸𝑣

𝜕𝜗̂𝑣

)

.

2-3: Obtain the dynamic event-triggered control law as

𝑢̂𝑐 (̂𝑠) = −1
2
𝑅−1𝖳

𝑏 (̂𝑠)∇𝜙̂𝖳
𝑣 (̂𝑠)𝜗𝑣.

Step 3: Integrate the discontinuous control law 𝑢𝑑 and the ADP-based DETOC law 𝑢̂𝑐 (̂𝑠)
3-1: From composite control law (8), integrate the control laws 𝑢𝑑 and 𝑢̂𝑐(̂𝑠) as

𝑢 = −𝐾sgn
(

𝛯()
)

− 1
2
𝜃̂𝑅−1𝖳

𝑏 (̂𝑠)∇𝜙̂𝖳
𝑣 (̂𝑠)𝜗𝑣.

3-2: Apply the composite control law to nonlinear system (1) with uncertainties, disturbances, and dead-zone.

From (28) and (60), we have

𝐿̇3 = − ∇𝒱 ∗𝖳()𝑏()𝑢∗𝑐 −𝖳𝑄 − 𝑢∗𝖳𝑐 ()𝑅𝑢∗𝑐 () + ∇𝒱 ∗𝖳()𝑏()𝑢̂𝑐(̂𝑠) + ̇(𝑡) − 𝛤 () − ∇𝒱 ∗𝖳()∇𝒱 ∗()

≤ −𝖳𝑄 − 𝑢∗𝖳𝑐 ()𝑅𝑢∗𝑐 () + ∇𝒱 ∗𝖳()𝑏()(𝑢̂𝑐 (̂𝑠) − 𝑢∗𝑐 ()) + ̇(𝑡) − ∇𝒱 ∗𝖳()∇𝒱 ∗()

≤ −𝖳𝑄 − 𝑢∗𝖳𝑐 ()𝑅𝑢∗𝑐 () + 1
2
‖𝑏()(𝑢̂𝑐 (̂𝑠) − 𝑢∗𝑐 ())‖2 + ̇(𝑡)

≤ −𝖳𝑄 − 𝑢∗𝖳𝑐 ()𝑅𝑢∗𝑐 () + 1
2
𝑔̄2 ‖𝑢∗𝑐 () − 𝑢̂𝑐 (̂𝑠)‖2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛩

+̇(𝑡). (54)

onsidering 𝜗𝑣 = 𝜗̂𝑣 + 𝜗̃𝑣, we get

𝛩 = ‖

‖

‖

(

𝑢∗𝑐 () − 𝑢∗𝑐 (̂𝑠)
)

+
(

𝑢∗𝑐 (̂𝑠) − 𝑢̂𝑐(̂𝑠)
)

‖

‖

‖

2

≤ 2‖‖
‖

𝑢∗𝑐 () − 𝑢∗𝑐 (̂𝑠)
‖

‖

‖

2
+ 2‖‖

‖

𝑢∗𝑐 (̂𝑠) − 𝑢̂𝑐 (̂𝑠)
‖

‖

‖

2

≤ 1
2
‖𝑟−1‖2𝑔̄‖‖

‖

∇𝜙𝖳
𝑣 (̂𝑠)𝜗̂𝑣 − ∇𝜙𝖳

𝑣 (̂𝑠)𝜗𝑣 − ∇𝜁𝑣(̂𝑠)
‖

‖

‖

2
+ 2𝐿2

𝑢‖𝑒𝑠(𝑡)‖
2

≤ 1
2
‖𝑟−1‖2𝑔̄2‖ − ∇𝜁𝑣(̂𝑠) − ∇𝜙𝖳

𝑐 (̂𝑠)𝜗̃𝑣‖2 + 2𝐿2
𝑢‖𝑒𝑠(𝑡)‖

2

≤ 2𝐿2
𝑢‖𝑒𝑠(𝑡)‖

2 + ‖𝑟−1‖2𝑔̄2
(

𝜙̄2
𝑣𝜗̄

2
𝑣 + 𝜁2𝑣

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛱̄

. (55)

According to (32) and (55), (54) becomes

𝐿̇3 = −𝖳𝑄 − 𝑟2‖𝑢∗𝑐 ()‖2 + 𝐿2
𝑢 𝑔̄

2
‖𝑒𝑠(𝑡)‖2 + 𝛱̄ + ̇(𝑡)

= −𝜛2𝖳𝑄 − (1 −𝜛2)𝖳𝑄 − ‖𝑟‖2‖𝑢∗𝑐 ()‖2 + 𝐿2
𝑢 𝑔̄

2
‖𝑒𝑠(𝑡)‖2 + 𝛱̄ − 𝛼(𝑡) + (1 −𝜛2)𝖳𝑄 − 𝐿2

𝑢 𝑔̄
2
‖𝑒𝑠(𝑡)‖2. (56)
8
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Therefore, it yields

𝐿̇3 ≤ −𝜛2𝜆min(𝑄)‖‖

2 − ‖𝑟‖2‖𝑢∗𝑐 ()‖2 − 𝛼(𝑡) + 𝛱̄. (57)

hen, if  lies outside the compact set 𝛺 =
{

∶ ‖‖ ≤
√

𝛱̄∕(𝜛2𝜆min(𝑄))
}

, we have

𝐿̇3 ≤ −‖𝑟‖2‖𝑢∗𝑐 ()‖2 − 𝛼(𝑡) ≤ 0, (58)

Furthermore, it shows 𝐿̇3 ≤ −‖𝑟‖2‖𝑢∗𝑐 ()‖2 < 0,∀ ≠ 0 and 𝐿̇3 ≤ −𝛼(𝑡) < 0,∀(𝑡) ≠ 0. Hence, it reveals that the closed-loop system
(21) is guaranteed to be UUB and (𝑡) is asymptotically stable using the Lyapunov theorem [26,28].

Case 2: Events are triggered, i.e., ∀𝑡 = 𝑡𝑠+1. Calculating the difference of the Lyapunov function candidate, we have

𝛥𝐿3 = 𝛥𝐿31 + 𝛥𝐿32 + 𝛥𝐿33, (59)

with

𝛥𝐿31 = 𝒱 ∗(̂𝑠+1) −𝒱 ∗(̂𝑠), (60a)

𝛥𝐿32 = 𝒱 ∗((𝑡𝑠+1)
)

−𝒱 ∗((𝑡−𝑠+1)
)

, (60b)

𝛥𝐿33 = (𝑡𝑠+1) − (𝑡−𝑠+1), (60c)

where ℏ(𝑡−𝑠+1) = lim𝛥𝑡→0 ℏ(𝑡𝑠+1 − 𝛥𝑡), and ℏ(⋅) denotes (⋅) and (⋅), respectively. According to the proof presented in Case 1, 𝐿̇3 < 0
for 𝑡 ∈ [𝑡𝑠, 𝑡𝑠+1) if  lies outside the compact set (58). This gives that 𝐿3 is strictly decreasing over 𝑡 ∈ [𝑡𝑠, 𝑡𝑠+1). With all systems
signals are continuous, it means that 𝛥𝐿31 ≤ 0, 𝛥𝐿32 ≤ 0 and 𝛥𝐿33 ≤ 0. Then, we have

𝛥𝐿3 ≤ −𝜒(‖𝑒𝑠+1(𝑡𝑠)‖) ≤ 0, (61)

where 𝑒𝑠+1(𝑡𝑠) = ̂𝑠+1 − ̂𝑠 and 𝜒(⋅) is a class- function. Thus, it can be concluded that the Lyapunov candidate is decreasing
∀𝑡 = 𝑡𝑠+1.

