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Safety-Critical Control of Unknown
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Abstract—In this paper, the model-free dynamic event-driven
safe (MFDEDS) control of unknown nonaffine systems with
state and input constraints is investigated via adaptive dynamic
programming. To begin with, by introducing a dynamic com-
pensator and performing system transformation, the safe control
problem with state and input constraints is transformed into an
optimal regulation problem of an unconstrained system. After-
wards, an integral reinforcement learning algorithm is applied
to the unconstrained system to derive an optimal safe control
policy independent of the original system model, which achieves
model-free approximate optimal control for the original system.
To conserve computing and communication resources, a novel
game-based dynamic event-driven mechanism is established,
which models the control policy and the event-driven error as
players in a zero-sum game, with the aim of obtaining the
worst event-driven error to maximize the triggering interval.
Furthermore, an approximate solution to the Hamilton-Jacobi-
Bellman equation is derived by constructing a single-critic
learning structure, which results in an approximate optimal safe
control policy. Theoretical analysis demonstrates that the pro-
posed MFDEDS control scheme ensures the closed-loop system
is asymptotically stable. Ultimately, the efficacy of the developed
approach is corroborated through two simulation examples.

Index Terms— Adaptive dynamic programming, safe-critical
control, dynamic event-driven control, neural networks.

I. INTRODUCTION

N MODERN engineering applications, safety-critical sys-
tems (SCSs) are prevalent across various fields such as
aerospace, automotive, healthcare, and industrial automation,
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where the stability and the safety of these systems are directly
linked to the security of human life and property. For instance,
in the aerospace sector, the flight trajectory of a spacecraft
must consistently remain within the designated safe set, and
any deviation from this safety range could potentially result
in a collision with other objects. In the realm of industrial
robotics, robots must constantly avoid entering hazardous
zones while collaborating with human workers to prevent
accidental collisions and personal injuries. However, numerous
SCSs exhibit complex characteristics, such as strong nonlinear-
ity, unknown dynamics, and saturation constraints, which pose
significant challenges for traditional control methodologies to
guarantee the stability and safety of these systems throughout
their operational processes.

In recent years, an increasing number of researchers have
been dedicated to developing effective safety control methods.
Sun et al. [1] addressed the safety-critical control prob-
lem of both continuous and sampled-data systems affected
by time-varying disturbances by developing a composite
controller that includes disturbance compensation and state
feedback components. Lu et al. [2] introduced a universal bar-
rier function to transform the state-constrained system into an
equivalent unconstrained form and developed a switched-type
auxiliary controller to guarantee the tracking performance.
Wang et al. [3] tackled the finite-time tracking control problem
for switched systems with full state constraints by adopting
backstepping technique and barrier Lyapunov functions. Based
on the aforementioned research findings, it is evident that the
introduction of barrier functions can effectively ensure that the
states of SCSs remain within designated safe sets. However,
a growing number of practical systems are now equipped
with microprocessors that possess limited communication and
computational capabilities. Consequently, there is an urgent
need to present efficient and energy-saving control methods
that can guarantee the safety and stability of SCSs while
minimizing computational, communication, and control costs
to the greatest extent possible.

Over the past two decades, adaptive dynamic programming
(ADP) has attracted considerable attention from researchers
as an effective methodology to tackle optimal control prob-
lems for complex nonlinear systems [4], [S], [6], [7]. It has
been successfully applied to a range of challenges, including
optimal regulation [8], [9], trajectory tracking [10], [11], fault-
tolerant control [12], [13], and differential game [14], [15].
By integrating iterative algorithms with neural networks, ADP

1549-8328 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
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facilitates the online derivation of optimal control policies
for nonlinear system, thereby ensuring system stability while
simultaneously minimizing control costs. For SCSs, early
research predominantly tackled the challenges associated with
state and control input constraints through the utilization of
barrier functions and the design of nonquadratic performance
index functions. For instance, Zhao et al. [16] designed a
feedforward neural network compensator to address optimal
regulation problem for an unknown nonlinear system with
uncertain input constraints. Xue et al. [18] developed a dis-
counted nonquadratic performance index function to handle
the nonzero-sum game problem with asymmetry input con-
straints. Qin et al. [17] introduced a novel barrier function
to address the multiplayer Stackelberg—Nash games problem
subject to time-varying state constraints. The aforementioned
methods primarily focus on a single type of constraint.

It is noteworthy that real-world systems are typically
subjected to both state and control input constraints simultane-
ously. For instance, in autonomous driving systems, the speed
and acceleration of the vehicle, regarded as state variables,
are constrained by road conditions and traffic regulations.
Additionally, control inputs, such as throttle and brake signals,
also encounter limitations due to mechanical characteristics
and safety standards. To date, only a limited number of
researchers have employed the ADP technique to address safe
control issues that encompass both state and control input
constraints. For example, Yang et al. [19] solved the H
control problem of SCSs with state and input constraints by
employing the barrier function-based system transformation
method and developing a nonquadratic performance index
function. It is noteworthy that the majority of existing opti-
mal safe control (OSC) methods rely on system models.
In practice, obtaining an accurate system model is often
challenging. Furthermore, even if a model is available, the
prolonged operation of the system in complex environments
inevitably leads to model uncertainties. Therefore, it is essen-
tial to conduct further research on model-free OSC approaches.
Currently, in situations when the system model is unknown,
a neural network-based identifier is constructed to approx-
imate the system model. Nonetheless, the incorporation of
these identifiers introduces additional complexity into the
control methodologies. In addition, researchers have proposed
model-free iterative algorithms, such as Q-learning [20] and
policy gradient [21], which can realize model-free control
since the designed control policy does not contain the control
input function. However, existing methods have not yet taken
safety into account.

It is widely recognized that event-driven control effectively
reduces the update frequency of controllers, which mitigates
the computational and communication burdens [22], [23],
[24]. Currently, researchers have developed ADP-based con-
trol policies that operate under static event-driven, dynamic
event-driven, and self-driven mechanisms to address vari-
ous types of control issues. Peng et al. [25] developed
a reinforcement learning-based event-driven control scheme
to investigate the distributed tracking control of multiagent
systems. Xia et al. [26] explored the input-constrained syn-
chronization problem of heterogeneous multiagent systems

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

under the dynamic event-driven mechanism. Zhao et al. [27]
developed a self-driven optimal neuro-control approach for
nonlinear systems to avoid continuous monitoring of the
system state. The existing methods typically formulate the
event-driven condition based on Lyapunov stability principle
to determine the instants at which events occur. In practi-
cal applications, to significantly reduce computational and
communication burdens, researchers aspire to maximize the
event-driven error while ensuring system stability and con-
trol performance, thereby achieving a larger triggering time
interval. In order to achieve this requirement, a modest num-
ber of scholars have developed optimal triggering thresholds
within the game framework to obtain the worst-case triggering
interval [28], [29]. However, the exploration of this method is
still in its nascent stages. From the above discussion, it can
be seen that the existing OSC approaches are limited by
considering only a single type of constraint and relying on
precise system models. Moreover, there is a lack of research on
event-triggered safe control methods. In practical applications,
the precise model of the SCS is difficult to obtain and is
prone to being affected by compound constraints. Therefore,
we aim to propose an OSC method that can handle complex
constraints under the event-triggered mechanism, which will
minimize the consumption of computational and communica-
tion resources while ensuring the stability and safety of the
SCS. This also motivates our research.

This article presents an ADP-based model-free dynamic
event-driven safe (MFDEDS) control scheme to address the
OSC problem of unknown SCSs with state and control input
constraints. The innovations and contributions of this paper
are outlined as follows.

1) Compared with existing model-based OSC meth-
ods [16], [17], [18], this paper proposes a model-free
OSC approach by combining the dynamic compen-
sator and the integral reinforcement learning algorithm.
Through appropriate system transformations, the OSC of
unknown SCSs with both state and input constraints is
converted into an optimal regulation of an unconstrained
system.

2) Unlike existing methods [18], [19] that are only applica-
ble to affine SCSs, the proposed ADP-based MFDEDS
approach can be applied to nonaffine forms, which effec-
tively expands the applicability of the control approach
and enhances its practicality.

3) This paper introduces a novel game-based dynamic
event-driven mechanism, wherein the control policy
and the event-driven error are modeled as players in
a zero-sum game, aiming to obtain the worst event-
driven error. In contrast to conventional event-driven
control methods [22], [23], [24], the developed dynamic
event-driven approach endeavors to maximize the trig-
gering time interval while maintaining the stability of
the SCSs, thereby effectively conserving computational
and communication resources.

The structure of the subsequent sections of this paper
is organized as follows. Section II presents the problem
statement. Section III introduces the game-based dynamic
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event-driven mechanism and outlines the OSC policy derived
from this mechanism. Furthermore, the neural network imple-
mentation process is described in detail, along with a
theoretical analysis of the stability of the SCS and a discussion
of Zeno behavior. Section IV showcases simulation experi-
ments conducted to validate the properties of the ADP-based
MEFDEDS control approach. Finally, Section V provides con-
cluding remarks.

II. PROBLEM STATEMENT

Consider the unknown nonaffine SCS as

X(0) = F(X@), 1o (1)), (1)

where X (1) € X; C R” is the constrained system state,
Wo(t) € Uy C R™ is the constrained control policy, F(-) € R”
is an unknown nonlinear system function, X; and U; denote
the safe sets of the system state and the control policy, which

are defined as
X2 {1 xR

gx,jS‘Xisax,iai=1129"'vn}v

Us £ {[Ma,h ceey Mo,m]T e R" |
O < Mo j S Tpjs j = 12m} )
where o, ; and @, ; represent the lower and upper bounds of

the system state components, while «, ; and @, ; denote the
lower and upper bounds of the control policy components.

Objective 1: This paper aims to propose an ADP-based
MFDEDS control approach to guarantee the stability of the
unknown nonaffine SCS in an efficient and resource-saving
manner, while ensuring that the system state and the control
policy remain within the safe sets.

To relax the requirement for precise system information,
we introduce a dynamic compensator as

[o(t) = G(X (1), 1o(1)), 3)

where G(-,-) € R™ is a Lipschitz continuous function and
satisfies G(0,0) = 0. Let Z = [X, u,]" € R"*" be the new
system state, an augmented SCS is constructed as

2(t) = Fo(2) + G () ta, 4)

where (g = fLo,

Fu(2) = [}—(X’ M”)} ,G.(2) = [0”””] 5)

Om Im xXm

Based on the findings presented in [30] and [31], we can infer
that if the augmented SCS (4) is stable, then the stability of
nonaffine SCS (1) can be ensured. Therefore, Objective 1 is
transformed into the following Objective 2.

Objective 2: Devising a control policy u, that not only
preserves the stability of (4) but also ensures that the new
augmented state remains within the designated safe set. Con-
sequently, the stability of the nonaffine SCS (1) is guaranteed,
and both the state and the control policy x, can be maintained
within the safe sets.

To achieve Objective 2, we will introduce the barrier func-
tion to further transform the augmented SCS (4). To begin
with, the definition and properties of the barrier function are
given as follows.

Definition 1: We introduce the barrier function B(z; w, W),
where z € (w, W), w and WV are two constants satisfying w <
W. Note that the barrier function has the following properties

Bz w, W) = ln(H e ) B(O; w, W) =0,
W —z

w
lim B(z; w, W) = —c0o, lim B(z; w, W) = +o0o. (6)
+ —>W-

Z—w
The inverse function and the derivative of the barrier func-
tion are formulated as

Z

Z—g_i

Bz w, W) = wW—— (7
we?2 — We™2
dB~l(z; w, W) B Ww? — wW? ®
dz T w2e —2wW + W22’

Based on the barrier function, we perform the following
transformation on the augmented SCS state as

Si = B(Z;; wi, W), )
2 = B7NSi; wi, W), (10)

where Z; denotes the ith component of the augmented SCS
state, S; refers to the corresponding unconstrained SCS state,
w; and W; indicate the lower and upper bounds of the safe
set, which satisfy

Wi =0uxi, 1 <i=<mn, Wizaﬂ,i,n+1§i§m+n,

wi=a,;,1<i<n w=«a n+1<i<m+n.

i
Subsequently, the dynamics of the unconstrained SCS state is
expressed as

. dZ; dZ;
Si= —/—
! t /dS,'
_ Fei +Gzilka
o dB*l(z;wi,Wi)|
T dz =S

= (Fei 4 Geitta) &i(Si, wi, W), (11)

where F, ; and G, ; represent the ith row of F,(Z) and G,(2),
and

W2e=Si — 2w Wi + wl.zesf

Ei(Si,wi, W) = — T Ra—r (12)
Let S =[Sy, ..., Sn+m]T, the unconstrained SCS is estab-
lished as
S = F(S) + Gi(S)tta (13)
where

Fs(8) = [E(S1, wi, WDF 1,
En(Sntms Wnrtms Watn) FenimT

Gs(S) = [&1(S1, wi, WGz 1, -
En(Snsms Wsms Wasm) G nm ]

By employing the barrier function-based system transforma-
tion approach, the state-constrained augmented system (4) is
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reformulated as the unconstrained SCS system (13). Therefore,
Objective 2 is further refined into Objective 3 as follows.

Objective 3: Developing a control policy u, that ensures
the unconstrained SCS (13) is stable, thereby guaranteeing the
stability of the augmented SCS system (4), while maintaining
the system state within the designated safe set.

Remark 1: The first system transformation involves incor-
porating a dynamic compensator (3), where the control input
and the original system state are treated as a new state of
the transformed system. This transformation aims to con-
vert a nonaffine system into an affine form. Furthermore,
by applying an integral reinforcement learning algorithm to the
transformed system, an optimal control policy can be obtained
even when the original system model is unknown. The second
system transformation introduces a barrier function, with the
aim of converting the constrained nonlinear system into an
unconstrained form, thereby addressing the system state and
control input constraints simultaneously. Through these two
system transformations, the original optimal safe control prob-
lem of an unknown nonaffine system with state and control
input constraints is transformed into an optimal regulation
problem of an unconstrained affine system.

Remark 2: 1t is worth mentioning that barrier functions are
typically designed based on the natural logarithm function
In(-), that is, In(-) = log,(-). For instance, bi(x,k) =
%m(%) and by(x, 1, h) = In[(e* — €')/(e" — &*)] in [19],
where x is the system state or control input, k, [, and h
are restricted boundaries. The purpose of barrier functions
is to ensure that the system state or control input remains
within specified bounds. However, traditional methods intro-
duce the barrier function into the Lyapunov function, which
can only handle a single type of constraint. To address both
the constrained system state and control input simultaneously,
this paper adopts a barrier function-based system transfor-
mation approach, which transforms the constrained system
into an unconstrained one. Therefore, in order to ensure the
transformed system conforms to the properties of traditional
nonlinear systems, the designed barrier function needs to
satisfy the following properties. 1) B(0; w, W) = 0, which
ensures that the origin of the transformed system remains a
zero equilibrium point. 2) The inverse function of B(-) exists
and is unique, ensuring that the original system state and the
transformed system state are in a one-to-one correspondence.
3) When the system state or control input approaches the
boundary, the value of the barrier function tends to infinity.
Moreover, when the system state or control input is within the
boundary, the value of the barrier function remains finite. Only
when these two properties are satisfied, the stability of the
closed-loop system can be guaranteed while the system state
or control input is ensured within the specified boundary. It is
worth noting that traditional barrier functions, such as bj(:)
and b,(-), cannot simultaneously satisfy all three properties.
For instance, b{(-) only satisfies Properties 1 and 3, while
b>(-) only satisfies Properties 2 and 3. Consequently, these
traditional barrier functions can only address either a single
system state or control input constraint problem, but not both
at the same time. In contrast, the barrier function designed in
this paper satisfies all three properties, enabling the problem
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of system state and control input constraint can be solved
simultaneously by using the barrier function-based system
transformation method.