Combining Cases 1 and 2, one can obtain the conclusion that the UUB stability of  and the asymptotic stability of (𝑡) are
guaranteed under the dynamic event-triggering condition (31) and the approximate DETOC law (48). □

Remark 4. Recall the property that multilayer NNs are universal approximators, capable of approximating smooth functions on a
compact set [26,36]. However, there is always a deviation between the approximate function and the target function in practice.
Observing Theorem 3, this deviation results in an error term given by 0.5‖𝑟−1‖2𝑔̄2‖−∇𝜁𝑣(̂𝑠)−∇𝜙𝖳

𝑐 (̂𝑠)𝜗̃𝑣‖2 occurrence in (55), which
is upper-bounded by a positive constant 𝛱̄ . In Theorem 3, according to Lyapunov theorem, only UUB stability can be guaranteed
for the closed-loop system (21), rather than asymptotically stable, due to the existence of 𝛱̄ .

Assumption 4. The nonlinear function 𝑎() is uniformly bounded on 𝛺, i.e., sup∈𝛺 ‖𝑎()‖ ≤ 𝐾𝑓‖‖, where 𝐾𝑓 is a positive
constant [28,37].

In the following sequence, we will provide a proof that the Zeno behavior is excluded.

Theorem 4. Let Assumption 4 holds, considering the system (21), the dynamic event-triggering condition (31), the minimal intersampling
time 𝛥𝑡min has lower bound by

𝛥𝑡min ≥
1
𝐾𝑓

ln

(

1 +

√

(𝑡)∕𝛽 + (1 −𝜛2)𝖳𝑄
𝑧

)

> 0, (62)

where 𝐾𝑓 and 𝑧 are positive constants.

Proof. Differentiating the event-triggered error 𝑒𝑝(𝑡), yields

𝑑
(

𝑒𝑠(𝑡)
)

𝑑𝑡
= 𝑒̇𝑠(𝑡) =

̇̂𝑠 − ̇ ≡ −̇,∀𝑡 ∈ [𝑡𝑠, 𝑡𝑠+1).

y using the (29) and (48), we have

‖𝑒̇𝑠‖ = ‖̇‖

= ‖

‖

‖

𝑎() + 𝑏()𝑢̂𝑐
‖

‖

‖

≤ ‖

‖

‖

𝑎()‖‖
‖

+ ‖

‖

‖

𝑏()𝑢̂𝑐
‖

‖

‖

≤ 𝐾𝑓‖𝑥‖ +𝐾𝑔

≤ 𝐾𝑓‖̂𝑠 − 𝑒𝑠‖ +𝐾𝑔

≤ 𝐾𝑓‖𝑒𝑠‖ +𝐾𝑓‖̂𝑠‖ +𝐾𝑔 , (63)
9
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Fig. 2. Critic NN weights.

here ‖𝑏()𝑢̂𝑐‖ ≤ 𝐾𝑔 , 𝑎() is a Lipschitz function which satisfies ‖𝑎()‖ ≤ 𝐾𝑓‖‖, where 𝐾𝑓 is a positive constant. According
o [28,37], we can obtain from (63)

‖𝑒𝑠‖ ≤
𝐾𝑓‖̂𝑠‖ +𝐾𝑔

𝐾𝑓

(

𝑒𝐾𝑓 (𝑡−𝑡𝑠) − 1
)

(64)

for all 𝑡 ∈ [𝑡𝑠, 𝑡𝑠+1). Recalling the dynamic event-triggering condition (31), we have

‖𝑒𝑠‖
2 ≥

(𝑡)∕𝛽 + (1 −𝜛2)𝖳𝑄
𝐿2
𝑢 𝑔̄2

(65)

or 𝑡 = 𝑡𝑠+1. According to (64) and (65), it indicates that the 𝑠th intersampling time satisfies

𝑡𝑠+1 − 𝑡𝑠 ≥
1
𝐾𝑓

ln

(

1 +

√

∕𝛽 + (1 −𝜛2)𝖳𝑄
𝑧

)

> 0,

where 𝑧 =
𝐾𝑓 ‖̂𝑠‖+𝐾𝑔

𝐾𝑓
. That is to say, 𝛥𝑡min = min{𝑡𝑠+1 − 𝑡𝑠} > 0 in (62). □

4. Simulation studies

4.1. Example 1

Consider the following nonlinear system

̇ =
[

2
−1 + 0.5(1 −2

2)2

]

+
[

0
1

]

(

D(𝑢) +

𝜚(𝑡)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
sin(2𝑡) cos(𝑡)

)

+

()
⏞⏞⏞
[

0.15
0

]

 ()
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

0.252 sin(12) cos(2)
)

, (66)

where  = [1,2]𝖳 ∈ R2 is the system state, 𝑢 is the control input, the input dead-zone D(𝑢) is given as 𝑚𝑙 = 𝑚𝑟 = 0.5, 𝑜𝑟 = 0.25
and 𝑜𝑙 = −0.25, and the nominal system can be given by

̇ =
[

2
−1 + 0.5(1 −2

2)2

]

+
[

0
1

]

𝑢. (67)

First, the ADP-based DETOC law is designed for nominal system (67). Define the value function as (22), and its parameters are
set as 𝑄 = 𝐼 , 𝑅 = 1 and 𝛤 () = ‖‖

2. For the critic NN, 𝜎𝑣() = [2
1,12,2

2]
𝖳, 𝜗̂𝑣 = [𝜗̂𝑣1, 𝜗̂𝑣2, 𝜗̂𝑣3]𝖳, 𝛼𝑐 = 1.8. The parameters of

the triggering condition are selected as 𝐿𝑢 = 15, 𝜛 = 06, 𝑔̄ = 1.2, 𝛽 = 0.6, (0) = 4, and 𝛼 = 0.3. Simulation results are illustrated in
igs. 2–10.

From Fig. 2, it can be observed that the weight vector of the critic neural network 𝜗̂𝑐 converges to the values
1.2312, 0.1066, 1.1633]𝖳 finally. Fig. 3 provides the state trajectories of the nominal system. As shown in Fig. 4, the DETOC input
𝑢̂𝑐 is a piecewise signal which is updated at 𝑡𝑠 only and keeps unchanged during [𝑡𝑠, 𝑡𝑠+1) under the DETC mechanism. The curves
f dynamic event-triggered threshold and error are shown in Fig. 5. The sampling period of TTC mechanism is set as 0.05 s, the
pdating times of the DETC, ETC and TTC are depicted in Fig. 6, it is clear from this figure that the less updating frequency of the
ontrol signal in DETC than ETC and TTC mechanism, and easy to conclude that the computational and communication resources
an be saved. Fig. 7 presents the curves of dynamic variable and its low bound function, one can find that the dynamic variable
10

第157页



Communications in Nonlinear Science and Numerical Simulation 139 (2024) 108308S. Zhang et al.

i
w

Fig. 3. System states of system (67).

Fig. 4. Approximation DETOC input 𝑢̂𝑐 of system (67).

Fig. 5. Dynamic event-triggered threshold and error.

s always greater than or equal to the bound function with the time increasing. The triggering time instants are shown in Fig. 8,
hich demonstrates that Zeno behavior is avoided.
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Fig. 6. Updating times of different control mechanisms.

Fig. 7. Dynamic variable and its low bound function.

Fig. 8. Dynamic event-triggering time instants.
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w


Fig. 9. System states of closed-loop system (66).

Fig. 10. Approximation DETOC and composite control inputs.

Table 1
Parameters of the pendulum system.

Parameter 𝐽 𝐿 𝑀 𝑔 𝑓𝑑
Value 4 kg m2 1.5 m 4/3 kg 9.8 m∕s2 0.8 N m s∕rad

Next, the sliding mode function is designed as (9) with () = 2 and M() = [0, 1]. In order to weaken the chattering, the
discontinuous control law (11) is designed as 𝑢𝑑 = −𝐾tanh(𝖳

𝑏 ()M𝖳()S()∕𝜉) to replace −𝐾sgn(𝖳
𝑏 ()M𝖳()S()) with 𝜉 = 0.0001

and 𝐾 = 3. The composite control input (8) with (11) and (48) is employed to drive the system (66) for simulation. As depicted
in Fig. 9, the states of the closed-loop system converge to a small region of zero (SRZ) within 20 s. Fig. 10 presents the curves of
the DETOC and the composite control input. Based on the aforementioned discussions, it is evident that the proposed ADP-based
DETNOC method effectively addresses the challenges posed by dead-zone, disturbance, and uncertainties.

4.2. Example 2

Consider the following pendulum system [38]

𝜃̈ = −
𝑓𝑑
𝐽

𝜃̇ −
𝑀𝑔𝐿
𝐽

sin(𝜃) + 1
𝐽
𝑢,

here 𝜃 ∈ R is the pendulum’s angle position, 𝑢 is the control input, and the system parameters are shown in Table 1. Define 1 = 𝜃,
2 = 𝜃̇, and considering dead-zone, disturbance, and uncertainties, we have
13
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Fig. 11. The critic NN weights.

Fig. 12. System states of system (69).

̇ =
[

2
−4.9 sin(1) − 0.22

]

+
[

0
0.25

]

(

D(𝑢) +

𝜚(𝑡)
⏞⏞⏞
sin(3𝑡)

)

+

()
⏞⏞⏞
[

0.1
0

]

 ()
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

0.252 sin(12)
)

, (68)

where  = [1,2]𝖳 ∈ R2 is the system state, and the parameters of the dead-zone are set as 𝑚𝑙 = 𝑚𝑟 = 0.5, 𝑜𝑟 = 0.25 and 𝑜𝑙 = −0.25.
First, an ADP-based DETOC law is designed to the nominal system

̇ =
[

2
−4.9 sin(1) − 0.22

]

+
[

0
0.25

]

𝑢. (69)

The value function parameters are chosen as 𝑄 = 2𝐼 , 𝑅 = 0.05, and 𝛤 () = ‖‖

2. The structure of critic NN is chosen as the same
o Example 1, and the learning rate of critic NN is set as 𝛼𝑐 = 2.

The learning process of critic NN is depicted in Fig. 11, and the vector of the critic NN weight finally converges to [0.4196,
0.2065, 0.5616]𝖳. Fig. 12 shows the convergence of states of system (68), it is evident that the states tend to an SRZ after 15s.
rom Fig. 13, we can observe that the DETOC input is updated in an aperiodic manner. Fig. 14 presents the curves of dynamic
vent-triggered threshold and error, which indicates the effectiveness of the designed triggering condition. In comparison with the
TC method, a equidistant period of 0.05 s is employed. From Fig. 15, we observe that DETC requires a lower updating frequency of
he control signal compared to ETC and TTC mechanisms, which means that DETC can help save computational and communication
esources. In Fig. 16, it is emphasized that the dynamic signal is indeed restricted by an exponential signal. From Fig. 17, it can be
14

een that the minimal intersampling time 𝛥𝑡min = 0.047 is greater than zero, indicating the avoidance of Zeno phenomenon.
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Fig. 13. Approximation DETOC input 𝑢̂𝑐 of system (69).

Fig. 14. Dynamic event-triggered threshold and error.

Fig. 15. Updating times of different control mechanisms.
15
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Fig. 16. Dynamic variable and its low bound function.

Fig. 17. Dynamic event-triggering time instants.

Then, in the sliding mode function, () = 42, M() = [0, 4]. Similar to Example 1, in the discontinuous control law (11),
−𝐾sgn(𝖳

𝑏 ()M𝖳()S) is replaced by −𝐾tanh(𝖳
𝑏 ()M𝖳()S∕𝜉) with 𝜉 = 0.0001 and 𝐾 = 4 to reduce the chattering phenomenon.

The composite control input (8), composed of (11) and (48), is employed to control the uncertain system (69) for simulation. As
depicted in Fig. 18, one can observe that the states of closed-loop system converge to an SRZ as time increases. The curves of the
DETOC and the composite control inputs are presented in Fig. 19. The simulation results illustrate the effectiveness of the developed
ADP-based DETNOC method.

5. Conclusion

The paper presents a DETNOC method for addressing the optimal control problem for uncertain nonlinear systems with unknown
dead-zone and disturbance. By combining ADP and ISMC techniques, the proposed method involves the design of a composite
control law comprising discontinuous and DETOC laws. The discontinuous control law effectively eliminates the effects of dead-
zone, disturbance, and the matched component uncertainties, while obtaining the SMD. Subsequently, the ADP-based approximate
DETOC law guarantees the stability of the SMD. The Lyapunov stability theorem is employed to prove the UUB of the closed-loop
system. Simulation results are presented to demonstrate the effectiveness of the proposed DETNOC method.

Fixed-time and predefined-time control methods have attracted widespread attention in the control field, as they can guarantee
the closed-loop systems stability within fixed-time and predefined-time, respectively. In future work, fixed-time optimal and
predefined-time optimal control will be further investigated for nonlinear systems with input constraints.
16
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C

Fig. 18. System states of closed-loop system (68).

Fig. 19. Approximation DETOC and the composite control inputs.
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Summary
In this paper, an event-triggered nearly optimal tracking control method is
investigated for a class of uncertain nonlinear systems by integrating adap-
tive dynamic programming (ADP) and integral sliding mode (ISM) control
techniques. An ISM-based discontinuous control law with a neural network
(NN) adaptive term is designed to eliminate the influence of the uncertain-
ties and obtain the sliding mode dynamics which is equivalent to the tracking
error dynamics without uncertainties, and relax the known upper-bounded
condition of uncertainties. In order to guarantee the stability of tracking error
system and the considerable optimality, under the ADP technique, a critic NN is
applied to approximate the optimal value function for solving the event-triggered
Hamilton-Jacobi-Bellman equation and the event-triggered nearly optimal feed-
back control is obtained. The feedback control law is updated and transmitted
to plant only when events occur, thus both the communication and the compu-
tational resources can be saved. Furthermore, the stability of tracking error is
proven thanks to Lyapunov’s direct method. Finally, we provide two simulation
examples to validate the developed control scheme.

K E Y W O R D S

adaptive dynamic programming, event-triggered mechanism, integral sliding mode control, neural
networks, uncertain systems

1 INTRODUCTION

With the existing of model uncertainties and disturbance, there will always be a deviation between practical control sys-
tems and their nominal systems employed for controllers design.1,2 It is necessary to investigate a robust control method
for guaranteeing the stability and desired performance of systems in the presence of deviation. During the past few years,
many advanced control methods, such as adaptive control,3,4 robust control,5 H∞ control,6 and sliding mode control
(SMC),7,8 have been used to design robust controller. Among these methods, as an effective technique, SMC has attracted
much attention due to the insensitive of parameter changes and the ability of fast respond.9-12 Liu et al.11 proposed
an adaptive SMC method for nonlinear systems with parametric uncertainties and external disturbances by combining
immersion and invariance adaptive scheme. Ding et al.12 developed a discontinuous and a quasi-continuous second-SMC
methods for uncertain nonlinear systems, and the chattering phenomenon was reduced in the last method to some extent.

Int J Robust Nonlinear Control. 2024;34:2639–2658. wileyonlinelibrary.com/journal/rnc © 2023 John Wiley & Sons Ltd. 2639
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The traditional SMC composes two parts, that is, the initial reaching and the sliding motion phases, and the robustness is
only occurred during the sliding motion. In order to avoid the reaching phase and improve the robustness, many integral
SMC (ISMC) methods13-15 have been developed in recent years. Cao et al.13 developed an ISMC method for nonlinear sys-
tems with uncertainties by designing a nonlinear integral-type sliding mode surface (SMS). In these methods, the system
trajectory starts on the sliding manifold for any initial system state by designing an integral sliding mode function.