III. ADP-BASED MODEL-FREE DYNAMIC EVENT-DRIVEN
SAFE CONTROL DESIGN

A. Model-Free Dynamic Event-Driven Safe (MFDEDS)
Control Policy Design

In this section, we aim to develop an OSC policy for
the unconstrained SCS (13) under a novel dynamic event-
driven mechanism. Denote {7}, as a sequence of triggering
moments. The sampled state of the unconstrained SCS is
presented as

Sct) =S(T). Tk <t < Tiy1. (14)

Therefore, the sampled control policy is symbolized as fiq k =
a(7x). The event-driven error of the system state and the
control policy are defined as

ek = S(t) = S), ek = fak(t) — pa(®). (15

Afterwards, the event-based unconstrained SCS is built as
S =F (S) + G (S)Ma + G (S)eu,k-

In practical applications, a larger event-driven error implies
fewer control policy updates, which can save more com-
putational and communication resources. Hence, we aim to
maximize the event-driven error as much as possible. However,
a larger event-driven error may affect the stability of the
unconstrained SCS. In this context, for the unconstrained
SCS (13), nq and ey, can be viewed as two players in a
zero-sum game, that is, (, aims to ensure the system stability
while minimizing the performance index function, and e,
attempts to maximize the performance index function.

The performance index function of (16) is formulated as

(16)

P(S)

/ C(S0e), pa(2), €0,k ())dx
t

| (STe0ris00 + w60 Mamao
t

- yzel’keu,k)d%, (17)

where y is a positive constant, M| € R"*" and M, € R™*™
are positive definite matrices.
The Hamiltonian of the system (16) is defined as

H(S, VP(S), ias euk) = C(S, 1ta)
+VPTS) (F(S) + Gs(Sta + G5 (S)eur) »

Therefore, the optimal performance index function

(18)

PH(S) = minmax [ (ST(K)MlS(K)+MZT(K)M2MZ(K)
t

Ha €k

2 xT x
-y eu,keu,k)d"

satisfies

min max H(S, VP(S), ia, epx) = 0.

Ma  €uk

19)
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Thus, the OSC policy and the worst event-driven error are
derived as

1

Mo = =3 My GI(S)VPHS), (20)
1

e = 2—)/ZQST(S)V7’*(S). @1)

Based on (20) and (21), the Hamilton-Jacobi-Bellman equation
is given by

0=S8"M;S+ T Mo — Ve;'fke:i,k

+VPTS) (A& + 0@t +e,0) . (22)
It is noteworthy that (22) is a complex partial differen-
tial equation, which poses challenges in obtaining a direct
solution. Furthermore, the primary dynamics F;(S) of the
unconstrained SCS (13) is necessary to solve the (22), which
means that all information in the nonaffine SCS (1) is required.
To facilitate model-free control, we will employ integral rein-
forcement learning technique on the unconstrained SCS (13),
thereby deriving an OSC policy that relies exclusively on
the constant matrix G, thus eliminating the need of system
information of the nonaffine SCS (1).

For a positive interval ¥, the performance index func-
tion (17) is represented as

t+%
P(S@)) = / C(SGo), pa(2), €1 (2¢))dx
t

+P(S( +9)). (23)

Afterwards, the optimal performance index function satisfies
P (S +%)) —P*(S®)
t+%
+ / C(SCO. 1), € (0)dx = 0. (24)
t

Guided by [18], we can infer that (22) and (24) are equiv-
alent, which implies that the OSC policy can be derived by
addressing (24), thus the nonaffine SCS information is not
required.

According to the worst event-driven error (21), a novel
dynamic event-driven condition is formulated as

Ti+1 = inf{t > Ty : BDy (1) + De(S, e k) <0} (25)
where 8 > 0, D,(¢) is a dynamic variable and
1
De(S, epi) = WVP*TQSQ;FVP* - yzelykeﬂgk.
Note that the dynamic variable is generated by
Dp(t) = —aDy(t) + De(S, €u.0), (26)

where o is a positive constant and D,(0) > 0. Inspired
by [33] and [34], if the dynamic variable is gener-
ated in accordance with (26), it will remain strictly
positive.

Remark 3: Note that the zero-sum game and the Hy, prob-
lem are equivalent, that is, finding a control policy that not only

ensures the stability of (13) but also guarantees the existence
of an L, gain no larger than y, that is

/0 (STWOMISGW) + 1] ) Mapta () ) di

o0
< y? /0 lewkll*de. — (27)

In other words, if condition (27) holds, we say that the
system (13) has an L, gain not exceeding y. Furthermore,
based on the Theorem 16 and the Remark 19 in [32], we can
conclude that P*(S) is positive definite.

Theorem 1: Consider the unconstrained SCS (13), the OSC
control policy (20) and the worst event-driven error (21), if the
dynamic event-driven condition (25) is valid and the following
inequation holds

Aan(M1) > 7362, (8)
where ¢; and G, are positive constants, then the unconstrained
SCS is guaranteed to be asymptotically stable.

Proof. The candidate function of the Lyapunov’s method

is chosen as
L1 =P*S) + Dy(t). (29)

By computing the derivative of (29) and combining it
with (13), we can derive

L= VPTS)(F(S) + Gs(S)1a(T0) + Dp(2)
= VPT(S)(F(S) + Go(S)l + Gs(S)ewr) +Dp(1)
= VPTS(F(S) +GuS)ns + Gu(S)ef s

— G(Se i+ Ge(S)ews) + Dp(0). (30)

In accordance with (21) and (22), the subsequent results can
be derived

VP(S) (fs (S) + Gs(S)uy + gs(S)eZZ,k)
= —STMS — T Mapt + y2e] € ks

w,k
2%k = GHSVP*(S).

(3D
(32)
By incorporating (31) and (32) into (30), we additionally
obtain
L= —STMIS — T Mo + y2eileh
+ VP T(S8)Gs(S) (e — e )t Dy(1)
= -STM;S - MZTMNL; + VZe:,TkeZ,k
+ 2y2e7fk(e,l,k —en )+ Dp(t)
= —8"TMS — T Mo + VzeZTke;,k
+ 2)/26:,-!-1{6/%]( — 2)/26;51-](6;’]( + ljp(f)
= —8TMiS — T Mot — J/ze,fkez,k
+ ZVze;TkeN-»k +Dp(1)
< —S8TMS — T Mop — V2€ZTk€Z,k
+ yzeZTke;k + yzel’keu,k +Dy(t)
< =STMS — T Mo + v2e yep i + Dp(t)
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< =STMIS — T Moy + v2el rew i — aDy(t)

1
+ —V’P*TQSQ;FVP* — yzel’keﬂ,k

4y4
< —STM18 - /LZTMQ/LZ —aD,(t)
1
+ e P* GG, VP
1
< —STMiS + — VPTG, G VP
4y

< “Amin(MDIISI? + #gfc%nsnz, (33)
where G; is the norm bound of Gy(S) and ||[VP*|| < ¢{| S|
with a positive constant c¢;. Thus, drawing upon the finding
of (33), one can ascertain that if condition (28) is fulfilled,
the unconstrained SCS (13) is assured to exhibit asymptotic
stability. The proof is concluded.

B. Neural Network Implementation

Taking into account that the optimal performance index
function remains unknown, we shall subsequently develop
a single-critic learning framework to derive its approximate
counterpart, concurrently obtaining the approximate OSC pol-
icy and the approximate worst event-driven error. Utilizing the
critic neural network, the optimal performance index function
and its approximate version are established as

PHS) = LT (S) + <(S),
PS) = & ve(S),

where ¢} € R" signifies the target weight, 50 represents an
approximate value, ¥.(S) € R" characterizes the activation
function, ¢.(S) € R designates the approximation error, and
n. indicates the quantity of hidden layer neurons.
Synthesizing (20), (21), (34) and (35), the event-driven OSC
policy and the worst event-driven error are reformulated as

(34)
(35)

1 _ _
Wi () = —5M51g5<8k><vw5 SOL + Vs,  (36)
1 - -
eh (T) = z—yzgj(skxw S+ Vo). 37)

The approximate versions of (36) and (37) are presented as

1 ~ - A
Aa(T) = =5 My ' Gl (SO VY] Soke. (38)
1 - A
Cun(Tp) = 27293 (SOVY, (S)e (39)
The temporal difference error is described as
ee = & (Ve(SU+D) - ve(S1))
t+%
+/ C(S(1), fia(r), ey i (1))dx. (40)
t

By employing gradient descent approach to minimize the
temporal difference error, the weight adjustment rule is derived
as

X o0

= —— T ~
be = (1+0Te)2 (cc O + 8(87 /La(’];c))), 41
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where o, > 0 is the
V(S + D) = Y(SM)
SIS, fra(1). &k (r))d.

Building upon the existing findings [35], [38], the weight
adjustment rule (41) guarantees the weight estimation error
Lo = &= EC for the critic neural network remains uniformly
ultimately bounded (UUB), which indicates that the approxi-
mate weight is capable of converging to the target weight.

Within the neural network framework, the dynamic
event-driven condition is turned as

learning rate, and ®
and  B(S. (7o)

Tir1 = inf{t > Tp : BDp(t) + De(S, epr) <0}, (42)

where

~ 1 - ~
De(S. e i) = mg{ VYe(8)GsG] Vil (S)ee — Ve e

C. Stability Analysis

Next, we establish a theoretical paradigm to rigorously
examine the stability of the unconstrained SCS (13) in the
context of the dynamic event-driven mechanism (42).

Assumption 1: e, ¢, Vo(S), and Vg (S) satisfy

1Zell < Zev NEEN < Zems IVES) < Ve VS < &

where ., Cem» Ve, and C. are positive constants [36],
[37], [38].

Remark 4: In Assumption 1, Z. is the critic neural network
estimation error. According to the existing findings [35], [38],
the weight adjustment rule (41) guarantees the weight estima-
tion error is UUB. Therefore, it is reasonable to assume that
Zc is norm-bounded. Furthermore, ¢ is the optimal weight,
¥.(S) represents the activation function and ¢.(S) denotes
the neural network reconstruction error. Since they cannot be
infinite in practice, the assumption of norm-boundedness is
reasonable.

Theorem 2: For the unconstrained SCS (13), the event-
driven OSC policy (36) and the worst event-driven error (37),
and Assumption 1, if the dynamic event-driven condition (42)
is met, then the unconstrained SCS is guaranteed to be stable.

Proof. The Lyapunov function candidate is chosen as

Lot = Lor1 + Lotz = PX(S) + P*(Sk) + Dp(t).  (43)

Part 1: The event is not taken, specifically, t € [T, Tr+1).
By performing the time differentiation of equation (43) and
adopting (13), one obtains

VP TSN F(S) + Gy(S)fta(TR)) + Dy (1)
VP TSNF(S) + Gs(S)fta + Gs(S)ew i) + Dp(t)
= VPT(S)F(S) + VP T(S)G,(S)ita
+ VP(8)Gs(S)euk + VP T(S)G (S
+ VP8G5 (S)eh ; — VP ()G (S
— VP(8)Gs(S)el, i + Dp(1)
= —STMS — uiT Mo + y2e el
+ VP8G5 (S)ita + VPT(S)Gy(S)ew
— VP T(S)G:(S)nl — VPT(S8)Gs(S)elh ; + Dp(1)

Lor =
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= -STM|S - MZTleLZ + Vze;Tke;,k

+ VP T(S8) G (S)(fa — 1)

+ VPT(S8)Gs (S)(epk — €, 1) + Dp(t)
= —STMIS — T Mo + v2etliel

— 23T Ma(fia — 11) + 2y %€ (e — € ) + Dp(1)
=— STMS — T Moy + v2eilier , — 2T Majig

2T Mo + 2)/262-5(6%1{ — 2y2e;’fke;’1,k +D, (1)
= —STMS — 20T Mafig + T Moyt

+2)/2 *T 2 T

erlenr —yieet  +Dy). (44)

By applying a straightforward transformation to the second
and third terms in (44), we can get

uit Moy — 203" Mafia = (1 — fa) T Ma(s — fia)
— fig Mafiq. (45)
By synthesizing (44) and (45), we can further deduce

Lor = — STMIS + (1} — 1) T Mo — i)
— figMajia — yeilieh
+2y%er ek + Dp(1)
< —STMIS + (W — f1a) " Ma(ii — ia)
+ Vz‘flfkez,k + Vzel,kemk + Dy (1)
< —STMIS + (1} — i) Mo — fra)

2 xT 2T
+y7en peunt e ek —aDp(t)

+ #vﬁTgngvﬁ — 2T e

< =STMIS + (= fra) T Mo (e} — fia)
+yleilen  + 4]7V7STQSQSTV75

< =STMiS + Mol — fal®

1
+ yzmvp’”gsggvp*

1 A R
+-— VPTG GIvP.

v (46)

Utilizing (36) and (38), the second term in (46) is extended
as

R 1 i}
It — fall® = || — 3M; 1GT1(SVP*(S)

1 N 2
+ MG SRS
1
= | = M GTSVUIS)E + Vo)

1 A2
+ EM;QI S)VY (S)ie

1
= | - 3My'GlS)Ve
2

1 -
- EM;IQI S)VY ] (S)Ee

= A1+ X2 47

where \| =
By incorporating (47) into (46), Lo7 is transformed into

DIMFN2G2E2 and Mo = LIMSI2G292%..

Lor < =STMS + [ Mzl + A1)
1 - 2 1 - 5 2
+ mgs IVP*(S)|I* + mgs IVP(S)I

< —STMS + [Ma]| (M2 + A1)

1 -
+ mgfuwl (S + V!>
1 - T ~
+ mg&uvm (Sl
|
= —STMIS + IMallCa +A) + 55 G108,
1 52 =2 1 5272372
+ zyzgs Se + 4y4gs wcgc

< = Amin(MDISI? = (1 = 9D Amin (M DS
+ vy, (48)

where 71 > 0 and Wi = [Ma]| (2 + M) + 3:G503E5, +
52G252 + #Q_Szlﬁfff Hence, L7 < 0 if the system state
Sy lies outside the compact set

Wy
Qs =1S:ISII < . 49
S { : ”‘\/a—n%nmmwl)] @

Part 2: The moment of event occurrence, that is, t = Tx.
Building upon the findings presented in Part 1 and Theorem 2
in [33], we can readily deduce that when the event transpires,
Lot persists in being less than 0. The proof is concluded.

In the following, we will demonstrate that under the novel
dynamic event-driven mechanism, the Zeno behavior will be
precluded.

Theorem 3: For the unconstrained SCS (13), the event-
driven OSC policy given by (36), and the dynamic event-driven
condition specified in (42), then the minimum interval between
adjacent triggering moments is greater than zero.

Proof. According to (15), we have

=G —S=-8

(50)
By taking the norm on both sides of the equation, we get

llés ll = 1S

= | F5(S) + Gs(S) il
[Fs (S + 1G5 (S)tall
KrlSl+ K
KrllSk — el + Ky
KISk + K lles il + g, (51)
where F(S) is bounded by the norm as F(S) < K¢||S|| with
Ky > 0, and [|Gs(S)fiq|l is bounded by a positive constant
K. In light of [29], it can be inferred that |le,, || < L, lleskll,

where £, is a positive constant. By leveraging the comparison
lemma, we are able to further deduce that

IATA

IA

IA

Eu ”es,k I

’Cf||3k|| +Ke [ xcou—T
L, —L 0 8 (K =T ),
. Ks ( )

lepkll <

(52)
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When t = 741, based on the dynamic event-driven condi-
tion (42), one has

5 5, D
2 VPTGGTVE + 220

lewxll = |-~ (53)
Iz 2
Combining (52) and (53), we can get
- 5 D
-2 (12 [T TR
k+1 — 4 = ———1n - s
" Ky ¢ y?

where ¢ = ﬁﬂmé‘yr—@. Therefore, we can deduce

that the disparity between any two triggering intervals is
greater than 0, which implies that Zeno behavior will not
manifest.

Remark 5: 1) Different from traditional safe control meth-
ods [16], [17], [18], which handled a single type of
constraint only. This paper designs a dynamic compensator
and employs a barrier function-based system transformation
method, enabling the simultaneous handling of complex situ-
ations involving both state and input constraints. Furthermore,
existing results [16], [17], [18], [19] are applicable only to
affine nonlinear systems and rely on precise system models.
However, this paper uses the dynamic compensator and the
integral reinforcement learning technique to achieve optimal
safe control for nonaffine nonlinear systems in a model-free
manner. Therefore, the developed approach is more practi-
cal and applicable to a broader class of nonlinear systems.
2) Unlike the existing results [33], [34], [38], this paper
proposes a novel dynamic event-driven mechanism within the
framework of zero-sum games. Specifically, the event-driven
error and the control input are regarded as two players in
the zero-sum game. The control input aims to ensure system
stability and minimize the performance index function, while
the event-driven error tends to maximize the performance
index function, potentially leading to the destabilization of
the closed-loop system. By employing the ADP technique,
the Nash equilibrium solution of the zero-sum game can
be obtained, which ensures the stability of the closed-loop
system even under the worst-case event-driven error. In fact,
the worst-case event-driven error implies a larger interval
between adjacent triggering times, thus minimizing the num-
ber of control policy updates and conserving computational
and communication resources. Therefore, compared with tra-
ditional dynamic event-driven control methods [33], [34],
[38], the proposed approach can maintain the stability of
the closed-loop system while significantly reducing the fre-
quency of control policy adjustments, which further conserves
resources.