Although the aforementioned methods have been widely employed to design robust controllers, they are required to
not only stabilize the systems with uncertainties, but also satisfy the considerable optimality in practical applications.16

By integrating ISMC technique and optimal control (OC) approaches, many approaches designed a composite control law
to achieve the objective for linear systems.17-22 Surjagade et al.21 developed an optimal ISMC method for a pressurized
heavy water reactor system, this method combined the optimal control law with ISMC law to guarantee the stability of
the closed-loop system when the existing of uncertainties and external disturbances. Das and Mahanta22 proposed an
optimal second-order SMC method for uncertain linear systems by combining the terminal SMS and the integral SMS.
On the whole, a discontinuous control law is employed to eliminate the effect of uncertainties or disturbances and obtain
sliding mode dynamics, and the OC law from solving algebraic Riccati equation is obtained to stabilize the linear sliding
mode dynamics. However, for the nonlinear systems, these methods are not easy to implement since they are difficult to
obtain the OC law for nonlinear sliding mode dynamics by solving the Hamilton-Jacobi-Bellman (HJB) equation, which
is difficult or even impossible to obtain the analysis solution.

Fortunately, as two effective techniques, adaptive dynamic programming (ADP) and reinforcement learning (RL)
are viewed as synonyms which overcome this difficulty by computing forward-in-time.23-25 Many significant ADP-based
control methods have been reported to solve the OC problem for nonlinear systems.26,27 Vamvoudakis and Lewis28 devel-
oped an actor-critic (AC) strategy to solve the OC problem for nonlinear systems. Vrabie and Lewis29 developed an
integral RL-based method to obtain the solution of HJB equation and solve the OC problem of partially known nonlin-
ear systems. It is easy to find that the aforementioned results are achieved for optimal regulation problems. However,
in many practical systems, the objective of controller design is to guarantee the system state tracking an user-defined
reference trajectory rather than regulate the system state approaching the origin.30,31 Hence, it is significant to track
the user-defined reference trajectory with optimal performance and is also one of the common problem in ADP- or
RL-based control community. For discrete-time (DT) nonlinear systems, the optimal tracking control problem was con-
verted into an OC problem for tracking error dynamics and a neuro-optimal tracking control scheme was developed
for nonlinear systems via the ADP technique.32 Wei et al.33 developed a data-based optimal tracking control method for
DT nonlinear systems and to apply the coal gasification system. For continuous-time (CT) nonlinear systems, Modares
and Lewis34 developed an integral RL-based tracking control method for CT nonlinear systems. Zhao et al.35 developed
an ADP-based robust tracking control method for CT nonlinear systems with uncertainties, where the tracking control
problem was transformed into an OC problem for the augmented system. Wang et al.36 developed an adaptive-critic-based
robust tracking control method for uncertain nonlinear systems, and this method was applying to a spring-mass-damper
system.

However, these methods adopted time-triggered mechanism, the updating of the control law with a fixed period
may increase the energy consumption, and waste computational and communication resources. In order to save the
computational and communication resources on the basis of satisfying some control performance, many researchers
have introduced the event-triggered mechanism to ADP, and developed many ADP-based ETC methods,37-40 where the
event was defined as the event-triggering error exceeded the designed event-triggering condition and the control law was
updated only when the occurrence of the events. For example, Vamvoudakis39 developed an event-triggered OC (ETOC)
method for CT nonlinear systems, this method was implemented based on AC structure, a critic and an actor neural
networks (NNs) were employed to approximate the cost function and the ETOC law, respectively. Wang et al.40 devel-
oped an event-triggered robust control method for uncertain CT nonlinear systems, where the robust control problem
was transformed into an ETOC problem by designed a modified value function. For the tracking control problem, Zhang
et al.41 developed an event-triggered tracking control (ETTC) scheme for CT nonlinear systems, the designed control law
composited with a feedforward and a feedback control laws which were employed to track the reference trajectory and
stabilize tracking error dynamics, respectively.

Based on the above-mentioned literature, these methods involved precise system dynamics only, research in
ADP-based ETTC has not been fully taken into account. However, the uncertainties is widely existed between actual plant
and its nominal system. On the other hand, among existing methods35,40-42 required the upper-bounded function of the
uncertainties which is difficult to be obtained. Inspired by the aforementioned literature, this paper focus on developing
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an event-triggered nearly optimal tracking control (ETNOTC) method for uncertain nonlinear systems by integrating
ADP and ISMC. The main contributions of this scheme is summarized in the following three aspects.

1. In contrast to existing methods17-22 combined the ISMC and OC approaches to develop robust control methods for
uncertain linear systems, this paper develops an ISMC and ADP-based ETNOTC method for uncertain nonlinear
systems with the considerable optimality.

2. Unlike works35,36,40-42 developing robust control methods for nonlinear systems required the known upper-bound
of uncertainties, the developed method adopts the ISMC technique with a neural network-based adaptive term to
eliminate the effect of uncertainties with unknown upper bound.

3. Different from works17-22,43,44 which adopted time-triggered mechanism to design the nearly optimal continuous
control law, this paper develops an ETC method to save the computational and communication resources.

The reminder of this paper is organized as follows. Section 2 presents the problem statement. Section 3 introduces
the composite control law design in detail. In Section 4, a numerical and a practical examples are employed to verify the
effectiveness of ETNOTC method. In Section 5, conclusion is given.

2 PROBLEM STATEMENT

Consider the uncertain nonlinear system described by

ṡ(t) =  (s(t)) + (s(t))u(t) − Δ (s(t)), (1)

where s ∈ Rn is the system state, u ∈ Rm is the control input, Δ (s) = (s)d(s) ∈ Rn is the uncertainties,  (s) ∈ Rn and
(s) ∈ Rn×m are continuously differentiable matrix functions, and (s) is invertible.

Assumption 1. The system (1) is controllable, and the system dynamic  (s) + (s)u is Lipschitz continuous
on a compact set Ω and  (0) = 0.1-7

For the tracking control, the system state is expected to track an user-defined reference trajectory which is give by

ẋd(t) = 𝜙(xd), (2)

where xd ∈ Rn is the reference state, and 𝜙(xd) ∈ Rn is an Lipschitz continuous function. According to (1) and (2), the
tracking error is defined as 𝛿(t) = s(t) − xd(t), and the tracking error system is given by

̇

𝛿(t) = ṡ(t) − ẋd(t)
=  (s) + (s)u(t) − Δ (s) − 𝜙(xd). (3)

In the following, a composite control law u is designed to guarantee the system state tracking the reference trajectory and
minimize a given value function as far as possible.

3 COMPOSITE CONTROL LAW DESIGN VIA ISMC AND ADP

For the tracking error system (3), an ETNOTC method which integrates ADP and ISMC techniques is developed to design
a composite control law as

u = uc + ud + w, (4)

where uc ∈ Rm is the discontinuous component to eliminate the influence of the uncertainties, ud ∈ Rm is the continuous
feedforward control component to track the trajectory, w ∈ Rm is the continuous ADP-based feedback control component
to guarantee the tracking error stabilization.
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3.1 Discontinuous control law design via ISMC

The integral sliding mode (ISM) function is designed as

S(𝛿(t), t) = A𝛿 − A𝛿0 −
∫

t

0
A( (s(𝜏)) + (s(𝜏))W(𝜏) − 𝜙(xd))d𝜏, (5)

where 𝛿0 = s(0), W = ud + w, A ∈ Rm×n is a design matrix. It is worth pointing out that the ISM function satisfies S(𝛿0, 0) =
0 for any initial state 𝛿0, the state of tracking error system (3) starts on the ISM surface, thus the reaching phase can be
removed.

Differentiating S(𝛿(t), t) with respect to t, it yields

̇S(𝛿, t) = A ̇

𝛿 − A( (s) + W − 𝜙(xd))
= A( (s) + (s)(u − d(s)) − 𝜙(xd)) − A( (s) + (s)W − 𝜙(xd))
= A(s)(uc − d(s)).

According to SMC theory, let ̇S(s, t) = 0, the equivalent control law uceq is derived as

uceq = d(s). (6)

Substituting (6) into (3), we get the sliding mode dynamics as

̇

𝛿(t) =  (s) + (s)W − 𝜙(xd). (7)

However, the uceq cannot be obtained since the unknown d(s). To keep the integral sliding mode function as zero, that is,
S(𝛿, t) = 0, the discontinuous control law uc is designed as

uc = −sgn(Ξ), (8)

where Ξ = T(s)ATS, sgn(⋅) is the sign function,  > d is a sliding mode gain, d is the norm-bound of d(s). In order to
relax the requirement of the known d, a radial basis function (RBF) NN-based adaptive team is designed to estimate the
uncertainties as

d(s) = 𝜃∗Th(s) + 𝜖,

where 𝜃∗ ∈ Rld×m is the ideal weight, ld is the number of neurons, h(s) ∈ Rld is a RBF, and 𝜖 is the approximation error.
Denote ̂𝜃 ∈ Rld×m be the estimation of 𝜃∗, we have

̂d(s) = ̂

𝜃

Th(s).

Furthermore, the discontinuous control law uc in (8) is changed as

uc = −Ksgn(Ξ) + ̂d(s), (9)

where K is the improved sliding mode gain satisfying K > 𝜖b and 𝜖b is the norm-bound of 𝜖.

Theorem 1. For the nonlinear system (1), the designed integral sliding mode function (5), and Assumption 1,
the discontinuous control law uc (9) can maintain the system state trajectory on the ISM surface S = 0 with the
adaptive law

̇

̂

𝜃 = −1
𝛾

h(s)STA(s), (10)

where 𝛾 > 0 is the updating rate.
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ZHANG et al. 2643

Proof. Consider the Lyapunov function candidate given as

Σ1(t) =
1
2

STS + 𝛾

2
tr{ ̃𝜃T

̃

𝜃}, (11)

where ̃𝜃 = ̂

𝜃 − 𝜃∗. The time derivative of the Σ1 is deduced as

̇Σ1(t) = STA( (s) + (s)(u − d(s)) − 𝜙(xd)) − STA( (s) + (s)W − 𝜙(xd)) + 𝛾tr
{
̃

𝜃

T
̇

̃

𝜃

}

= STA( (s) + (s)(uc +W − d(s))) − STA(s)( (s) + (s)W) + 𝛾tr
{
̃

𝜃

T
̇

̃

𝜃

}

= STA
(
(s)

(
−Ksgn(Ξ) + ̂d(s) − d(s)

))
+ 𝛾tr

{
̃

𝜃

T
̇

̃

𝜃

}

= −KSTA(s)sgn(Ξ) + 𝛾tr
{
̃

𝜃

T
̇

̃

𝜃

}
+ STA(s)(s)

(
̂d(s) − d(s)

)

= −KSTA(s)sgn(Ξ) + 𝛾tr
{
̃

𝜃

T
̇

̃

𝜃

}
+ STA(s)

(
̂

𝜃

Th(s) − 𝜃∗Th(s) − 𝜖
)
. (12)

Considering the adaptive law (10) and ̇

̃

𝜃 = ̇

̂

𝜃, (12) becomes

̇Σ1(t) = −KSTA(s)sgn(Ξ) + STA(s)
(
̃

𝜃

Th(s) − 𝜖
)
− tr

{
̃

𝜃

Th(s)STA(s)
}

= −KSTA(s)sgn(Ξ) − STA(s)𝜖
≤ −K||STA(s)||1 − ||STA(s)𝜖||
≤ −(K − 𝜖b)||STA(s)||1. (13)

Therefore, if K > 𝜖b holds, the system state trajectory is maintained on sliding mode surface. ▪

Remark 1. It is noticed that the improved sliding mode gain K is different from the gain, where K depends
on the norm-bound of approximation error 𝜖 instead of the norm-bound of the uncertain term d(s). In practical
applications, it is difficult to obtain the norm-bound of of the uncertain term. The approximation error 𝜖 can
be guaranteed to be arbitrary small by selecting sufficient number of neurons.45,46 Although the selection of
gain K is challenging, there is no guiding method to select an optimal sliding mode gain, and it can be selected
based on repeated “trial and error”.

Remark 2. From (13) if the sliding mode gain K is chosen as K > 𝜖b, we have ̇Σ1(t) < 0, the Lyapunov
candidate function (11) will decrease gradually and the sliding mode surface S will converge to zero.

Remark 3. In this paper, a tracking control problem is investigated for nonlinear uncertain systems. Indeed,
it is well known that ISMC is an effective technique to deal with the uncertainties of nonlinear systems. How-
ever, the stability of the closed-loop system is only the basis, and the control performance and cost should be
further considered in the process of controller design. Recently, as a powerful method, ADP has been widely
employed to solve optimal problems. As a result, this paper combines ISMC and ADP to develop an ETNOTC
method.

Remark 4. For the ETNOTC problem, the main technical difficulty lies in that (1) a neural network adaptive
term is designed to relax the unknown bound of uncertainties; (2) a discontinuous control law is developed to
eliminate the effect of the uncertainties; (3) an ADP-based event-triggered feedback control law is designed
to satisfy the considerable optimality.

3.2 Continuous control law design via ADP

Assume that the desired trajectory satisfies

ẋd(t) =  (xd) + (xd)ud, (14)
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2644 ZHANG et al.

where ud is the feedforward control law. Combining (2) and (14), we have

ud = +(xd)(𝜙(xd) −  (xd)), (15)

where +(xd) denotes the generalized inverse of (xd). Substituting (15) into (7), the tracking error dynamics is given by

̇

𝛿(t) = ẋ(t) − ẋd(t)
=  (s) + (s)(ud + w) − 𝜙(xd)
=  (s) + (s)+(xd)(𝜙(xd) −  (xd)) + (s)w − 𝜙(xd).

Letting 
𝛿

=  (s) + (s)+(xd) (𝜙(xd) −  (xd)) − 𝜙(xd), we have

̇

𝛿(t) = 
𝛿

+ (s)w. (16)

Then, under the event-triggered mechanism, an ADP-based control method is developed to design the feedback control
law w. The value function of (16) is defined as

V(𝛿) =
∫

∞

t

(
𝛿

T(𝜏)Q
𝛿

𝛿(𝜏) + wT(𝜏)Rw(𝜏)
)

d𝜏, (17)

where Q
𝛿

∈ Rn×n and R ∈ Rm×m are symmetric positive definite matrices. Based on (17), we have

0 = 𝛿TQ
𝛿

𝛿 + wTRw + ∇VT(𝛿)(
𝛿

+ (s)w)

with V(0) = 0, where ∇V(𝛿) ≜ 𝜕V(𝛿)∕𝜕𝛿. The Hamiltonian of system (16) is given by

H(∇V(𝛿), 𝛿,w) = 𝛿TQ
𝛿

𝛿 + wTRw + ∇VT(𝛿)(
𝛿

+ (s)w).

The optimal value function V∗(𝛿) satisfy the following HJB equation

0 = min
w

H(∇V∗(𝛿), 𝛿,w), (18)

where ∇V∗(𝛿) ≜ 𝜕V∗(𝛿)∕𝜕𝛿. We drive from (18) that

𝜕H(𝛿,∇V∗(𝛿),w)
𝜕w

||||w=w∗
= 0,

where w∗ is the optimal tracking control law and given by

w∗(𝛿) = −1
2

R−1


T(𝛿)∇V∗(𝛿). (19)

Substituting (19) into (18), we further obtain

H(∇V∗
i (𝛿), 𝛿,w

∗) = 𝛿TQ
𝛿

𝛿 + w∗TRw∗ + ∇V∗T(𝛿)(
𝛿

+ (s)w∗)
= 0. (20)

From (20), it is a time-triggered HJB equation whose solution often involves heavy computational burden and the waste
of communication resource by using ADP-based time-triggered mechanism. Hence, we developed an ADP-based ETC
method to obviate this shortcoming. Under the ETC framework, the sampled state is denoted as

ŝ
𝜅

= s(ts), ∀t ∈ [t
𝜅

, t
𝜅+1),
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ZHANG et al. 2645

where t
𝜅

represents the 𝜅th sampling instant, 𝜅 ∈ N. The corresponding tracking error is given by

̂

𝛿

𝜅

= ŝ
𝜅

− xd(t𝜅), ∀t ∈ [t
𝜅

, t
𝜅+1).