IV. SIMULATION

In this section, we will elucidate the efficacy of the
ADP-based MFDEDS control method in both a Van der Pol
circuit and a nonaffine system.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

10

—— et —v—e2 Ces —o—Cot —=— (o5 Ces

Critic neural network weights

0 5 10 15 20
Time (s)

Fig. 1. Critic neural network weights in case 1.
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Fig. 2. Control policy pq in case 1.

A. Case 1

The system model of the Van der Pol circuit system is
articulated as

X = 2,
/?2 = -2X1+3X1 — Xlz)/,Lg.

Next, we detail the parameter settings during the simulation
process. The upper and lower bounds for the state compo-
nents and the control policy of the nonaffine SCS (1) are
defined as Ay = -2, Qyp = =2, 01 = 2, 0xp = 2,
o, = —4, and @y, = 4. The parameters in performance
index function are selected as M| = 2073, M, = 17,
and y = 10. The parameters of the dynamic event-driven
condition are set to § = 1 and o = 1. Additionally, the
activation function of the critic neural network is configured
as Yo (S) = [S?, 82,52, 515,, §1S3, 85,8317, and the learning
rate is chosen as o, = 2.

Fig. 1 illustrates the evolution curve of the neural
network weights during the training process. It is evi-
dent that, guided by the weight updating rule (41), the
neural network weights ultimately converge to ¢, =
[3.01,4.59,0.51, 7.61, 5.24, 5.63]T. Fig. 2 presents the con-
trol policy of the unconstrained SCS, which shows that it
ultimately converges, and the staircase-like nature of the curve
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a, we can derive the control policy u, for the nonaffine SCS,
as shown in Fig. 3. It can be observed that the trajectory of

6 8 10 12 14 16 18 20 the 1, can consistently remain within the safe set. However,

Time (s) the traditional control method in [40] cannot guarantee that the

control policy lies within the specified bounds. Figs. 4 and 5

Fig. 5. System states of the nonaffine SCS in case 1. display the system state trajectories of the unconstrained SCS

and the nonaffine SCS respectively, and the results illustrate
means that the control policy remains unchanged between that under the influence of the control policies ©, and o,
adjacent triggering instants. By integrating the control policy the system states eventually tend to a region close to 0,
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which means that the stability of both systems is guaranteed.
Moreover, Fig. 5 exhibits the system state trajectories under
different control methods. It can be observed that the proposed
method ensures that the system states remain within the
predefined boundaries, whereas the system states exceed these
boundaries under the traditional control method in [40]. This
means that the safety of the nonaffine SCS can be guaranteed
with the developed approach in this paper. Fig. 6 compares the
number of control policy adjustments under time-driven (TD)
[36], event-driven (ED) [10], traditional dynamic event-driven
(TDED) [33], and the developed novel dynamic event-driven
(DED) mechanisms. It can be observed that the novel dynamic
event-driven mechanism significantly reduces the adjustment
frequency of the control policy, thereby effectively saving
computational and communication resources. Fig. 7 reveals the
evolution curve of the dynamic variable, which remains greater
than 0 and eventually converges. Fig. 8 illustrates that the time
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Fig. 12. Control policy g in case 2.

intervals between any two adjacent triggering moments under
the novel dynamic event-driven mechanism are greater than 0,
and this indicates that Zeno behavior does not occur. Fig. 9
presents the convergence values of the performance index
function under different control methods. We can find that the
proposed method in this paper achieves a smaller convergence
value compared to the traditional control method in [39].
Therefore, the developed method can ensure the stability of
the closed-loop system with lower control cost, demonstrating
its optimization characteristics. Fig. 10 illustrates the system
state curves when the constrained boundaries are set as «, | =
A, = —1 and oy = ®y2 = 1, from which it can be
concluded that the proposed method can still ensure that the
system state remains within the preset boundaries.

B. Case 2

Next, we will further assess the efficacy of the ADP-based
MEFDEDS control approach on the following nonaffine system.

X = -4 + A,
2'(2 = -2X, + A3,
Xy = =2 — (1 —sin? (X)) X3 + sin(X2) o + p2.

Initially, the simulation parameters pertinent to
Case 2 are delineated in Table I. The activation function
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TABLE I
SIMULATION PARAMETERS IN CASE 2

Parameter o, 1 Qg Qp3 Qz1l  Qz2  Oz3  Q
Value -1 -1 -1 1 1 1 -1

Parameter ay My Mo ¥ B « Qe
Value 1 30Z4 T 10 1 1 3

of the critic neural network is designated as ¢.(S)

[32, S§2,82, 82, 8182, 8183, 8184, $283, $2 84, S3S4]T Com—
prehensive simulation results are elucidated in Figs. 11-19.
Fig. 11 elucidates the progression of the neural network
weights, from which it is discernible that the ultimate
convergence value is ¢, = [16.50, 4.23, 13.43, 14.53, 6.24,
10.42, 2.42, 1.39, 11.27, 16.01]". Figs. 12 and 13 depict the
evolution curves of the control policies of the unconstrained
SCS and the nonaffine SCS, respectively. It can be seen from
the experimental results that the control policy u, of the
unconstrained SCS manifests a stepped characteristic, while
the control policy u, of the nonaffine SCS is always kept
in the safe set. Figs. 14 and 15 show the variation curves of
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the system states under two control policies p, and p,. It is
clear that both of them converge to zero, and the trajectories
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of the nonaffine SCS does not exceed the boundaries of
the safe set in contrast to the traditional control method
in [40]. Fig. 16 shows that under different mechanisms, the
adjustment times of the control policy are 567, 971, 1433,
and 2000, respectively. Therefore, this indicates that the
developed dynamic event-driven mechanism performs well
in reducing the burden of computational and communication.
Fig. 17 demonstrates that the dynamic variable remains
consistently greater than zero and ultimately converges.
Meanwhile, Fig. 18 illustrates all adjacent triggering time
intervals, with the results indicating that these intervals are
positive, which effectively mitigates the occurrence of Zeno
behavior. Fig. 19 shows that compared with the existing
method [39], the proposed scheme can guarantee the stability
of the closed-loop system with less control cost.

Remark 6: In fact, the design of activation functions and the
number of neurons in the hidden layers significantly influence
the approximation performance of neural networks. However,
to date, there is no unified method to guide the selection of
these parameters. In this paper and most existing results [10],
[15], [16], [33], a trial-and-error approach is adopted, that is,
performing repeated experiments and observing the results to
determine the appropriate activation function and the number
of hidden layer neurons. In future research, we will care-
fully consider this challenge and attempt to use optimization

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

algorithms (such as particle swarm optimization) to find the
appropriate combination.

V. CONCLUSION

This paper develops an ADP-based MFDEDS control
approach for unknown nonaffine SCSs subject to state and
input constraints. By establishing a dynamic compensator and
implementing system transformation, the OSC problem of the
nonaffine SCS with state and input constraints is converted into
the optimal regulation problem of the unconstrained SCS. The
designed OSC policy does not depend on the system dynamics
of the nonaffine SCS, which achieves model-free near OSC
control of the original system. Moreover, a novel game-based
dynamic event-driven mechanism is proposed to ensure the
stability of the unconstrained SCS and maximize the triggering
interval, which significantly reduces the computational and
communication burdens. Subsequently, a single-critic learning
framework is constructed to obtain the approximately OSC
policy online, and the Lyapunov’s direct method is employed
to demonstrate that this control policy can ensure that the SCS
and the neural network weight errors are UUB. Finally, sim-
ulation results show that the designed ADP-based MFDEDS
control method can ensure that the system state and the control
input of nonaffine SCSs remain within their safe sets, and the
implementation of the novel dynamic event-driven mechanism
significantly reduces the frequency of control policy updates,
thereby saving computational and communication resources.
In future work, we will consider relaxing Assumption 1
to further enhance the practicality of the proposed method.
Additionally, since constraints are typically time-varying in
practical applications, we aim to explore novel safe control
methods that can handle time-varying constraints.
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Reinforcement Learning-Based Distributed
Robust Bipartite Consensus Control for
Multispacecraft Systems With
Dynamic Uncertainties

Yongwei Zhang

Abstract—In this article, the reinforcement learning-
based distributed robust bipartite consensus control of
multispacecraft systems with dynamic uncertainties is in-
vestigated. The developed control structure includes two
parts, i.e., integral sliding mode control and distributed op-
timal bipartite consensus control. In the first step, an inte-
gral sliding mode controller is designed for each following
spacecraft to address matched uncertainties such that the
dynamics of nominal spacecraft is obtained. In the second
step, a novel performance index function, which contains
consensus errors and their derivatives, is designed for
each nominal spacecraft. As a result, the system assump-
tion of zero equilibrium and the discount factor in perfor-
mance index function are not required, which simplifies
the controller design process and improves the practica-
bility of the developed control method. Moreover, in order
to solve the coupled Hamilton—-Jacobi—Bellman equation of
each following spacecraft, a novel policy iteration algorithm
is designed and its properties are analyzed. Finally, a group
of spacecraft is employed to verify the effectiveness of the
present control scheme.

Index Terms—Bipartite consensus control, integral slid-
ing mode (ISM) control, multispacecraft systems, neural
networks (NNs), reinforcement learning (RL).
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[. INTRODUCTION

PACECRAFT control is an essential and interdisci-
S plinary field of research within aerospace engineering that
encompasses a range of vital technologies, including naviga-
tion, attitude control, energy management, communication, and
satellite formation control. The development and advancement
of these technologies are integral to ensuring the safety, stabil-
ity, and effectiveness of space exploration missions. As space
exploration missions increase in complexity and heterogeneity,
the need for interaction and collaboration between spacecraft
has grown significantly. Consequently, multispacecraft consen-
sus control has gained interest within the aerospace research
community. This research area has demonstrated practical ap-
plications, including cooperative control of spacecraft, such as
the Tiangong-2 space lab and Shenzhou-11 spacecraft, NASA’s
drag-enhanced navigation technology, and constellation control
of the Fengyun-4 A satellite, among others. It is widely acknowl-
edged that the conventional consensus control involves mainly
two types, namely, leader—follower consensus and leaderless
consensus, which rely on the mutual cooperation among multi-
ple intelligent agents to achieve a shared state or output variable.
However, in practical scenarios, agents may not only have co-
operative relationships, but also competitive relationships. For
example, in Earth observation satellite formation systems, each
satellite may possess different data collection tasks, requiring co-
ordination among them to enhance overall mission performance.
Furthermore, resource allocation and balance also need to be
considered, leading to data rivalry between satellites, which calls
for negotiation and competition among them. To capture this
phenomenon, some scholars have proposed bipartite consensus
control, where collaborating agents converge to the same state,
while competitors converge to opposite states. In recent years,
a number of academics have been making significant strides in
the field of bipartite consensus control of multiagent systems.
Liang et al. [1] investigated an asymmetric bipartite consensus
problem of nonlinear multiagent systems by developing an
event-triggered model-free adaptive control approach. Shahvali
et al. [2] presented a novel fully distributed control scheme to
address bipartite consensus control of fractional-order multia-
gent systems by adopting the backstepping technique and the
neuro-adaptive update mechanism. Zhao et al. [3] addressed the

1551-3203 © 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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bipartite consensus control problem of heterogeneous nonaffine
discrete-time multiagent systems by employing neural network
(NN) and pseudopartial derivative techniques. Nevertheless, the
abovementioned method only considers the stability of mul-
tiagent systems, neglecting the issue of control cost, and has
not been actually applied to spacecraft control. As precision
components are assembled on spacecraft, communication and
execution capabilities are limited. Therefore, it is utmost signif-
icance to design efficient and energy-saving control strategies
that can reduce control costs while ensuring that the spacecraft
completes collaborative control tasks.

In recent years, reinforcement learning (RL) has emerged as
a promising approach to solving control problems. RL-based
control methods leverage the feedback loop between the control
agent and its environment, enabling the agent to learn the opti-
mal control strategy through trial-and-error interactions while
ensuring system stability and minimizing control costs [4],
[51, [6], [7], [8], [9], [10]. These methods are characterized
by their adaptability, model-free operation, and good control
performance, and have been deployed extensively to tackle
a range of challenging problems in control theory, including
optimal control [11], [12], trajectory tracking control [13],
[14], robust control [15], [16], differential game [17], [18],
and so on. Moreover, RL-based control approaches have been
adopted to address control problems of practical systems. For
example, Zhang et al. [19] developed an RL-based resilient
event-triggered control approach to address the tracking control
problem for rear-wheel-drive autonomous vehicles. In the area
of spacecraft control, several scholars and experts considered the
trajectory tracking or consensus control problems. Shi et al. [20]
investigated the leader—follower spacecraft formation control
problem by using RL-based event-triggered control approach.
Yang et al. [21] tackled the attitude control problem for space-
craft with actuator misalignment and pointing constraints by
using RL technique. Zhou et al. [22] suggested an online adaptive
nonlinear control method based on heuristic dynamic program-
ming to address the trajectory tracking control problem for
spacecrafts. However, existing research on spacecraft consensus
only considers cases where mutual cooperation exists, and con-
currency of cooperation and competition in bipartite consensus
control problems remains an open research issue in the field.
In addition, spacecraft working for an extended period in outer
space is exposed to numerous hostile factors, such as high and
low temperatures, radiation, vacuum, and microgravity, which
can severely impact the system components of the spacecraft.
Therefore, the occurrence of model uncertainty is challenging to
avoid, leading to an adverse effect on the control performance.

The direct acquisition of an optimal controller for uncertain
systems remains a challenge in the field of control engineering.
Consequently, researchers utilize robust control techniques in
conjunction with optimal control methods to develop controllers
that guarantee the robustness and the optimal performance of
closed-loop systems. In recent years, RL-based robust control
methods have been extensively investigated as a possible so-
lution to this challenge. For example, Wang et al. [23] tackled
the robust control problem of continuous-time (CT) systems.
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By formulating a specific performance index function, the ro-
bust control problem can be transformed into an optimal con-
trol problem. In addition, an online policy iteration algorithm
and an actor—critic framework were established as means of
obtaining the approximate solution of the Hamilton—Jacobi—
Bellman (HJB) equation. Afterward, Wang et al. [24] stud-
ied the robust control problem in the context of an event-
triggering mechanism, and an RL-based event-triggered robust
control scheme was established. Yang and He [25] addressed
the event-triggered robust control problem of CT systems with
mismatched uncertainties and input constraints by designing an
auxiliary system. Although the abovementioned methods can
deal with dynamic uncertainties effectively, they have some
deficiencies. On the one hand, the existing results need to add
an upper bounding function for the uncertain part into the
performance index function, which increases the controller’s
conservatism and cannot obtain the desired metrics. On the
other hand, the assumption of zero equilibrium is necessary in
existing results since it guarantees that the performance index
function is finite. Moreover, when dealing with the tracking
problem, the control input fails to approach zero, resulting in
the nonconvergence of the performance index function. Most of
existing approaches add a discount factor on the performance
index function, which increase the complexity of the RL algo-
rithm and even lead to algorithm nonconvergence. In conclusion,
the abovementioned approaches are suitable for single-agent
systems only and do not apply to spacecrafts. Furthermore,
the existing results have shortcomings in dealing with dynamic
uncertainties. Due to the extensive application of spacecraft in
space exploration, satellite navigation, and aerospace loading,
and its susceptibility to dynamic uncertainty, investigating the
distributed robust bipartite consensus (DRBC) control problem
of spacecrafts is crucial.

In this article, an integral sliding mode (ISM)-based DRBC
control approach for spacecrafts is presented. The innovations
and contributions of this article are outlined as follows.

1) This article extends the RL-based distributed control
method to spacecrafts. By designing an ISM-based DRBC
control scheme, the cooperative spacecrafts in the same
group can achieve consensus, while the competing space-
crafts in different groups converge to the opposite state.

2) Unlike the existing approaches [23], [24] that tackled
robust control problems by introducing an upper bound
function in the performance index function, this arti-
cle employs ISM technique to mitigate the influence
of matched uncertainties of each following spacecraft.
Moreover, different from the work in [26], which required
the bounded assumption of the matched uncertainties, an
adaptive term is designed in ISM control laws to remove
the bound assumption.