Then, introduce an triggering error function as

E
𝜅

(t) = ̂

𝛿

𝜅

− 𝛿(t), ∀t ∈ [t
𝜅

, t
𝜅+1). (21)

According to (21), the ETC law is expressed by

w( ̂𝛿
𝜅

) = w(E
𝜅

(t) + 𝛿(t)), (22)

Based on (22), the system (16) becomes

̇

𝛿(t) = 
𝛿

+ (s)w( ̂𝛿
𝜅

). (23)

Furthermore, the event-triggered optimal tracking control (ETOTC) can be obtained from (23) as

w∗( ̂𝛿s) = −
1
2

R−1


T( ̂𝛿
𝜅

)∇V∗( ̂𝛿
𝜅

) (24)

for all t ∈ [t
𝜅

, t
𝜅+1), where∇V∗( ̂𝛿

𝜅

) ≜ 𝜕V∗( ̂𝛿
𝜅

)∕𝜕 ̂𝛿
𝜅

. By replacing w in (18) with w∗( ̂𝛿s), the event-triggered version of HJB
equation at t = t

𝜅

is written as

H
(
∇V∗(𝛿), 𝛿,w∗( ̂𝛿

𝜅

)
)
= 𝛿TQ

𝛿

𝛿 + w∗T( ̂𝛿
𝜅

)Rw∗( ̂𝛿
𝜅

) + ∇V∗T(𝛿)
(

𝛿

+ (s)w∗( ̂𝛿
𝜅

)
)
.

Assumption 2. w∗(𝛿) is Lipschitz continuous, that is, ||w∗(𝛿(t)) − w∗( ̂𝛿
𝜅

)|| ≤ w||E𝜅

(t)||, where wi > 0 is a
constant.38-42

Theorem 2. For the tracking error system given by (3), the sliding mode dynamics (16), Assumptions 1 and 2,
the composite control law (4) with (9), (15) and (24), if the triggering condition is designed as

||E
𝜅

||2 ≤
(1 − 𝛽2)𝛿TQ

𝛿

𝛿 + ||r||2||w∗( ̂𝛿
𝜅

)||2


2
w

= T2
𝜅

, (25)

where w is a positive constant, T
𝜅

is the event-triggering threshold, the closed-loop tracking error system (3) is
guaranteed to be asymptotically stable.

Proof. Choose a Lyapnuov function candidate as

Σ2(t) = V∗(𝛿).

Based on Theorem 1, by using the discontinuous control law uc, the system state trajectory can be forced on
integral sliding mode surface S = 0 and maintained on it. And then, applying the feedforward control law, the
tracking error system is obtained as (16). Using the trajectories of system (16), we find

̇Σ2(t) = ∇V∗T(𝛿)
(

𝛿

+ (s)w∗( ̂𝛿
𝜅

)
)
. (26)

Based on (19), we have

∇V∗T(𝛿)(s) = −2w∗T(𝛿)R. (27)

From (20), it reveals that

∇V∗T(𝛿)
𝛿

= − 𝛿TQ
𝛿

𝛿 − w∗T(𝛿)Rw∗(𝛿) − ∇V∗T(𝛿)(s)w∗(𝛿). (28)

 10991239, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7099 by South C

hina A
gricultural, W

iley O
nline L

ibrary on [04/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

第172页



2646 ZHANG et al.

Substituting (27) and (28) into (26), we obtain

̇Σ2(t) = −𝛿TQ
𝛿

𝛿 − w∗T(𝛿)Rw∗(𝛿) − ∇V∗T(𝛿)(s)w∗(𝛿) + ∇V∗T(𝛿)(s)w∗( ̂𝛿
𝜅

)

= −𝛿TQ
𝛿

𝛿 + w∗T(𝛿)Rw∗(𝛿) − 2w∗T(𝛿)Rw∗( ̂𝛿
𝜅

)

= −𝛿TQ
𝛿

𝛿 +
(

w∗(𝛿) − w∗( ̂𝛿
𝜅

)
)TR

(
w∗(𝛿) − w∗( ̂𝛿

𝜅

)
)
− w∗T( ̂𝛿

𝜅

)Rw∗( ̂𝛿
𝜅

).

According to Assumption 2, we have

̇Σ2(t) ≤ −𝛿TQ
𝛿

𝛿 + 2
w||r||2||E𝜅

(t)||2 − ||r||2||w∗( ̂𝛿
𝜅

)||2

≤ −𝛽2
𝜆min(Q𝛿

)||𝛿||2 + (𝛽2 − 1)𝜆min(Q𝛿

)||𝛿||2 + 2
w||r||2||E𝜅

(t)||2 − ||r||2||w∗( ̂𝛿
𝜅

)||2,

where R = rTr, r ∈ Rm×m is a square matrix. Then, if condition (25) holds, we have

̇Σ2(t) ≤ −𝛽2
𝜆min(Q𝛿

)||𝛿||2 < 0

for any 𝛿 ≠ 0, it means the closed-loop tracking error system (3) is asymptotically stable. ▪

3.3 Critic-only structure implementation

The optimal value function V∗(𝛿) can be represented via a critic NN with lc hidden neurons as

V∗(𝛿) = 𝜑T
c𝜎c(𝛿) + 𝜉c(𝛿), (29)

where 𝜑c ∈ Rlc is the ideal weight vector, 𝜎c(𝛿) ∈ Rlc is the activation function, and 𝜉c(𝛿) is the reconstruction error.
Differentiating V∗(𝛿) in (29) with respect to 𝛿, it yields

∇V∗(𝛿) = ∇𝜎T
c (𝛿)𝜑e + ∇𝜉c(𝛿). (30)

According to (19) and (30), we have

w∗( ̂𝛿
𝜅

) = −1
2

R−1


T(s)
(
∇𝜎T

c ( ̂𝛿𝜅)𝜑c + ∇𝜉c( ̂𝛿𝜅)
)
. (31)

Letting 𝜑̂c ∈ Rlc be the estimate of 𝜑c, the approximate V∗(𝛿) is given by

̂V(𝛿) = 𝜑̂T
c𝜎c(𝛿),

and its partial derivative is given by

∇ ̂V(𝛿) = ∇𝜎T
c (𝛿)𝜑̂c. (32)

Based on (31) and (32), the approximate ETOTC law is obtained as

ŵ( ̂𝛿
𝜅

) = −1
2

R−1


T(s)∇𝜎T
c ( ̂𝛿𝜅)𝜑̂c. (33)

Noticing (32), the approximate Hamiltonian is defined as

Hi(𝜑̂c, 𝛿, ŵ( ̂𝛿𝜅)) = 𝛿TQ
𝛿

𝛿 + ŵ∗T( ̂𝛿
𝜅

)Rŵ∗( ̂𝛿
𝜅

) + ∇V∗T(𝛿)
(

𝛿

+ (s)ŵ∗( ̂𝛿
𝜅

)
)

= c.
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ZHANG et al. 2647

Obviously, we can obtain

𝜕c

𝜕𝜑̂c
= ∇𝜎c(𝛿)

(

𝛿

+ (s)ŵ( ̂𝛿
𝜅

)
)
≜ 𝜋,

where 𝜋 is a lc-dimension column vector. To minimize the objective function c = (1∕2)T
c c, 𝜑̂c is updated by

̇

𝜑̂c = −𝛼c
1

(1 + 𝜋T
𝜋)2

(
𝜕c

𝜕𝜑̂c

)
= −𝛼c

𝜋

(1 + 𝜋T
𝜋)2
c, (34)

where 𝛼c > 0 is the learning rate.

Lemma 1. Let 𝜑̃ = 𝜑 − 𝜑̂ be the weight error vector, then the weight error dynamics is derived as ̇

𝜑̃ = − ̇𝜑̂. The
weight error dynamics is guaranteed to be UUB with the updating law (34).

Proof. The related proof of Lemma 1 is similar to that in References 47,48, so it is omitted here. ▪

3.4 Stability analysis

Assumption 3. ∇𝜎c(𝛿),∇𝜉c(𝛿), (s) and 𝜑̃ are norm-bounded, that is, ||∇𝜎c(𝛿)|| ≤ 𝜎c, ||∇𝜉c(𝛿)|| ≤ 𝜉c, ||(s)|| ≤
g and ||𝜑̃|| ≤ 𝜑, where 𝜎c, 𝜉c, g and 𝜑 are positive constants.9,48,49

Theorem 3. Take the system (16) into account, if Assumptions 1, 2, and 3 hold and the event-triggering
condition is designed as

||
𝜅

(t)||2 ≤ (1 − 𝜌
2)𝜆min(𝛿)||𝛿||2

22
w

= ̂T2
𝜅

, (35)

where 0 < 𝜌 < 1, and ̂T
𝜅

is the event-triggering threshold. Then, the approximate ETOTC law (33) can guarantee
the closed-loop system (16) to be UUB.

Proof. Choose a Lyapunov function candidate as

Σ3(t) = Σ31(t) + Σ32(t),

where Σ31(t) = V∗(𝛿) and Σ32(t) = V∗( ̂𝛿
𝜅

). The stability analysis is presented as the following two cases.
Case 1: ∀t ∈ [t

𝜅

, t
𝜅+1), we have

̇Σ32(t) = 0, (36)

According to (20), we can derive

̇Σ31(t) = −𝛿TQ
𝛿

𝛿 − w∗T(𝛿)Rw∗(𝛿) − ∇V∗T(𝛿)(s)w∗(𝛿) + ∇V∗T(𝛿)(s)ŵ( ̂𝛿
𝜅

)

= −𝛿TQ
𝛿

𝛿 − w∗T(𝛿)Rw∗(𝛿) + ∇V∗T(𝛿)(s)(ŵ( ̂𝛿
𝜅

) − w∗(𝛿)). (37)

Based on (19), (37) becomes

̇Σ31(t) = −𝛿TQ
𝛿

𝛿 − w∗T(𝛿)Rw∗(𝛿) + 2w∗T(𝛿)R(w∗(𝛿) − ŵ( ̂𝛿
𝜅

))

= −𝛿TQ
𝛿

𝛿 + w∗T(𝛿)Rw∗(𝛿) − 2w∗T(𝛿)Rŵ( ̂𝛿
𝜅

)

= −𝛿TQ
𝛿

𝛿 +
(

w∗(𝛿) − ŵ( ̂𝛿
𝜅

)
)TR

(
w∗(𝛿) − ŵ( ̂𝛿

𝜅

)
)
− ŵT( ̂𝛿

𝜅

)Rŵ( ̂𝛿
𝜅

)

= −𝛿TQ
𝛿

𝛿 + ||r||2‖‖‖w∗(𝛿) − ŵ( ̂𝛿
𝜅

)‖‖‖
2
− ||r||2||ŵ∗( ̂𝛿

𝜅

)||2. (38)
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2648 ZHANG et al.

Considering 𝜑ic = 𝜑̂ic + 𝜑̃ic, we get

||w∗(𝛿) − w( ̂𝛿
𝜅

)||2 = ‖‖‖
(

w∗(𝛿) − w∗( ̂𝛿
𝜅

)
)
+
(

w∗( ̂𝛿
𝜅

) − ŵ( ̂𝛿
𝜅

)
)‖‖‖

2

≤ 2‖‖‖w∗(𝛿) − w∗( ̂𝛿
𝜅

)‖‖‖
2
+ 2‖‖‖w∗( ̂𝛿

𝜅

) − ŵ( ̂𝛿
𝜅

)‖‖‖
2

≤
1
2
||r−1||2g‖‖‖∇𝜎

T
c ( ̂𝛿𝜅)𝜑̂c − ∇𝜎T

c ( ̂𝛿𝜅)𝜑c − ∇𝜉c( ̂𝛿𝜅)
‖‖‖

2
+ 22

w||E𝜅

(t)||2

≤
1
2
||r−1||2g2|| − ∇𝜉c( ̂𝛿𝜅) − ∇𝜎T

c ( ̂𝛿𝜅)𝜑̃c||
2 + 22

w||E𝜅

(t)||2

≤ 22
w||E𝜅

(t)||2 + ||r−1||2g2
(
𝜎

2
c𝜑

2
c + 𝜉

2
c

)
. (39)

According to (39), we further derive from (38) as

̇Σ31(t) ≤ −𝛿TQ
𝛿

𝛿 + 22
w||r||2||E𝜅

(t)||2 − ||r||2||ŵ( ̂𝛿
𝜅

)||2 + ||r−1||2g2
(
𝜎

2
ic𝜑

2
ic + 𝜉

2
ic

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Θ

. (40)

By combining (36) and (40), we obtain

̇Σ3(t) ≤ −𝜌2
𝜆min(Q𝛿

)||𝛿||2 + (𝜌2 − 1)𝜆min(Q𝛿

)||𝛿||2 + 2||r||22
w||E𝜅

(t)||2 + Θ.

Therefore, if the condition (35) holds and 𝛿 lies outside the compact set

Ω
𝛿

=
{
𝛿 ∶ ||𝛿|| ≤

√
Θ

𝜌

2
𝜆min(Q𝛿

)

}
,

we can find that ̇Σ3(t) ≤ −𝜌2
𝜆min(Q𝛿

)||𝛿||2 < 0 for any 𝛿 ≠ 0.
Case 2: ∀t = ts+1, we have

ΔΣ3(t) = Σ3( ̂𝛿𝜅+1) − Σ3(𝛿(t−
𝜅+1))

= ΔΣ31(t) + ΔΣ32(t).

Noting the fact that 𝛿 and V∗(⋅) are both continuous, we derive

ΔΣ31(t) = V∗( ̂𝛿
𝜅+1) − V∗(𝛿(t−

𝜅+1)) ≤ 0, (41a)

ΔΣ32(t) = V∗( ̂𝛿
𝜅+1) − V∗( ̂𝛿

𝜅

) ≤ −𝜗(||E
𝜅+1(t𝜅)||), (41b)

where 𝛿(t−
𝜅+1) = limΔt→0 𝛿(t𝜅+1 − Δt), 𝜗(⋅) is a class- function and E

𝜅+1(t𝜅) = ̂

𝛿

𝜅+1 − ̂

𝛿

𝜅

. Based on (41), we
derive ΔΣ3(t) ≤ 0. In the end, from the two aspects, if (35) holds, the closed-loop system is UUB. ▪

Remark 5. Assumption 1 which is also provided in References 1-7 is a basic assumption for the nonlinear
systems. For Assumption 2, w∗(𝛿) represent the optimal tracking control law. Based on Assumption 1, one can
find that w∗(𝛿) is Lipschitz continuous. Thus, there exists a Lipschitz constant such that ||w∗(𝛿(t)) − w∗( ̂𝛿k)|| ≤
w||Ek(t)|| (References 38-42). For Assumption 3, the optimal value function V∗(𝛿) is bounded, which implies
𝜑c is norm-bounded. Then, according to Lemma 1, the critic NN weight error dynamics is guaranteed to be
UUB. Thus, 𝜑̃c can be further assumed norm-bounded by ||𝜑̃c|| ≤ 𝜑c, where 𝜑c is a constant. The term∇𝜎T

c (𝛿)
is the partial derivation of activation function respect 𝛿 by selecting a suitable activation function 𝜎c(𝛿) and the
term∇𝜉T

c (𝛿) is the partial derivation of reconstruction error, they are reasonable to assume norm-bounded by
||∇𝜎c(𝛿)|| ≤ 𝜎c and ||∇𝜉c(𝛿)|| ≤ 𝜉c, where 𝜎c and 𝜉c are constants.(s) is the input gain function, it reasonable to
assume that it is norm-bounded by a constant.45-48 In fact, Assumption 3 is usually employed in the ADP-based
control field.1-11,23-29,35-48,49
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4 SIMULATION RESULTS

The effectiveness of the proposed ETNOTC method is demonstrated by employing a numerical and a realistic nonlinear
systems.