3) By developing anovel performance index function, which
includes bipartite consensus errors and their derivatives
for each following spacecraft, the assumption of zero
equilibrium is removed and the discount factor is not
required, which simplifies RL algorithm design and im-
proves the practicability of the control method.
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° A spacecraft
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Fig. 1. Multispacecraft systems.

The rest of this article is organized as follows. In Section II,
the graph theory and the problem statement are presented. In
Section III, the ISM control law is developed for each following
spacecraft to handle the matched uncertainties. Moreover, the
distributed optimal bipartite consensus controller design of the
nominal spacecraft, the novel policy iteration algorithm design
and its properties analysis, and the NN implementation are
provided. Section IV showcases the efficacy of the ISM-based
DRBC control scheme through simulation experiments. Finally,
Section V concludes this article.

Il. PRELIMINARIES
A. Signed Graph Theory

Consider a signed graph denoted as .7/ = (7, L%, %4),
where .7, = {vi,v2,...,0x} is a mnode set, .7, =
{(vi,v)|vi,v; € S} CF X F, i an edge set, and
o = [aijlnvxn 1s a weighted adjacency matrix. Note that
if and only if the agent ¢ and the agent j are directly connected,
then (v;,v;) € .%.. Furthermore, a;; > 0 represents that
the agent ¢ and the agent j are cooperative, and a;; <0
denotes the agent ¢ and the agent j are competitive. Define
N ={j:(vi,v;) € S,j #i} is a set of neighbors of the
agent i, and NV be a set of the agent i and its neighbors. The
degree matrix of .7, is denoted as % = diag{vi,...,vx},
where v; = .. |a;j|. The Laplacian matrix is defined as
L=9— .

Definition 1: A signed graph is said to be structurally bal-
anced if there exists a partition of its signed edges into two sets
Y1 and Z,, such that the following conditions are satisfied.

1) .7 = L1 U L2, Lot N Ly = 0.
2) Vi,j e Ll € {1,2}),a; > 0.
HVie L, i€ Syl #q(l,qg€{1,2}),a;; <O.

B. Problem Statement

Fig. 1 portrays a schematic diagram of a multispacecraft
system, where L, = {X,Y, Z} denotes the Earth center inertial
coordinate frame and L. = {xs,ys, 25} represents the local
vertical local horizontal frame. The virtual leader spacecraft can
provide the information of position and velocity for the follower
spacecraft [29]. The dynamics of the ith following spacecraft is

13343

described as
Di = G
miCi + GG + Dipi + M + 0,(G) =

where p; = [pi 2, Py, Diz| € R3 is the position vector of the
ith spacecraft relative to the virtual leader spacecraft, (; € R*
is velocity vector, m; is the mass of the ith spacecraft., M; =
mix[Re/r3 — 1/R2,0,0]" is the gravity vector, ¥;((;) € R3
is the dynamic uncertainty, u; € R? is the control input, and
; € R¥3 and D; € R3*3 are system matrices, which are given
as

x/ri —¢* - 0
D; =my @ x/ri—¢* 0
0 x/r3
0 — 0
G =2m; |¢ 0 0|,n.=+/x/a}

0 0 O

Ti = \/(Rc + pi,ac)z + pg’y + pzz’z
Re=ac(1—07)/ (14 occos(p))
o=n.(1- JCCOS(<p))2 /(1 — 03)3/2 M

where ¢, a., and o, represent the true anomaly, semimajor axis,
and eccentricity of the orbit, respectively. x is the Earth’s grav-
itational constant. Let z; = [2;1,2i2,2i3, Zi4, 2i5, 2i6] | =
[p],¢T1T € RS, the dynamic of the ith spacecraft can be ex-
pressed as

i = Fi(zi) + Gi(2i) (ui + Vi(2:)) 2)
where

B G
File) = [ m;! (=i~ Dipi

=[]

The dynamics model of the leader is provided as

_Mz)

20 = Fo(2o) 3)

where 2z € RS is the state vector and Fo(-) € R® is a differen-
tiable function.

Assumption 1: The time derivative of the dynamic uncertain-
ties U;(z;) evolves slowly, i.e., \Ilz(z,) ~ 0.

Definition 2: In the bipartite consensus control problem, the
system state of the ¢th spacecraft satisfies

tl;rglo(zi —s8i20) =0 4)
where s; = 1 fori € .%,,and s; = —1 fori € 7.

Our goal is to develop ISM-based DRBC controllers to
achieve bipartite consensus among uncertain spacecrafts, that
is, cooperative spacecrafts converge on a common objective,
while competing spacecrafts reach to a different objective.
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I1l. ISM-BASED DRBC CONTROL OF SPACECRAFTS

The ISM-based DRBC controller of the ¢th following space-
craft is developed as follows:

ui(t) = pi(t) + pic(t) ()

where y;(t) € R? refers to a continuous distributed optimal
bipartite consensus control law, while p;.(t) € R3 is a discon-
tinuous ISM control law, which is utilized to handle the matched
uncertainties of each following spacecraft.

A. ISM Controller Design

For the sake of designing the discontinuous ISM control law
(ic(t), the integral sliding function is chosen as follows:

/ Pil

where K;(z;) € R? and P;(z;) = 24G1) ¢ R¥ are designed
functions. It is noteworthy that the initial system state starts
at sliding mode surface since that S;(2;(0),0) = 0 when ¢ = 0.
Therefore, the approaching condition of the sliding mode surface
is not required [30]. The derivative of (6) with respect to time is
calculated by

Si (zi( Fi(z:) 4+ Gi(zi)ps) dr

— Pilz:) (Fi(zi) + Gi(zi) i) - @)

In order to guarantee that the system state remains on the sliding
surface, the discontinuous ISM control law p;.(t) of the ith
following spacecraft is designed as

pic(t) = —Assgn (G (z) Pl (2:)Ss) — Uy(2) (8)

where A; is a positive constant, ¥; (z;) is the estimate of W, (z;),
sgn(A) = [sgn(A}),...,sgn(A,)], where A =1[A,.. A,]
and sgn(-) is a sign function.

Theorem 1: Consider the ith spacecraft with matched un-
certainty (2), the integral sliding function given by (6), and
Assumption 1, the discontinuous ISM control law (8) guarantees
that the system state stay on the sliding mode surface with the
adaptive update law

\i’i(zi) = B:GT (z)P] (2:)S: 9)

where (3; is a positive constant.
Proof: Select the Lyapunov function candidate as

Lt SS+

U (2)W4(2) (10)

251

where U;(z;) = W,(z;) — U;(2;) is the estimation error. Cal-
culating the time derivative of (10) and adopting the system
dynamics (2), it yields that

Lo = ST(Pi(z) (Fi(z) + Gi(z) (ui + ¥i(z))
(1) + Gale)n) — =0T ()W)

Bi

—Pi(z) (F,

= S (
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é‘i’j(zi)‘i’i(%)
= — AiSTPi(2i)Gi(zi)sgn (G (2:) P (2:)S:)

+ 8/ Pi(2:)Gi(=z) (‘I’z’(zi) - \i/i(zi)>

—Pi(2:)Gi(zi)pi) —

- 5 U)Wz
= —A (20)Gi(20)| + ST Pi(2:)Gi(2:) ¥4 (%)
\I!T(zl)\i/ (). (1)

B

Letting P;(2) = G; (). Since |STP;(2:)Gi(z:)| > ||SF
Pi(zi)Gi(z:)|| is held and according to (9), we further have

i)

4

IN

~ 1514 (12)

Therefore, ZTI < 0 s held. This signifies that the system state
remains on the sliding mode surface when applying the ISM
control law (8). The proof is finished.

According to (5) and (7), and letting S (zi,t) = 0, the equiv-
alent control 1., Of the ith spacecraft is calculated by

= —;(2). 13)

Substituting (13) into (2), the sth spacecraft without dynamic
uncertainties is formulated as

Z2i = Fi(zi) + Gi(zi) i

Remark 1: The adaptive updating law (9) is designed based
on the Lyapunov stability principle, as illustrated in Theorem 1.
To ensure that the system state remains on the sliding surface, it
is required that (12) be negative. Therefore, when the adaptive
updating law is formulated as in (9), (12) being negative holds. It
is noted that the introduction of the adaptive updating term aims
to relax the assumption of the upper bound function of uncertain
term, which enhances the practicality of the control method.

Hiceq

(14)

B. Distributed Optimal Bipartite Consensus Controller
Design

In the following, the distributed optimal bipartite consensus
control law is designed for each spacecraft. The local neighbor-
hood bipartite consensus error of the ith spacecraft is defined as

0; = Z lag;] (

JeN;

2i — sgn(aij)zj) + bl(zl — SiZ()) (15)

where b; > 0 is a pinning gain. Thus, the dynamics of the local
neighborhood bipartite consensus error is obtained by

d; = Z |ai;| (Zi — sgn(aij)Z;) + bi(Zi — siZo)
JEN;
= (v +b;) (Fi(z) + Gi(zi) i) — bisiFolzo)
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(16)

- Zaw

JEN;

i(25) + Gi(25) ) -

The performance index function of the ith spacecraft is designed

as

i) = [ ¢ (500,80 v

_ / h (7 0)28:w) + 6T ) Rbi(w) ) v (17)

t

where Q; € R%*®and R; € R®*6 are positive definite matrices.
The Hamiltonian of the ith spacecraft is given as

H; <5i75i7vu7i(5i75i)>
vzw%m(m+@xﬂwa+@@mn

- Z“w

(25) + G5 (2)5) — bz-sifouo))

JEN;
+Ci(6:, 67). (18)
Thus, the optimal performance index function satisfies
“(5;,6;) = mi c (& 6 )d 19
Fi6ud) = min [ e (awnbw)a o)

where R(2) is a set of admissible controls. The distributed
optimal bipartite consensus control law of the ith spacecraft is
given by

o
where I'; = (v; + b;)Fi(2i) — > e, @i (Fj(z5) + Gj(25) 1)

— b;8;Fo(20). According to (18) and (20), the coupled HIB
equation is provided as

-1

i = (G] (z)RiGi(2))

(20)

0= H,; (5i,5i,vu7i*(6i75i)>

VI (( 0 (Fi() + Galzi)

-2 (F

JEN;
e (@@) .

From (20) and (21), we can find that the distributed optimal
bipartite consensus control law y; depends on the optimal
performance index function 7/ (;, d;). However, it is awkward
to obtain the J;"(d;, 52-) from (21) directly. In the following, a
novel policy iteration algorithm is established to cope with this
issue.

Remark 2: Traditional performance index functions are typ-
ically quadratic with respect to system states and control in-
puts. However, in tracking control problems, control inputs

i(25) + G5 (z) ;) — bisi]:o(zo)>

21
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Algorithm 1: Novel Policy Iteration Algorithm.

Step 1: Let £ = 0 and select initial admissible control law
1Y € R(€). Choose a computation precision &.

Step 2: (Policy evaluation) Calculate the iterative

%) (6,,6:) b

performance index function 7,

O:CZ <5i75’mlul(k l)a,u(_k;_l))
(k)T ;
+ VT (6i,0:) | (v + i) 2 — bisi Fo(zo)
- Z aij,@ (22)

JjeN;

where 2; = Fi(z) + Gi(zi)1; k=1 and

k—1
2; = ‘F(ZJ)+g](ZJ) ‘ )'
Step 3: (Pollcy 1mpr0vement) Update the control law by

(®) _ 1 -1

X (ZQiT(Zi)R I + giT(Zi)V\Z(k)((sz‘,Si)) ;

(23)
where ; = (v; + b;)Fi(zi) — X jen, @ig (Fj(z5) +
Gj(z)m; Dy — bisiFo(z0).

Step 4: If |$(k+1)(6i, bi) — Z(k)(éi, b:)| < &, goto Step 5;
else, let K = k + 1, go back to Step 2 and continue.
Step 5: Stop Algorithm.

do not tend toward zero. To prevent the divergence of the
performance index function, a discount factor is commonly
included. However, the choice of the discount factor will impact
the convergence of the adaptive dynamic programming (ADP)
algorithm and even the stability of the closed-loop system. In
order to address this challenge, this article introduces a new
performance index function that incorporates consensus errors
and their derivatives, which eliminates the need of the discount
factor. As a result, the process of controller design is simplified
and the effectiveness of the control method is enhanced.
Remark 3: The developed ISM-based DRBC controller con-
tains two parts, that is, the distributed optimal bipartite consensus
control law ; and the ISM control law j4;.. It is noted that for the
ith nominal spacecraft (14) without dynamic uncertainties, only
15 is required and it can guarantee that the 7th nominal spacecraft
achieves optimal bipartite consensus control. However, the ith
spacecraft contains the dynamic uncertainty \Ili(g) Therefore,
in order to eliminate the effect of the dynamic uncertainty,
the ISM control law p;. is developed. In fact, if the dynamic
uncertainty does not exist, according to (7), one can know that
the derivative of the integral sliding function S is equal to 0.
Since the initial value of S is 0, then S will remain at 0, which
leads the ISM control law ;. being 0 as well. Therefore, the ISM
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control law will not have any impact on the nominal spacecraft.
Only in the presence of uncertainties, the ISM control law fs;.
will generate corresponding responses to counteract the effect of
the dynamic uncertainty. In general, these two control laws each
have their own responsibilities and will not lead to excessive
control.

C. Novel Policy lteration Algorithm

In order to obtain the optimal performance index function
J7(0;,6;) and the distributed optimal bipartite consensus con-
trol law p7, inspired by the results in [11] and [27], a novel policy
iteration algorithm is designed in Algorithm 1. Moreover, the
properties of the novel policy iteration algorithm are analyzed in
Theorems 2 and 3. It is demonstrated that iterative performance
index functions exhibit a monotonic decrease and converge to
the optimal value, while iterative control laws ensure the stability
of the local neighborhood bipartite consensus error.

Theorem 2: Consider the ith following spacecraft (14), the
iterative performance index function and the iterative distributed
bipartite consensus control law are given by (22) and (23),
respectively, if ugk) € R(Q), then the following conditions hold.

D ) e w(@).
2) 78,8 < T (65,6

Proof: 1) Inlight of jl.(k) (045 5,») > 0, the Lyapunov function
candidate is chosen as

Lo = TP (6:,6:). (24)

Taking the time derivative of £, and adopting the following
system dynamics:

b= i b0) (Fil) + Galea)n™ ) = bisiFo(0)

- Zaw( (2j) + Gj(25)p (k)>

JEN;
we have
‘Z(k) (6“ 5L)
— vI®T (6,6 ((l/l + b;) (}‘i(zi) + gi(zi)ugk+1))
—bisiFo(z0) = ) ay (fj(zj) + gj(zj)ﬂg'k)) )
JEN;
(25)

According to (20), we can get

. 1
le-(k)(&y 8) = — mRz ((Vi + bi) Fi(zi)
_ Z a;j ( Zj +gj(zj) (k))

JEN;

—bisiFo(z0) + (Vi +b:)Gi(zi)p Hl))-
(26)
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By using (25) and (26), it holds that

1
T ((Vi + bi)Fi(2i)

- Z @ij ( (2) + Gj(z)m (k))

JEN;

.
—bisiFo(z0) + (vi + b:)Gi(zi)pe (Hl)) R

X <(1/1 +b;) (}' (zi) + Gi(zi) (k+l)>

—bisiFo(z0) — Y aij (f (2j) +Gj(z;)p (k)> >

JjeN;
< 0.

(k+1) &

Therefore, 11, is an admissible control law.

2) Based on (22), it is easy to infer that if ugk) and ,u(j)

are admissible control laws, the iterative performance index
function \Yi(k) (0;, 0;) satisfies

0= ¢ (51751,/14(k) (k ))

v ®T (6,60 <(yi + b;) (]—' (zi) + Gi(zi)u (k)>

—bisiFolz0) = 3 aij (fj(zj) + gj(zj)u§-’“>) >
JEN
(27)

Considering (23), we can get

Ci (51-,51-,#1(“1),#(“)

96160 (05400 (Fia) + GG

Z @ij ( (2j) +G;(z5) g“))

JEN;

bS.F() Z()

< 0. (28)
According to (28), we can get

T (8:,8:)

Vji(k)T((Si, d;) ((Vz +b;) ( (21) + Gilzi) (k+1))

— bysiFo(z0) — Z aij (]—'j(zj) + %(z;-)lém) >

JEN;

< =G (&;,&MEHI),M(M) 29)
Integrate both sides of (29), it follows that:
TM6:,6:) > TE (8, 8:). (30)
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The proof is concluded.

Theorem 3: Let J™(6;,8;) and ;i) (5;) be obtained by
(22) and (23), respectively. Then, the iterative performance
index function 7, (k )((5“ 4;) and the iterative control law u( )(5 )

converge to J;*(d;, 52) and pf (9, ), respectively, as k — oo, i.e.,

lim 7 (5:,8;) = J7(6:,6;)
k—o0
hm ,u( )(5) i (83).-

Proof: The proof of Theorem 3 closely resembles that pre-
sented in [27] and [28], and hence, the details are omitted in this
context.

D. NN Implementation

In the following, critic NNs are built to acquire the approxi-
mate solution of the coupled HIB equation. By utilizing the NN,
the optimal performance index J;*(;, d;) is represented by

T (8:,0:) = @i 0ic(6:) + €c(8) (3D

where @}, € R"« is the ideal weight vector, g;.(5;) € RMe
is the activation function, h;. is the number of hidden layer
neurons, and €;.(d;) € R is the approximation error. Then, the
partial derivative of 7" (4;, 52) with respect to §; is calculated by

VI (8:,05) = Vol (0:)w}. + Veie (). (32)

The approximate performance index function is formulated as

Ji(6:,6:) = &.0ic(5:) (33)
where ;. is the estimate of w;,. Similarly, we can get
VIi(6i,61) = V0io(0:)Fic- (34)

According to (20) and (32), the distributed optimal bipartite
consensus control law of the ith following spacecraft is rewritten
as follows:

1
B Z(Vi + bl)

% (G (2:) (Voie(0i)ie + Veie(8:)) + 267 (zi)Ril:)

(35)
where I'; = (v; + b;) Fi(2:) — D e, @i (Fj(z5) + G(25) 1)
— b;s;Fo(z0). Based on (33), the approximate distributed bipar-

tite consensus control law is provided as follows:
1 T
l; = — i (i) RiGi(zi
b=~ Sty G (BIRG(E)
% (6] (2:)V 0. (0:)@ic +2G] () RiT:) -
Combining (21) and (36), the approximate Hamiltonian is given
as follows:

H, (51‘7 oi, ﬁ/’ic)

* 1

Wi = (G (z)RiGi(z))

-1

(36)

= C ((Z«, Si) + @) Voic(6;) ((yi +b;) (Fi(z:) + Gi(z:) )

-2 w(F

() + G5 (23)i1y) — b,»sif()(zo))
JEN;
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>

= €Ejc-

(37

By employing gradient descent algorithm on E;. = Jel e;c, the
weight tuning law is designed as follows:

1 OFE;.
— Q¢ ~

= - (l—i—ag?lAl)z (ZAU;FCAZ’ +C; (6ia5i))

Z;Uic =
(38)

where . > 0 denotes the learning rate and

A; = Voi(d;) <(V7: + i) (Fi(zi) + Gi(zi) i)

- Z“w

i(2) +Gj(zj)f5) — bisi]:O(ZO)>~

JEN;

Let the critic NN weight estimation error be ;. = @, — Wje.

Inspired by Yang and He [25], we have

z;ﬂic = - wlc
ach;

= - chihTNic — i 39
o i Wic + T+ ATA, S (39)
where h; = Hﬁﬁ’ and ¢; = —Vel (6:;)((vi + bi)(Fi(z:) +
Gi(zi)f1i) = > jen, @i (Fj(z5) + Gj(z5)f1;) — bisiFo(z0)) is

the residual error.

Theorem 4: Consider the ith spacecraft (14) and the critic NN
weight tuning law provided by (38), then the critic NN weight
estimation error is ensured to be uniform ultimate boundedness
(UUB).

Proof: Due to space limitation, the proof of Theorem 4 is
provided in the Supplementary Material.

Remark 4: Algorithm 1 provides a specific procedure of the
policy iteration. By iteratively alternating between the policy
evaluation and the policy improvement, we can obtain the op-
timal performance index function and the distributed optimal
bipartite consensus control law. However, since the performance
index function is unknown at each iteration, we employ the critic
NN to implement Algorithm 1. The detailed process is explained
as follows. In the kth policy (22), our objective is to find the
() (.) such that (22) holds. Since
the ._7l-(k) (+) is unknown, we utilize the critic NN to approximate
its value, which can be represented as Ji(k)(~) =@} 0ic(6:).
As the weight ;. is not the ideal one, the right-hand side of
(22) is not equal to 0. To make the approximate weight ;.
closer to the ideal weight, we define the right-hand side of (22)
as the error function in critic NN learning, as shown in (37).
Subsequently, by using the gradient descent approach, the critic
NN weight updating law (38) is obtained, which guides the
approximate weight toward the ideal weight. Upon obtaining the
ideal weight, the right-hand side of (22) becomes 0, indicating
the completion of the kth policy evaluation. Following this, the
control law for the kth iteration can be obtained through policy
improvement. By iterating a certain number of times, we can

performance index function J;
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ultimately obtain the optimal performance index function and
the distributed optimal bipartite consensus control law.

E. Stability Analysis

This section will provide proof that the developed approxi-
mate distributed bipartite consensus control law (36) guarantees
the local neighborhood bipartite consensus error to be UUB.

Assumption 2: G;(+), Wic, @, V0ic(+), and Ve (-) are
norm-bounded, i.e.,

Hgl()H < g_i7 ||@ZC|| < Wic, ||wrc|| < WicM

1V 0ic()]l < dics |Veic()|l < €

where G;, @ic, @ica Dic, and &, are positive constants.

Theorem 5: Consider the ith spacecraft (14), the approximate
distributed optimal bipartite consensus control law provided by
(36), the critic NN weight renovating law given by (38), and
Assumption 2. Then, the bipartite consensus error is ensured to
be UUB.

Proof: Due to space limitation, the proof of Theorem 5 is
provided in the Supplementary Material.

Remark 5: 1) Different from the existing ADP-based control
approaches [14] and [17], this article considers the bipartite
consensus control for multispacecraft systems, which has a
more practical application background. Moreover, this article
designs a novel optimal performance index function, which
contains bipartite consensus error and its derivative. Therefore,
the discount factor is not required and the practicability of the
control method is improved. 2) For traditional ADP-based robust
control approaches [16] and [25], it is a common practice to
add an upper bound function of the uncertain term into the per-
formance index function. In other words, during the controller
design process, the impact of uncertainties is taken into account
in advance to derive the optimal robust controller. However,
this approach requires the prior knowledge of the upper bound
function of uncertainties, which increases the conservatism of
the control method. To tackle this challenge, this article intro-
duces the ISM technique to alleviate the impact of the uncertain
term. Moreover, by integrating an adaptive term into the ISM
control law, the assumption of the upper bound function of
the uncertain term is not required. As a result, the developed
ISM-based DRBC control method reduces the conservatism
of the controller and improves the practicality of the control
approach.

IV. SIMULATION

In this section, four spacecrafts are adopted to demon-
strate the validity of the developed ISM-based DRBC control
scheme. The communication topology is shown in Fig. 2, where
Fi(i=1,2,3,4) denotes the ith follower and A, represents
the leader. The communication topology parameters are se-
lected as: 12 = A13 = Q2] = A4 = Q3] = Q34 — A4) — Q43 —
1, and b; = 1. The system parameters of the spacecraft are
chosen as: a. = 7178, 0. =0.01, x = 3.986 x 1014m3/52,
and m; = 100kg. The dynamics of the leader is given as
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Fig. 2.  Structure of the communication topology.

follows:
Fo = [cos(t),sin(t), cos(t), —sin(t), cos(t), —sin(t)] .

The dynamic uncertainties of all following spacecrafts are pre-
sented as follows:

[ 8sin(z1,1)cos? (21 3)
Wi(z) = | 10sin(z; 2)cos?(z1,4) |’
SSiH(Zz’l)
\:[12(22) = 6COS(22,4) s
_3sin(zz,2)cosz(zz,3)
6c0s?(23.3) 6sin*(24.1)
\113(2’3) = 3sin(23,1) ,\114(24) = 90082(2472)
_IOSin(Z3,2)COSZ(Z373) 35in2(24,3)
In the first stage, an ISM controller is developed
for each following spacecraft to deal with matched
uncertainties. The integral sliding function is selected
as (6), where K;(2;) = [zi4,2i5,2i6]] and Pi(z)=
[0,0,0,1,0,0;0,0,0,0,1,0;0,0,0,0,0,1]. Therefore, the

ISM control law of the each following spacecraft is designed as
follows:

Hic = Aitanh (ng(zz)PzT(zz)Sl/m) — ‘ilz(zz)

where A; = 20, x = 0.05, and sgn(-) is replaced by tanh(-) for
reducing the chattering phenomenon. According to the presented
Fig. 3, the evolution curve of the ISM control law of each
spacecraft can be perceptibly discerned, thereby providing an
insightful glimpse into its response toward dynamic uncertain-
ties. With the help of the ISM control law p;., the influence
of matched uncertainties can be eliminated and the nominal
spacecraft system is obtained. Fig. 4 shows the variation curves
of the sliding mode functions for all following spacecrafts. It
can be observed that the sliding mode functions are maintained
within a small neighborhood of zero, which implies that the
system state can be sustained on the sliding surface.

In the following, the distributed optimal bipartite consensus
controllers are designed for nominal spacecrafts. The control
parameters are chosen as Q;; = I, R;; = 0.011, and 3; = 20.
The activation function of the critic NN is chosen as g;.(d;) =
[51‘2,1 ) 5@‘2,23 61‘2,35 51%47 612,57 51‘2’67 51’,151',47 51’,251',5; 5i,3§i,6}~

The simulation results are shown in Figs. 5-10. Fig. 5 provides
the weight updating curves. It can be observed that the weight

(40)
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Fig. 3.

Fig. 4.
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Fig. 6. Distributed optimal bipartite consensus control laws.
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Fig. 7. Bipartite consensus errors.

vectors of critic NNs will converge to
@i = [12.84,10.76,93.13,37.07,60.79, 41.36,
91.14,72.14,85.59]"
@ = [59.89,68.95,39.09,21.39, 11.53, 17.06,

92.71,2.10,86.96]"
Go3. = [45.39,74.90,37.34,28.90, 73.70, 28.39,

61.93,92.32,91.62]"
Goae = [19.42,38.28,77.37,7.54,75.09,86.37,

56.23,58.95,87.79]".

Fig. 6 shows the evolution of distributed optimal bipartite con-
sensus control laws. Fig. 7 demonstrates that with the help of
the developed control law, the bipartite consensus error of each
following spacecraft can converge to a vicinity of 0. The state tra-
jectories of the leader and the followers are illustrated in Fig. 8. It
is evident that spacecrafts that belong to the same group converge
to a common trajectory, while spacecrafts from different groups
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converge to opposite trajectories. Fig. 9 compares the system
state trajectories under the developed ISM-based DRBC con-
trol scheme and the traditional ADP-based distributed control
method in [12].It can be observed that the traditional control
method fails to separate the state trajectories of spacecrafts
into two clusters. Next, we selected different leader trajectories
to further validate the performance of the proposed control
approach. The dynamics of the leader is selected as follows:

Fo = [ sin(t),sin(t) + cos(2t), cos(t) — sin(t),

cos(t), cos(t) — 2sin(2t), —sin(t) — cos(t)]".
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Fig. 10. System states of all agents.

Fig. 10 presents the state trajectories of all following spacecrafts.
It can be observed that the spacecraft trajectories are divided
into two groups, where followers 1 and 3 converge to the same
group as the leader, and followers 2 and 4 converge to the group
opposite to the leader trajectory. Based on the simulation results
above, it can be inferred that the developed ISM-based DRBC
control scheme realizes the bipartite consensus of the spacecraft
cluster.

V. CONCLUSION

In this article, an ISM-based DRBC control approach is devel-
oped for spacecrafts with matched uncertainties. To begin with,
the ISM controller is designed for each following spacecraft
to cope with matched uncertainties, and the dynamics of the
nominal spacecraft is obtained. Subsequently, by designing a
novel performance index function of each following spacecraft,
the distributed optimal bipartite consensus control problem is
addressed. To acquire the approximate solutions for the coupled
HIJB equations, a new policy iteration algorithm is introduced,
and a critic-only structure is built. Theoretical analysis shows
that iterative performance index functions exhibit monotonic
decrease and converge to the optimal value, and the iterative
control laws ensure the local neighborhood bipartite consensus
error asymptotically stable. Finally, simulation results indicate
the validity of the proposed ISM-based DRBC control scheme.
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Abstract

This article develops an event-triggered cooperative robust formation control scheme for nonlinear multi-agent systems with
dynamic uncertainties via reinforcement learning. By formulating a modified value function for each agent, the cooperative
robust formation control problem of uncertain multi-agent systems is transformed into a cooperative optimal formation control
problem of its nominal plant. To save communication and computing resources, a novel triggering condition is developed for
each agent, and the controller is renovated only when an event occurs. Subsequently, the event-triggered optimal formation
control law of each agent is derived by solving the coupled Hamilton-Jacobi-Bellman equation via single-critic structure.
Furthermore, theoretical analysis indicates that the developed event-triggered cooperative robust formation control approach
ensures the asymptotic stability of the formation error for each uncertain agent. Eventually, two simulation cases are adopted

to confirm the effectiveness of the developed control approach.

Keywords Reinforcement learning - Multi-agent systems - Formation control - Robust control - Neural networks

1 Introduction

Cooperative control of multi-agent systems (MASs) has
garnered significant research interest owing to its versatile
utilization in diverse domains, for example, distributed sen-
sor networks, aerospace systems, unmanned swarm systems,
and so on. Compared with single-agent systems, MASs com-
plete complex tasks in an efficient and robust way through
the cooperation between each agent [1]. As is known to
all, the formation control is one of the common and basic
issues in MASs, which endeavors to prompt multiple agents
to form a predetermined geometric pattern with their states
or outputs. Currently, a significant number of scholars are
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dedicated to addressing the challenge of formation con-
trol. Cao et al. [2] proposed a neural network (NN)-based
composite dynamic surface control approach to address the
fixed-time formation control problem of MASs. Pang et al.
[3] addressed the time-varying formation control problem
of MASs with communication delays and packet dropouts
by developing a cloud-based predictive control method. Yao
et al. [4] developed a sliding mode control method to handle
the leader-follower formation control problem of MASs with
uncertain perturbations under event-triggered mechanism.
The previously mentioned researches primarily concentrate
on the stability of MASs. Nevertheless, the attainment of
green and high efficiency in MASs necessitates the care-
ful consideration of control cost. To achieve this goal, it is
essential to present an optimal formation control method to
accomplish the cooperative task of MASs while minimizing
the control cost of each agent.

It is widely acknowledged that reinforcement learning
(RL) is a highly effective method for addressing the opti-
mal control problem of nonlinear systems [5—11]. To achieve
optimal solutions for consensus, formation, and containment
control problems in MASs, numerous researchers have put
forward RL-based cooperative control methods. At consen-
sus control aspect, Guo et al. [12] tackled the distributed
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optimal attitude consensus control issue of unmanned aerial
vehicle cluster by using RL technique. Xia et al. [13] devel-
oped an off-policy RL method to tackle the optimal synchro-
nization issue of MASs with asymmetric input constraints.
For formation control, Mu et al. [14] developed a multistep
generalized policy iteration algorithm to settle the hierarchi-
cal leader-follower formation control problem of large-scale
MASSs. Wen et al. [15] investigated the leader-follower for-
mation control of unknown MASs by employing a modified
RL technique. For containment control, Xiao et al. [16] con-
fronted the distributed optimal containment control problem
of mobile robots by combining optimal backstepping and
RL techniques. Yang et al. [17] adopted off-policy RL tech-
nique to handle the model-free optimal containment control
problem of heterogeneous MASs with unknown dynam-
ics. In general, aforementioned results develop appropriate
iterative RL algorithms to acquire the approximate solu-
tions of coupled Hamilton—Jacobi—Bellman (HJB) equations,
and corresponding optimal cooperative controllers are devel-
oped to accomplish the cooperative control tasks of MASs.
However, the above mentioned control methods require to
update controllers at each sampling time, which consume
a lot of communication and computing resources. More-
over, in MASs, each agent transmits information through a
communication network, but its computing and communica-
tion capabilities are limited since agent is usually equipped
with a microprocessor, such as unmanned aerial vehicles
and unmanned surface vehicles, etc. To solve this problem,
scholars turn to develop event-triggered cooperative control
approaches for MASs, that is, agents only communicate or
update controllers at necessary times to alleviate computing
and communication burdens.