4.1 Example 1

Consider the nonlinear system with uncertainties as

ṡ =

[
s2

−0.5s3
1 − 0.5s2

]

+

[
0
1

]

(u + d), (42)

where s ∈ [s1, s2]T is the system state, d = sin(0.6s1) cos(s2) cos(0.6s1) is the uncertainties. The reference trajectory is
chosen as

ẋd =

[
−0.5 sin(t) + 0.6 cos(3t)
−0.5 cos(t) − 1.8 sin(3t)

]

. (43)

The feedback control input in continuous control component is designed by using ADP-based ETC control method
for system (16). The parameters of the value function are set as Q

𝛿

= 4I and R = 0.1. In the critic NN, the learning rate
𝛼c = 2, the activation function is chosen as 𝜎c(𝛿) =

[
𝛿

2
1 , 𝛿1𝛿2, 𝛿

2
2
]T, the weight vector is defined as 𝜑̂c =

[
𝜑̂c1, 𝜑̂c2, 𝜑̂c3

]T.
Figure 1 displays that the weight vector of the critic NN 𝜑̂i finally converge to [0.1361, 0.0691, 0.1613]T. Figure 2
shows the feedback control and the continuous control inputs, the feedback control input w is updated at t

𝜅

only,
and keeps unchanged during [t

𝜅

, t
𝜅+1). Figure 3 describes that the tracking errors converge to a small region of

zero (SRZ) after 7 s. From Figure 4, it is found that the less updating frequency of the feedback control signal is
required by using ETC than TTC mechanism, which implies that the computational and communication resources can
be saved.

Then, in the discontinuous control component, the initial weight vector ̂𝜃 is randomly selected within [−1, 1], the RBF
h(s) = [h1(s), h2(s), … , hld(s)]T is chosen as

hl(s) = exp
(
−||s − cl||2

b2

)
, (44)

0 5 10 15 20

Time (s)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C
ri
ti
c
 N

N
 w

e
ig

h
ts

F I G U R E 1 The learning process of critic NN weights.
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F I G U R E 2 Feedback and continuous control inputs.

0 5 10 15 20 25 30

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

T
ra

c
k
in

g
 e

rr
o

rs

F I G U R E 3 Tracking errors of system (16).

where l = 1, 2, … , ld, and cl is the lth colum vector of the matrix

Cd =

[
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3

]

.

The sliding mode gain is chosen as K = 0.02, A = [0, 1]. The discontinuous control law (9) is given as uc = −Ksign(AT(s)
gT(s)S) + ̂d(s). The composite control input (4) is employed to drive the tracking error dynamics (3) for simulation. Figure 5
displays the tracking performance. As shown in Figure 6, the the tracking errors converge to a SRZ after 7 s. The curves of
composite control input and sliding mode function are presented in Figure 7. Figure 8 shows the curves of d(s) and ̂d(s)
and their difference, we can conclude that the adaptive term is effective to approximate the d(s).

4.2 Example 2

The pendulum system50 is formulated as

̈

𝜃 = −
fd

J
̇

𝜃 −
MgL

J
sin(𝜃) + 1

J
(u + d),
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F I G U R E 4 The updating times of the feedback control input.
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F I G U R E 5 Tracking control performance.
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F I G U R E 6 The tracking errors of system (3).
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F I G U R E 7 The curves of composite control input and sliding mode function.
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F I G U R E 8 The uncertainties and its estimation.

where 𝜃 ∈ R denotes the angle position of the pendulum, and the parameters are given in Table 1. Let s1 = 𝜃, s2 = ̇

𝜃, we
have

ṡ =

[
s2

−4.9 sin(s1) − 0.2s2

]

+

[
0

0.25

]

(u + d), (45)

where s = [s1, s2]T ∈ R2 is the system state, d = sin(s1) cos(s2) sin(s2). The reference system is chosen as

ẋd =

[
−0.6 sin(t) + 0.4 cos(2t)
−0.6 cos(t) − 0.8 sin(2t)

]

. (46)

First, ADP-based ETC method is developed to design the feedback control input. The value function is given as (16)
with Q

𝛿

= 5I and R = 0.05. The structure of the critic NN is the same in Example 1. As shown in Figure 9, the weight
vector 𝜑̂ finally converges to [0.4230, 0.1627, 0.5893]T. Figure 10 shows the feedback control and the continuous control
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T A B L E 1 Parameters of the pendulum system.

Parameter J L M g fd

Value 4 kg ⋅m2 1.5 m 4/3 kg 9.8 m∕s2 0.8 N ⋅m ⋅ s∕rad
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F I G U R E 9 The learning process of critic NN weights.
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F I G U R E 10 Feedback and continuous control inputs.

inputs, the feedback control input w is a piecewise signal, which implies it only updated when events occur. Figure 11
displays that the tracking errors converge to a SRZ after 15 s. Figure 12 shows the updating times of the feedback
control input, the TTC and ETC methods are required 1200 and 399 times, respectively. Thus, the computation and
communication resources are saved.

Then, in the discontinuous control component, K = 0.2, A = [0, 1], and the parameters and structure of the adaptive
term are selected as the same in Example 1. Furthermore, The composite control input is used to drive the tracking error
dynamics. Figure 13 shows the tracking performance. From Figure 14, we can find that the tracking errors converge to a
SRZ after 15 s. Figure 15 displays the curves of the composite control input and the sliding mode function. According to
Figure 16, we known the adaptive term ̂d(s) estimate d(s) successfully.

 10991239, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7099 by South C

hina A
gricultural, W

iley O
nline L

ibrary on [04/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

第180页



2654 ZHANG et al.

0 5 10 15 20 25 30

Time (s)

-1

-0.5

0

0.5

1

T
ra

c
k
in

g
 e

rr
o

rs

F I G U R E 11 Tracking errors of system (16).
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F I G U R E 12 The updating times of the feedback control input.
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F I G U R E 13 Tracking control performance.
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F I G U R E 14 Tracking errors of system (3).
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F I G U R E 15 The curves of composite control input and sliding mode function.
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F I G U R E 16 The uncertainty and its estimation.
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5 CONCLUSIONS

In this paper, we develop an ETNOTC method for nonlinear uncertain systems by integrating ADP and ISMC techniques.
The discontinuous control input with an adaptive term is developed to eliminate the influence of uncertainties and obtain
the sliding mode dynamics, this method can relax the assumption of known upper-bounded function of uncertainties,
and the designed continuous control input composed of feedforward and feedback control inputs is employed to achieve
the tracking task. The ADP-based feedback control input is updated only when events occur, thus the updating frequency
is reduced, and the computational and communication burdens are reduced. According to Lyapunov stability theorem,
we prove that the closed-loop tracking error system is asymptotically stable. Finally, the simulation results declare that
the developed ETNOTC method is effective.

It is noticed that dead-zone is one of the most commonly encountered non-smooth non-linearities and widely exists in
many mechanical and electrical systems, such as mechanical transmissions, hydraulic actuators, and power generators.
Furthermore, finite-time and predefined-time control methods have attracted widespread attention in the control field,
which can guarantee the close-loop systems stability under finite-time and predefined-time, respectively. In the future
work, finite-time optimal and predefined-time optimal tracking control will be further investigated for nonlinear systems
with dead-zone.
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