In recent years, several researchers have proposed event-
triggered cooperative control schemes for MASs. For exam-
ple, Zhao et al. [ 18] explored the optimal coordination control
of MASs under the event-triggered framework. Chen et al.
[19] presented an adaptive distributed observer-based RL
algorithm to tackle the event-triggered H, consensus prob-
lem. Wang et al. [20] combined integral sliding-mode and
local RL techniques to address the robust optimal consen-
sus control problem of MASs. Ren et al. [21] addressed
the security distributed consensus estimation problem of
nonlinear systems with deception attacks by developing an
event-triggered extended Kalman filter. On the whole, all
of existing researches handle the consensus control prob-
lem only, the formation control problem is not investigated.
Furthermore, in practice, agents need to perform various
complex tasks in harsh environments, such as unmanned
aerial vehicle rescue and unmanned surface vehicle deep sea
exploration. It means that the emergence of model uncer-
tainty is inevitable. Actually, plenty of RL-based robust
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control methodologies have been formulated for nonlinear
systems to handle model uncertainties. Nevertheless, most
of them consider single agent systems [22, 23] or large-
scale systems [24, 25], the research for MASs is still in its
infancy. Based on the aforementioned discussion and analy-
sis, the paramount importance lies in effectively addressing
the robust formation control problem of MASs within the
event-triggered framework.

This paper introduces an innovative RL-based event-
triggered cooperative robust formation (ETCRF) control
scheme for uncertain MASs. The innovations and contribu-
tions of this paper are outlined in the following manner.

1. Unlike the exsiting optimal cooperative control results
[12] and [13] that adopted time-triggered mechanism,
this paper develops a novel triggering condition for each
agent and the developed RL-based ETCREF controller is
renewed at triggering instant only such that the comput-
ing and the communication resources are conserved.

2. Different from existing cooperative formation control
approaches [14] and [15], which are applicable to ideal
system model only, this paper considered MASs with
dynamic uncertainties. Through the development of a
novel value function for each agent, the ETCRF control
problem is converted into an event-triggered coopera-
tive optimal formation (ETCOF) control problem and
the developed controllers guarantee all followers catch up
with the leader in a specified geometric pattern even in the
presence of dynamic uncertainties. Therefore, the devel-
oped RL-based ETCRF control method is more practical.

The subsequent sections of this paper are organized as fol-
lows. Section 2 introduces the graph theory and presents the
problem statement. Section 3 provides a detailed explanation
of the ETCRF controller design, the NN implementation, and
the stability analysis. The simulation results of the RL-based
ETCREF control scheme are displayed in Section 4. Finally,
Section 5 provides the corresponding conclusion.

2 Preliminaries
2.1 Graph theory

Consider a MAS characterized by the presence of a solitary
leader and M followers. Let M; represents the neighbor set
of the agent i and M, denotes a set that contains the agent i
and its neighbors. The communication topology graph of the
MAS is given by 7, = {P, E, A}, where P = {Py, ..., P}
is a node set, E = {(P;,P;): P;,P; € P} is a edge set,
and A = [w;;] is a weighted adjacency matrix. Note that
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(P;,P;) € E if and only if the agent i and the agent j are
directly connected. Furthermore, if (P;, ;) € E, then o;; >
0, otherwise, oj; = 0, and ;; = O foralli =1, ..., M. The
degree matrix of 7, is defined as D = diag{d}, ..., dp(} with
di = }_jepm; @ij and the Laplacian matrix is calculated as
L=D-A.

2.2 Problem statement

The system dynamics of the ith follower is expressed as

zi = Api(z) + Agi @) (i + Aiz0), (1
where z; € R* and u; € R¥ are the system state and the
control input of the ith follower, A;(z;) € R*i is the matched
uncertainty, and Az ;(z;) € R% and A, ;(z;) € Rsi*ki are
nonlinear system functions.

Assumption 1 The system functions Ay ;(z;) and Ag (i)
are Lipschitz continuous on a compact set Q2 and the system
(1) is stabilizable on 2 [5, 6].

Assumption 2 The dynamic uncertainty A;(z;) satisfies || A;
@)l < Ai(zi), where A;(z;) is a known function and
A;(0) =022, 23].

The dynamics of the leader is provided as

20 = Ayr.0(20), 2

where zp € R* and Ay o(-) € R% is a differential function.
The objective of this paper is to introduce a RL-based

ETCREF control method that ensures all uncertain followers

accurately track the leader’s trajectory within a specified for-

mation. We will show that this objective can be achieved by

addressing the ETCOF control problem of nominal MASs.
The nominal form of (1) is given as

zi = Afi(zi) + Agi (@i i )

The formation error of the ith follower is provided as

G= Y wij@—ni—z+n)+ei@—z0-n). @
JeEM;

where 1; € R¥ is the formation pattern between the follower
i and the leader and ¢; > 0 is the connection coefficient
between the follower i and the leader. Then, the dynamics of
the formation error is calculated as

& = Z a;j(Zi — 2;) +ci(Zi — 20)
JEM,;

= Z aij(Afi @)+ Agi@ipmi— Ar j(2j)— Ag, i (2)1)
JeEM;
+ci(Afi(zi) + Agi(zidmi — Af,0(z0))
= (di +ci)(Af,i (i) + Agi(zimi) — ciAr0(z0)

— Z Ot,'j(.Af,j(Zj) +Ag_j(Zj)Nj)~
JeM;

&)

The novel value function of the ith follower is formulated
as

T = [ U (G m(6) ui(o))ds. ©
t

where y isapositive constant, u_; = {u; : j € M;, j #i},
and U; (+) is the utility function that is formulated as

U(&i, i )= ) (91_\3(1,/)+ 61 Q;61+ M}RJM./)s
jEM[

where 6 is a positive constant, Q; € R%>** andR ; € RKjxk;
are positive definite matrices. The Hamiltonian of the ith
follower is given as

Hi(&.VTi(ED, 1is i—i)

= VJ,-T(é(})((di + ci)(Afi(zi) + Ag.i(zi) i)

—ciAroGo)— Y aij(Ar @)+ Ag i(z))m;
jeM;
+Ui (&, iy i) — y Ji(&1).

)
)

The discounted optimal value function of the ith follower

J(&)=min

o0
vy (& . . d
meﬂtm)/ e i (8(), i (), n—i(s))ds

t

fulfills the following HIB equation as

min M6, VI (). b i) = 0.

®)

where N(2) represents the admissible control law. Subse-
quently, the optimal formation control law is obtained by

Cdi+c
2

= RiAL GOVT(ED. Q)

By utilizing (8) and (9), we can derive the coupled HIB
equation as

0= vz-*T(o%)((di + i) (Arizi) + Agi(zOnl)
@ Springer
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—ciAroGo) — Y aij(Af () + Ag,j(Zj)Mﬁ))
JEM;

FU(& wEt) =y TEE). (10)

In the following, a RL-based ETCRF control scheme is put

forward to approximate the solution of the coupled HIB equa-

tion.

Remark 1 It is worth noting that the HJB equation is a com-
plex partial differential equation, and it is difficult to obtain
its analytical solution directly. In order to solve this prob-
lem, the policy iteration algorithm is adopted to obtain the
approximate solution. The algorithm pseudo-code is given
as follows.

Algorithm 1 Policy iteration algorithm.

Step 1: Let k = 1 and select initial admissible control law [L? € N(Q).
Choose a computation precision &.
Step 2: (Policy evaluation) Calculate the iterative value function

T (&) by
k1) (k- k
0=u(& n " 1) —ya®P &)
+v7 O &) ((di + i) (Ari @) + Agi@u ™)
—ci Ay o(zo) — Z aij(Ayj(z) + Ag,j(zj)ﬂ3k71>)>~
JEM;
Step 3: (Policy improvement) Update the control law by

di+ci __
k k
u® = —%Ri AL VTN ().

Step 4: If I\Z(k)(z%) — \Z(kfl)(é”,-)l < &, goto Step 5;else, letk = k+ 1,
go back to Step 2 and continue.
Step 5: Stop Algorithm.

It is worth mentioning that several researchers have estab-
lished theoretical analysis frameworks to show that, through
continuous policy evaluation and policy improvement, the
iterated value function can converge to the optimal value
Sfunction and the optimal control policy is obtained after itera-
tion completion [5, 6, 8. Therefore, we can ultimately obtain
the approximate solution of the HIB equation.

Remark 2 This paper adopts the policy iteration, that is
value-based RL algorithm, to derive the optimal value func-
tion and the optimal formation control law for MASs. In the
field of control, prevalent RL algorithms include policy itera-
tion, value iteration, and policy gradient. The former two are
value-based RL algorithms, while the latter is policy-based.
Typically, value-based RL algorithms are extensively applied
and have proven effective in addressing classical control
problems such as the optimal regulation and the trajectory
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tracking. Scholars have rigorously analyzed the convergence
and the optimality of policy iteration or value iteration algo-
rithms, ensuring the attainment of optimal control laws for
closed-loop systems [5, 6]. Recently, several researchers
have begun investigating the policy gradient-based RL algo-
rithm to address the control problems of nonlinear systems.
It is noteworthy that each of these algorithms has its own
strengths and limitations. For example, value iteration algo-
rithm easily determines its initial condition, but the stability
of the closed-loop system is not guaranteed at each itera-
tion. Policy iteration algorithm necessitates the admissible
control law as initial condition, yet the stability of the closed-
loop system is assured at each iteration. Since the stability
is paramount in closed-loop systems, the policy iteration
algorithm becomes the prevalent approach in control appli-
cations. In addition, the policy gradient algorithm does not
require the system function information, making it suitable
for closed-loop systems with unknown dynamics. In conclu-
sion, the selection of RL algorithms should be tailored to
specific problems. This paper employs the classic policy iter-
ation algorithm to tackle the cooperative robust formation
control problem for MASs and introduces an event-triggered
mechanism to mitigate computational and communication
burdens. In the future work, we will explore event-triggered
control methods based on value iteration or policy gradient
algorithms to address cooperative control problems of MASs.

Remark 3 Compared with traditional control methods, the
advantage of the RL-based control approach lies in its ability
to guarantee the stability of the closed-loop system while min-
imizing the performance index function, thereby reducing the
control cost and enhancing the control performance. More-
over, by utilizing a model-free RL algorithm, it is possible to
design a controller without the need of system functions. As
a result, model-free control can be achieved for closed-loop
systems with unknown system dynamics. Nevertheless, the
design of the RL-based control method faces the following
challenges. 1) Most RL algorithms, such as value iteration
and policy iteration, require a certain number of iterations
to obtain the optimal control policy. As the system stability
is crucial in the field of control, it is essential to establish
a rigorous theoretical analysis framework to guarantee the
stability of the closed-loop system during the iteration pro-
cess and the optimality of the control policy upon completion
of the iteration. 2) When implementing RL algorithms, NNs
need to be introduced. Therefore, one of the challenges lies
in designing the appropriate NN weight updating law to
ensure the optimal weights are obtained, thus deriving the
optimal control policy. Additionally, the NN structure, acti-
vation functions, and control parameters all impact control
performance. Therefore, selecting these parameters presents
another challenge.
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3 RL-based event-triggered robust
formation control scheme

3.1 Event-triggered robust formation controller
design

In event-triggered mechanism, the sampled state of ith fol-
lower is expressed as

Zigw = 2i(T), VI € [T, Tieg1), Y

where ', denotes the xth sampling instant. Hence, the cor-
responding sampled formation error is provided as

é_ai,f( = Z Olij(Zi,K —Ni _Zj,/( + nj)
jeM;
+ci (Zi,K - zO,K —n;), YVt € [Ty, FK"FI)' (12)

Moreover, the event-triggered error is formulated as
eik (1) = &(1) = &1, V1 € [T, Tieg1)- (13)

Based on (9), (11) and (12), the ETCOF control law of the
ith follower is given as

di + ci

>'k(’g_ail( = -
M (&) 5

RiAL G VI (). (14)

Assumption 3 The system function Ag ; (2;) is norm-bounded
as

Ag.i @I < & 15)

where g; is a positive constant [5, 6].

In the following, we will indicate that the designed ETCOF
control law (14) guarantees the formation error of each fol-
lower to be asymptotically stable. This indicates that it is
reasonable and effective to convert the ETCRF control prob-
lem into an ETCOF control problem.

Theorem 1 Consider the ith follower with dynamic uncer-
tainty (1), Assumptions 2 and 3, and the ETCOF control law
provided by (14). If the triggering condition fulfills

Ticlis G0 = 1+ 0VTT@E( - cidsozo)
+(di + i) (Af,i (@) + Ag.i @) (&)
— D aij(Ar i)+ Ag,j(Zj)Mﬁ(gaj«)))
JeEM;
HUNE, 1 1) +0 Y AT())
jeM;

+(1 +VTTEVTH (&)

<0, (16)

where v > 0is a design parameter. Then, the formation error
pertaining to the ith follower exhibits asymptotic stability.

Proof Decide on the Lyapunov function candidate as
L1 =T &). 17)

By taking the derivative of L7 with respect to the solution
of (1) and utilizing (16), we can derive

Lry = VJ,-*T(@%)( — ciAs0(z0) + (@i + ) (Ari(z)

+Ag i (z) (15 (&) + Ai(Zi))> - Z o
JeEM;

(Are) + Ag (&0 + Aj(zj))))

1 % * *
= m(n,c(&’ gt’,l() _Mi(gi’ IJLi ) H“—i)
-6 Y Ap-U+ v)vx*T(éi)vx*(cf»)
jeM;
+(di + ) VT (E) Agi i) A (zi)
—(di + c)VTT(E) D ijAg @A)
JeM;
1 @ * *
H—U(Ti,c(@@i, éai,x) — U (&, M M_,')

IA

—0 Y A@p-a+ U)VZ*T(&)VZ*(&)>
jeM;
di +c¢i) _o-
M;(d; + c;) o=
+f Z Olijgjz‘Ai(Zj)
JeEM;

(T,»,cwﬁ-, Ei) — Ui (&, ik, 1ty

+VTUEWVTH(E) +

1
1+v

IA

+Mi(di +ci)

5 ;g7 A% (z)). (18)

jeM,;
Let
(di +c)g? Mi(d; +c)aing?
2 2 ’
Mi(d; + epaipm; &y, }
ceey 2 ‘

T = max{
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Then, if 0 is selected to satisfy 1% > Y, we can obtain

. 1 A
Ly < H—v(—ui(ig)ia/*;(vﬂ*i)_e Z Ai(zj))
je/\;l,'
+Y; Y Al
jeM;

1
= —mui(éi', wi,mt) < 0. (19)

Therefore, with the event-triggering condition (16), the
ETCOF control law (14) guarantees the asymptotic stability
of the formation error for each follower. The proof has been
concluded. O

Remark 4 The design of the event-triggered condition (16)
is primarily based on the Lyapunov stability principle. It is
well-known that the stability of the closed-loop system can
only be guaranteed when the L1 is less than 0. Through
the proof process of Theorem 1, it can be observed that if
the event-triggered condition satisfies (16), then the Ly is
negative, which guarantees that the formation error is asymp-
totically stable. This constitutes the main idea behind the
design of the event-triggered condition. In addition, there
are certain parameter values in (16) that need to be deter-
mined by the user. These values will impact the magnitude
of the triggering threshold. Generally, a larger triggering
threshold leads to fewer controller updates, thus conserv-
ing computational and communication resources. However,
this may risk system instability. Conversely, a smaller trig-
gering threshold results in more frequent controller updates,
which increase the computational and communication bur-
den and make the stability of the closed-loop system easier
to maintain. At present, there is no unified method to select
these parameter values. Typically, iterative experiments are
required for their determination.

3.2 Neural network implementation

By leveraging the assistance of the critic NN, we can approx-
imate the optimal value function as
THE) = X e () + €e(6), (20)
where x* € R’ is the ideal weight vector, ¢;.(&}) € Rhe is
the activation function, /. is the number of hidden layer neu-

rons, and €;.(&;) € R is the approximation error. Obviously,
the partial derivative of ._71* (&) is given as

VIHE) = VL xE + Vei(&). 1)
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The approximate value function is formulated as

Ji(&) = At eie(&), (22)

where ;. denotes the estimate of the optimal weight. Then,
we can further get

VIH(E) =V (ED Rie- (23)

According to (14) and (20), the ETCOF control law of the
ith follower is rewritten as

1 (&) =— RAL G (VEL(Eox+Veie ().

(24)

di + ¢
2

Combining (14) and (22), the approximate ETCOF control
law is provided as

i (&) = — R AL Giio) Ve (G i) Rie-

d,' + ¢
—t 25
2 @)

As per the equations (10) and (25), the approximate
Hamiltonian is given as

Hi (8, Rie) = )?iTcVCic(cf’i)< —ci Ay o0(z0)
+(d; + i) (Agi (@) + Ag.i ) 1i (&)
— > aij(Ar @)+ Ag @i ((5_”)‘«)))
JeEM;
HU(E, i fimi) — v Ti () 2 eie. (26)

By minimizing the objective function E;. = %eiTCeiC, the
weight tuning law of the critic NN is designed as

5 1 (BE,-C>
Xic = —0c R lIJlT\yi)Z 3%
— QC\IJi NI oA A 5 .
__WQWWWM(&MHMJ—VZ(éi)),
(27

where g, > 0 is the learning rate and
v = V(ic(éai)((di + i) (Afi(i) + Ag i ()i (&)

= Y eij(Ap @+ A j )i () — CiAf,O(ZO)>-
JjeM;

Theorem 2 Consider the ith nominal follower (3), the critic
NN weight updating rule is provided as (27), then the critic
NN weight estimation error Xijc = X} — Xic is guaranteed
to be uniform ultimate boundedness (UUB).
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Proof The similar proof of Theorem 2 is widely existed in
[26, 27], we omit the detail proof here. O

Remark 5 Ir is worth noting that each term in the trig-
gering condition (16) is known and easy to compute. The
reasons are explained as follows. 1) With the help of the
NN, the first part \Z*T(&) is expressed as (21). There-
fore, by calculating the product of the activation function
and the NN weight, the value of ji*T(éa,-) can be obtained.
2) The second part, represented by —ci Ay o(zo) + (di +
i) (Ari @)+ Ag i @D (6 i) = 2 jen, @i (Ar.j @)+
Ag,j(zj),uj (egj’j,,()), signifies the dynamics of the formation
error. Since the control law can be calculated from (24), and
the system functions Ay o, Ay ;, and Ag ; as well as the con-
stants c;, d;, and a;j are all known, we can directly calculate
the value of the second part. 3) The third part A j(zj) is the
upper bound function of the uncertainty and can be chosen as
llzjll, so obtaining the value of this part is straightforward.
4) The four part U; (&;, u}, n* ;) is the utility function. Since
&, i and 1_\j(zj) are known, the value of this part can be
readily determined. According to the above discussion, the
triggering condition is easy to implement.

3.3 Stability analysis

This section will provide proof that during the training phase
of the RL-based ETCRF controller, the formation error of
each follower is guaranteed to be UUB.

Assumption 4 The system function Ay ;(z;) is Lipschitz con-
tinuous and satisfies

lA7 izl < Li gllzill, (28)

where L; ¢ is a positive constant [5, 6].

Assumption5 Xic, x., V&ic(zi), and Veic(z;) are norm-
bounded, i.e.,

I Xicll < Xies IXill < Xiem,
IVEic@N < Cie, IVeic@) < €ic

where Xic, XieM» Eic and €;. are positive constants [22, 28—
31].

Theorem 3 For the ith nominal follower (3), the approxi-
mate ETCOF control law provided by (25), the critic NN
weight renovating law given by (27), and Assumptions 3-5.
Then, the formation error is ensured to be UUB if the event-
triggering condition

=1+v) (vf(éi-)<(di o) (Agi(z) + Ag i (21 (6 )

- Z aij(Af @)+ Ag i@ (&) — CiAf,O(ZO)))

JEM;
AU i, =) +6 ) Nz
jeM;
<0 (29)
holds.

Proof The selected Lyapunov function candidate is shown as
Lsr = Lar1 + Lar2 = T (6) + T (61.0). (30)

Case 1: The event is not triggered, i.e., t € [['y, Txy1).
Calculating the time derivative of (30) and adopting system
(3), we can get

Lsr1 = vx*T«%)((d,- + i) (Asi(z) + Agi 2D i (&)
= > aij(As i+ Ag,j(zj)ﬂj(gj,x))—CiAf,o(zo)>,

jeM;
L3ra =0.

If the event-triggering condition (29) holds, it can be
derived that

Lir1 < VJi*T<éi>(<di +ei)(Ari () + Ag i (21 (Gi )

= Y wij(Ag @) + Ag j @GR (E0)
jeEM;

1 . _
_Ci-Af,O(ZO)) - H—vTi,c(éai, i)

IA

VAUCH ((d,- + i) (Ayi (@) + Agi )i (6 k)
— Y aij(Ar ) + Ag (z,)ﬂj(@f_”‘,,K)))

jeEM;
G <(di + e (Ari @)+ Agi G (6 1)
— > wij(Arjp) + Ag,j(Zj)ﬁj(é_?,K))>

JeEM;
VT (EDeiAr0(z0) — VI (E)eiAro(z0)

1 . 0 2

T U ) = Z Izl
JeM;

< IVFT (&) - vIT (&)

1 _
+5 @i + e (A + Ag iz (G 0) |
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2
1 N -
3| 2 i (Ar @)+ Ag j @i (6 .0))
jeEM;
—mui(éai,ﬁu Hei) — —— Z ”Zj”

]EM

< IVEI (G )Xk + Veicl&) — Vi (&) Riel?

di + ¢;
+—( o Api @) + Agi i)
M; o
T Yo o | ArG) + Ag @i € |
JeEM;
(L _ 2
1+UZ/[1(£§’MM 1) a— Z ||Zj||

]eM
(31)

According to Assumptions 3—5, we further obtain

Lary < Mi Y L3 ol iz + (di + )L} fllzill?
JEM,;

+Ei 4 LK + (i + )L} fg, i (G011

(Q)
MY g G0l — T
jeEM; +v
9 - -
T 2 el g (32)
jeM,
Let & =max{(di+¢;)°L] ;o ML} ;o |, ... MiLyy

O‘i,M,- }. If we select appropriate 0 to satisty 6 > (1 4+ v)&;,
then we further get
Lar1 < okt & + Guiom+ it ) L7 (87106 (G011

mln Ql
MY a0 - P
JEM,;

[EARS

According to (25) and Assumptions 3 and 5, we have

2
N =2 di+ci_ - Z o
||Mi(£i,x)|| = H_ 12 lRi IA;i(Zi,K)VC;(@@i,K)Xic
(di +ci)?
s = IRTIPEG R = e (33)

Based on (33), [Zgn can be deduced as

Lar1 < &k + &+ Giaioy + i + c)’L} 137

. Amin (Qi
MY e, - S

" EAR
jeM,;

@ Springer

2 2
s .
S—p mm(Ql)||(g7i||2+ (o
I+v

- 1))¥min(Qi)
1+v

€17 +©,
(34)
where 0 < p < 1 andO—{leC—i—e +§2X12cM+(d +

c,)szfg d; + M; Z;eM o; gJCD Hence, L37 < 0 if
the formation error &; lies out51de the compact set

35)

O +v)
Qe =16&: 6] < .
‘ [ o= \/ (1= ) hmin(Q1) }

Case 2: The event is triggered, i.e., Vt = I';11. According
to (30), we can get
AL3r(t) = AL3r1(t) + AL3r2(2). (36)

Based on the result in Case 1, it is evident that £3T <0
forall t € [Ty, I'k41). Therefore, we further have

ALy (1) = T (&) = TFH(ET, ) <0,
AL3ra(t) = TH(E es1) — TH ) < —t(llei 1T,

where ¢(+) is a class-KC function and ¢; ,+1(['x) = é_ai,,(_H —
@5[,,(. According to the above discussion, we can conclude
that £3T < 0 is still satisfied when the event occurs. The
proof is completed. O

Theorem 4 Consider the ith nominal follower (3), the
approximate ETCOF control law given by (25), the event-
triggering condition given by (29), and Assumptions 3-5.
Then, the minimal intersampling time satisfies Al min > 0.

Proof According to the existing results [18] and [32], it is
easy to obtain the conclusion of Theorem 4, so the detailed
proof is omitted. O

Remark 6 The difficulty of designing the RL-based ETCRF
controller is mainly reflected in the following two aspects.
Firstly, this paper considers the MAS with dynamic uncer-
tainties. In order to ensure that each following agent can
catch up with the leader trajectory with the specified for-
mation in the presence of uncertain terms, the designed
controller is required to possess robustness. Therefore, a
novel value function which contains an upper bound function
of the uncertainty, is designed. The objective is to proac-
tively account for the impact of uncertainties during the
controller design process, thus obtaining a robust formation
controller. Second, in order to save computing and commu-
nication resources, this paper designs the robust formation
controller under the event triggered mechanism, that is, the
controller is updated only when the triggering condition is
not met. To this end, it is crucial to design a reasonable
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triggering condition, which can save computing and com-
munication resources and maintain the desired formation
between each agent. In this paper, a new triggering condition
is designed by using the Lyapunov stability principle. Theo-
retical analysis shows that the developed RL-based ETCRF
controller ensures the formation error to be asymptotically
stable under the designed triggering condition.

4 Simulation

In this section, three simulation cases are applied to showcase
the availability of the presented RL-based ETCRF control
approach.

4.1 Case 1

This case selects a MAS with one leader and three follow-
ers. The communication network is illustrated in Fig. 1, with
Lo acting as the leader and F; (i = 1,2, 3) serving as the
respective follower. The parameters of communication topol-
ogyaregivenas oy = l,ap) = a3 = 1,031 = 1, 003 =
1,232 = 1, and ¢; = 1. The dynamics of the ith follower is
given as

zi = Agi(zi) + Ag.i @) (i + Ai(z0)), 37

where

Api(z) = [f;j JApa(z2)= [Z}_;] Asa@a)= [z;ﬂ ’

0 0
Ag.1(z1) = [2Z1’1] s Ag2(22) = |:cos(2z%71) + 2} ’

0
Ag3(z3) = |:sin(4z%’1) + 21| ’

Fy F3

Fig.1 The structure of communication topology

Critic NN weights
N3
[}

Follower 1
[}

2 4 6 8 10 12 14 16 18 20

Follower 2
<)

F
2 4 6 8 10 12 14 16 18 20

Time (s)

Follower 3
(=)

Fig.2 Formation errors of all followers in case 1

Fi = —0.5z1,1 — 0.5z212(1 4 (cos(2z1,1) +2)?),
Fr=—201—0520+ 0.5z%,lzz,z,
F3 =—0.5231 —232 +23 1232~ 0.2523,2(c08(223,1)
+2)2, +O.251i,2(sin(4z,~2’2) + 2)2,
A1(z1) = 221 1008 (z1,1)c08%(21,2), A2(22)
= 222.15in%(z2.1)sin’(22.2),

3 .5 T
A3(z3) = 2z3,1c087(23,1)8in°(23.2), Zi = [2i,1, 2i 2] S
i=1,2,3.

The dynamics of the leader is chosen as

_ | sin(?)
"= 1 cost) |-

35 e

30 1

A e e Seeess e

15 - " Xle2 P> —X2e2 @ X3c2 7
X1c3 X2c3 ——Xsc3
10 - b
5 '*_*‘*I i
R < $ <
0 . . .
0 5 10 15 20
Time (s)

Fig.3 Critic NN weights in case 1
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Fig.4 The controller update times of all followers in case 1

The formation patterns of all followers are chosen as n; =
[0.5;0], 7o = [1;0], and n3 = [1.5; 0]. The parameters
in value function are determined as Q; = I, R; = 0.11,
y = 0.5 and 6 = 10, respectively. The activation function of
each follower is designed as ;. = [éaf], 62.%2, &;16;.2]. The
learning rate is picked as o, = 2. The parameter in triggering
condition is selected as v = 0.5.

Simulation results of this case are exhibited in Figs. 2,
3,4, 5 and 6. Figure 2 displays that the formation error of
each nominal follower will converge to zero, which implies
that the desired formation between each follower can be
maintained. The critic NN weight evolution curves are pro-
vided in Fig. 3. It is apparent that the weight vectors of
critic NNs will converge to xi. = [35.16,25.29, 22.90]",
R2e = [2.98,34.08,1.87]", and %3 = [3.62,25.81,6.81]",
respectively. Figure 4 compares the controller update times of
each follower under the time-triggered control (TTC) mech-
anism and the event-triggered control (ETC) mechanism.
It is clear that the ETC mechanism can reduce the con-
troller update times and the computing and communication

Z'i~,177; = 0713273

) . . .
0 5 10 15 20

Time (s)

Fig.6 System state curves of all followers in case 1

burdens of each follower is alleviated. Figure 5 presents
the triggering time curves for each follower, from which it
can be observed that under the event-triggered framework,
the triggering times are not evenly spaced. Figure 6 reveals
the state curve of each follower with dynamic uncertainty.
We can conclude that the expected formation between each
uncertain follower can be guaranteed with the presented RL-
based ETCRF control method. Figure 7 depicts the system
state trajectories under different control methods. It can be
observed that due to the influence of uncertainties, the system
state trajectories under traditional formation control method
deviate from the ideal trajectory.

4.2 Case 2

In this case, three spacecrafts are adopted to demonstrate the
validity of the proposed RL-based ETCRF control approach.
According to [33], the system dynamics of the ith spacecraft

Follower 1
[=)

Follower 2
(=)

Follower 3
=

0 2 4 6 8 10 12 14 16 18 20

-1 | | | | | | | | | |

0 2 4 6 8 10 12 14 16 18 20

-1 | | | | | | | | | |

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Fig.5 Triggering times in case 1
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= = = State trajectory under the traditional formation control scheme
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State trajectory under the developed RL-based ETCRF control metho
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0
-0.5
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Time (s)

Fig.7 System state curves of all uncertain agents in case 1

is provided as

Pi =V,
miVi +CV; + DiPi + Ni = i + A, (38)

Table 1 Parameters of the spacecraft

Parameter © ac o
Description  True anomaly Semimajor Orbit

axis eccentricity
Value 0)=0 7178 0.01
Parameter w m;
Description ~ Earth’s gravitational =~ Mass of the

spacecraft
Value 3.986 x 10M4m3/s2  100kg

i
N
E 0L = @ o
S e o
S
=
2 s s s
10 15 20
~ ‘ ‘
B
z
=
= ‘ ‘
10 15 20
2
™
N
[
R ——e
:O *
B
2 : : :
0 5 10 15 20
Time (s)
Fig.8 Formation errors of all followers in case 2
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Fig.9 Critic NN weights in case 2
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g.10 Controller update times of all spacecrafts in case 2

where P; = [P; 1, Pi 2, Pi3l" € R¥and V; € R? denote the
position and velocity vectors of the ith spacecraft, respec-
tively, w; is the control input, A; is the dynamic uncertainty,
Ci, D; and \; are system functions, which provide as

0—-¢0
C,-:Zml- (0 00 ,
000
w/r?—gb2 —¢ 0
D; =m; ¢ w/r?—gb2 0 ,
0 0 w/ri3
R/r} —1/R?
Ni =mjw 0 ,
0

= \/(Rc +Pi)? + P2, + Pis,

ri =
Re = a.(1 —2)/(1 + aecos(p)),
¢ =nc(l— occos((p))z/(l — 022 ne = Jw/al.

The physical interpretations and values of the correspond-
ing variables are given in Table 1.

Let z; = [P], P/ = [zi1, 212, 203+ 24y 20,50 Zi6] -
Then, the system dynamics of the ith spacecraft is refor-
mulated as

zi = Api(@i) + Ag.i(zi) (i + Ao, (39)
where
[ oz ] 22,1
Ar = | cosS(zi) | Ax = | sin®(z20) |,
_sin3(21,5) i sin® (22,3)
oz ]
Az = | cos’(z33) |,
| sin®(z31) |
- Vi
Af,t(Zl) = _—%(Cin‘ + D; P; +M)] '

(o) = L[ 03x3
Ag,l(Zz)—mi[ 13 i|

The dynamics of the leader is given as
20 = Ar,0(z0),
where

Af,()(zo) =[cos(t), sin(t), cos(t),—sin(t), cos(t), —sin(t)]T.

Follower 1
(e

0 2 4 6 8 10 12 14 16 18 20

by

5]

E 0 comm

=)

0= ! ! ! ! ! ! | | | |
0 2 4 6 8 10 12 14 16 18 20

e b7

)

Zo0
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| | | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Time (s)

Fig. 11 Triggering times in case 2
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The communication topology of this case is selected the
same as in case 1. The formation patterns of all followers
are chosen as n; = [1; 1; 1; 0; 0; 0], n2 = [2;2;2; 0; 0; 0],
and 13 [1.5;1.5;1.5;0; 0; 0]. The activation func-
tion of the ith following spacecraft is designed as ¢, =
[gflv (gfzv gi??,v gf;p g,%y gf@» éai,lé?,m (%,252',57 &,3&,6]-
The control parameters of this case are given as: Q; = Ig,
Ri=0.113,y =0.5,0 =20,0, =0.5,v=0.8.

Figures 8, 9, 10, 11 and 12 display the simulation results
of this case. The convergence of the formation error of each
following spacecraft is shown in Fig. 8. Figure 9 reveals the
critic NN weight updating curves. It is readily apparent that
the weight vectors of the critic NN will converge to xj. =
[11.61,93.29, 80.76, 48.61, 43.63, 45.67, 29.56, 50.70, 49.
3117, f2e =[74.85,77.61, 61.67,35.97, 80.84, 51.28, 38.27,
95.04, 89.88]", and %3 =[56.33, 65.51, 60.34, 20.93, 35.19,
46.78,22.37, 80.09, 19.12]T, respectively. The controller
update times of the TTC and ETC approaches are provided
in Fig. 10. Obviously, the ETC method requires less con-

event-triggered framework, the controller for each following
spacecraft is not continuously updated. Figure 12 demon-
strates that the proposed RL-based ETCRF control approach
maintains the expected formation of the spacecraft cluster
with dynamic uncertainty. Figure 13 compares the space-
craft state trajectories under different control methods, from
which we can see that the developed RL-based ETCRF con-
trol approach method can effectively resist the influence of
uncertainties.

4.3 Case3

This case adopts three robotic arms to further validate the
effectiveness of the developed RL-based ETCRF control
method. The dynamics of the ith robotic arm is given as

Zi = Api@i) + Agi(zi) (i + Ai(zi)), (40)

. ) where
troller update and saves communication and computing
resources. Figure 11 further illustrates the triggering time 22 0
i Agi(zi) = L JAgi(z1) = .
of each following spacecraft. It can be seen that under the 1. (@i) | 4.905sin(zi.1)— 0.22; .i(21) 0.1
4 T T T
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Fig. 12 System state curves of all uncertain agents in case 2
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Fig. 13 System states under different control approaches in case 2

A1(z1) = cos(z1,1)sin(z1,2), A2(22) = 22,1510’ (22,1),
A3(z3) = 23,1008 (23,1)8in° (23.2), i = [2i.1, 221"
i=1,2,3.

The dynamics of the leader, the communication topology,
and the formation patterns of all followers are the same as in
Case 1. The simulation parameters are selected as Q; = I,
Ri = 0011,y = 03,0, = 3,0 = 15and v = 0.5.
The activation function of each robotic arm is designed as
Gie = 1621, &2, & 160

Figure 14 shows that the formation errors can eventually
converge to near zero. Therefore, the desired formation of
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Fig. 14 Formation errors of all followers in case 3

each robotic arm can be achieved. Figure 15 displays the
changes of critic NN weights, which ultimately converge to
Rie = [64.91,42.81,82.14]", 22, = [21.93, 49.54,91.65]",
and x3. = [70.47,77.97, 77.10]7, respectively. Figure 16
compares the controller update times between the ETC
method and the TTC method. It is evident that the ETC
method requires fewer controller updates, thus alleviating
computing and communication burdens. Figure 17 reveals
the moments of event occurrences, indicating that they are
not evenly spaced. Only when the triggering condition is not
met will it be recorded as a triggering moment. Figure 18
demonstrates that even in the presence of system uncertain-
ties, each robotic arm can maintain the specified formation
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Fig. 15 Critic NN weights in case 3
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Fig. 16 Controller update times of all robotic arms in case 3

and track the leader’s trajectory. Figure 19 demonstrates that
compared with the traditional method, the developed RL-
based ETCREF control approach exhibits robustness and has
the ability to eliminate the influence of uncertainties.

Remark 7 a) Equations (1)-(10), which appear in the prob-

lem statement section, primarily describe the system dynam-

ics, the formation error and its dynamics, the value function,

the optimal formation control law, and the HJB equation.

b) Equations (11)-(19), appearing in the section of event-
triggered robust formation controller design, provide the
definition of formation error and the expression of optimal
formation control law under the event-triggered mechanism.

In addition, it includes the detailed derivation process of The-

orem 1. c) Equations (20)-(27) describe the expressions of the
value function, the formation control law, the Hamiltonian,

and the NN weight updating law under the NN frame-
work. b) Equations (28)-(36) present a detailed derivation of
Theorem 3. e) Equations (37)-(40) provide the expressions of
closed-loop systems in simulation section.

Fig.17 Triggering times in case

—_
1

System states

N Follower | sreseses Follower 2 Follower 3 Leader| |
/ ‘ ‘ ‘
0 5 10 15 20
Time (s)

Fig. 18 System state curves of all uncertain agents in case 3

5 Conclusion

In this paper, the RL-based ETCRF control method is pre-
sented for MASs with matched uncertainties. The ETCRF
control problem is transformed to a ETCOF control prob-
lem by developing a discounted value function for each
agent. For the sake of reducing computing and communi-
cation burdens, the developed robust formation controller
of each agent is improved when the novel event-triggering
condition is contravened only. Afterwards, a single critic
structure is established to acquire the approximate solution
of the coupled HJB equation of each agent. Additionally,
through theoretical analysis, it is revealed that the proposed
RL-based ETCRF control method is capable of preserving
the prescribed formation between each agent. In the end, two
simulation cases are presented to confirm the effectiveness
of the introduced RL-based ETCRF control approach. Due
to the unique advantages of different types of RL algorithms,
in our future work, we will propose event-triggered control
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Fig. 19 System states under different control appraoches in case 3

methods based on value iteration or policy gradient to address
cooperative control problems of MASs. Additionally, we will
apply the RL-based ETCRF control approach to solve for-
mation control problems of practical unmanned autonomous
systems such as drones or ships.
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ARTICLE INFO ABSTRACT

Recommended by T. Parisini In this paper, the integral sliding mode-based event-triggered optimal fault tolerant tracking control of

continuous-time nonlinear systems is investigated via adaptive dynamic programming. The developed control

scheme consists of two parts, i.e., integral sliding mode control and event-triggered optimal tracking control.

Integral sliding-mode control For the first part, an integral sliding mode controller is designed to eliminate the affect of actuator fault and

Fault tolerant control the dynamics of nominal nonlinear systems is obtained. For the second part, a novel quadratic cost function

Tracking control with respect to the tracking error and its dynamics is developed such that the feedforward control law or
the discount factor is not required, which reduces the complexity of the control method and guarantees
the tracking performance. Moreover, a critic-only structure is established to obtain the solution of tracking
Hamilton-Jacobi-Bellman equation. It should be noted that the optimal tracking control law is updated only
at triggering moments in order to preserve computing and communication resources. Finally, the effectiveness
of the present approach is demonstrated through simulation examples of a robotic arm system and a Van der
Pol circuit system.

Keywords:
Adaptive dynamic programming

1. Introduction various control problems, including OTC (Carolis & Saccon, 2020; Lu,
Wei, Liu, Zhou, & Wang, 2022; Modares & Lewis, 2014; Mu, Zhang,

In real-world control systems, such as those encountered in un- Gao, & Sun, 2020; Tang, Luo, & Liao, 2023), robust stabilization (Gao,
manned aerial vehicles (UAVs), mobile robots, and unmanned sur- Jiang, & Davari, 2019; Yang, Guo, Xiong, Ding, Yin, & Wunsch, 2019;
face vehicles (USVs), simultaneous tracking of a predetermined tra- Yang & He, 2020), fault-tolerant control (Fan & Yang, 2016; Liu, Zhao,

jectory and optimization of performance indicators poses significant & Liu, 2020; Yang, Li, Xie, & Zhang, 2020; Zhang, Yuan, & Guo, 2021;
challenges. Consequently, the optimal tracking control (OTC) problem Zhang, Zhao, Liu, & Zhang, 2022; Zhao, Liu, & Li, 2017; Zhao, Wang,

emerges, necessitating the resolution of the intricate Hamilton-Jacobi— Xu, Zong, & Zhao, 2023), and so on. In general, by employing the
Bellimaril (HJB) equati.orf. Due to the presence .Of a nonlinear partial  App algorithm and the NN approximator, an approximate optimal cost
derivative term, obtaining an analytical solution of the HJB equa- function can be obtained, thereby obtaining an approximate optimal

tion is intractable. Thankfully, adaptive dynamic programming (ADP),
initially introduced by Werbos (Werbos, 1992) as a self-learning op-
timization algorithm, integrates neural networks (NNs) to obtain an
approximate solution of the HJB equation in a forward-in-time manner,
which effectively addresses the “curse of dimensionality” in dynamic
programming. In the early stage, scholars mainly developed classic ADP
algorithms such as value iteration, policy iteration, Q-learning, etc., and
provided proofs of their convergence and optimality (Liu, Wei, Wang,
Yang, & Li, 2017; Liu, Xue, Zhao, Luo, & Wei, 2021; Luo, Huang, &
Liu, 2021; Yanez & Souza, 2022; Zhao, Zhang, & Liu, 2023). With the
continuous development of ADP, it is generally employed to address

control policy.

Regarding the OTC problem, the aforementioned ADP-based ap-
proaches can be categorized into two groups. The first approach designs
a tracking controller that consists of a feedforward and a feedback
component. The feedforward component ensures tracking performance,
while the feedback component stabilizes the tracking error dynamics
and optimizes system performance indicators. The second approach
transforms the OTC problem into an optimal control problem by aug-
menting the original system with a command generator. Nevertheless,
both methods possess certain limitations. In the first approach, the
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design of the feedforward component explicitly demands accurate sys-
tem functions and an invertible control input matrix. In the second
approach, convergence is ensured by supplementing the cost function
with an additional discount factor, but this factor can recursively
impact the optimization metrics and the convergence of the ADP al-
gorithm. To overcome above-mentioned difficulties, Li, Ding, Lewis,
and Chai (2021) and Wang, Wang, Yang, and Yang (2023) addressed
the OTC problem by designing novel quadratic performance index
functions in regard to the tracking error and the tracking error dynam-
ics. Nevertheless, existing results consider ideal scenario only. In the
practical system, the existence of actuator fault is inevitable due to the
control system works in hostile environment for a long time.

Over the past decades, a mass of researchers investigated the fault-
tolerant problem by adopting ADP technique in a near optimal man-
ner (Liu et al., 2020; Stojanovic, 2023; Zhao et al., 2017). Liu et al.
(2020) addressed the fault-tolerant tracking control problem by de-
veloping an NN-based fault observer to compensate the control input
online. Zhao et al. (2017) developed an ADP-based fault-tolerant
control approach for nonlinear systems with actuator faults. Stojanovic
(2023) combined ADP and fault compensation techniques to design
an approximated optimal fault-tolerant control approach by adopting
real-time input/output data. Among the aforementioned results, the
majority of them employ an observer to obtain the fault information,
which is then incorporated directly into the cost function or optimal
control policy. Regrettably, the achievement of desired performance
metrics can be notably arduous, and the use of such observational
techniques can often amplify the conservatism of the controlling mech-
anism. It is worth mentioning that sliding mode control method has
been regarded as an effective approach for handling faults or external
disturbances, and has been extensively utilized in various types of
control systems, including ordinary differential systems (Fan & Yang,
2016), partial differential systems (Zhang, Song, Song, & Stojanovic,
2023), and fractional-order systems (Mathiyalagan & Sangeetha, 2020).
In recent years, many scholars have integrated integral sliding mode
control (ISM) technique and ADP technique to achieve optimal fault-
tolerant control. The main idea is to design a composite law, which
contains an ISM law to eliminate the actuator fault and an optimal law
to stablize the sliding mode dynamics/nominal systems (Fan & Yang,
2016; Tajrishi & Kalat, 2024; Yang et al., 2020). This method is less
conservative, because there is no need to add fault information into the
cost function such that the expected performance of control systems can
be guaranteed as far as possible. Despite these efforts, it is noteworthy
that the current ISM-based optimal fault-tolerant control approaches
have only addressed bias faults and considered regulation problems
exclusively. As such, the optimal fault-tolerant tracking (OFTT) con-
trol with more generalized fault behavior remains largely unexplored.
Moreover, existing methods are time-triggered control methods, where
controllers are updated periodically, leading to heavy computational
and communication burdens. It is well-known that event-triggered
control approach can economize computing and communication re-
sources due to the control signal update at triggering moment only.
Consequently, ADP-based event-triggered control schemes have been
put forward to cope with the optimal regulation (Djordjevic, Tao,
Song, He, Gao, & Stojanovic, 2023; Vamvoudakis, 2014; Yang et al.,
2023), trajectory tracking (Lu et al., 2022; Peng, Yan, Huang, Cheng,
Shi, & Ghosh, 2023), robust stabilization (Lin, Zhao, & Liu, 2024;
Yang & He, 2020), differential game (Lin, Xue, Liu, Liang, & Wang,
2023; Wang, Hu, Zhao, & Qiao, 2023; Xue, Luo, & Liu, 2020) of
nonlinear systems. For example, Djordjevic et al. (2023) developed an
ADP-based event-triggered data driven controller for hydraulic servo
actuators with unknown dynamics. Lu et al. (2022) addressed the
event-triggered optimal parallel tracking control problem of discrete-
time nonlinear systems. Lin et al. (2024) presented an event-triggered
robust ADP algorithm to cope with the multiplayer stackelberg games
of uncertain nonlinear systems. Xue et al. (2020) investigated the
zero-sum game problem of partially unknown nonlinear systems by
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developing an ADP-based event-triggered control scheme. Nevertheless,
to our best knowledge, the OFTT control problem under event-triggered
framework is rarely studied yet, which inspires our research.

To deal with the aforementioned limitations, an ISM-based event-
triggered optimal fault-tolerant tracking (ETOFTT) control approach
for continuous-time (CT) nonlinear systems is proposed. The primary
contributions and novelties of this research are outlined below.

(1) This paper integrates ADP and ISM techniques to deal with
the OFTT control problem for CT nonlinear systems subject to
general actuator fault. On the one hand, with the help of ISM
technique and a novel adaptive law, both the bias fault and
the loss of effectiveness fault can be eliminated effectively. On
the other hand, ADP-based OFTT control scheme completes the
trajectory tracking assignment in an optimal manner.

(2) Different from the existing ADP-based OTC control approaches
(Lu et al, 2022; Mu et al, 2020) which need to design a
discount cost function or develop a tracking controller contains
the feedforward part and the feedback part, this article designs
a quadratic cost function in regard to the tracking error and its
dynamics such that the inadequacies of existing methods can be
improved. Moreover, unlike the existing approaches (Ha, Wang,
& Liu, 2022; Li et al., 2021; Wang, Ren, & Ha, 2023; Wang,
Wang, Yang, & Yang, 2023) which considered ideal fault-free
systems only, this paper considers actuator fault such that the
practicability of the control method is improved.

The subsequent section of this paper is arranged as follows. In
Section 2, we introduce the problem statement. Section 3 is dedicated
to the development of ISM control laws to address actuator fault. Addi-
tionally, we provide details on the design of an event-triggered optimal
tracking controller, the NN implementation, and the analysis of the
closed-loop system’s stability. In Section 4, simulations are employed
to substantiate the theoretical findings, and Section 5 encompasses the
conclusions.

2. Problem statement

Consider a category of nonlinear systems provided by

$(0) = 1,(SW) + I, (S®) uy ). 6

where S(f) € R” is the system state, yu,(f) € R™ is the output of the
actuator, and I,(S(t)) € R" and I,(S(1)) € R™" are nonlinear system
functions.

Assumption 1. The system functions Z,(S) and Z,(S) are Lipschitz
continuous over a compact set £, and the controllability of system (1)
holds within Q.

For the OTC problem, it is imperative to develop an optimal con-
troller to guarantee the system state S(¢) follows the predesigned
trajectory x(r) whose dynamics is given by

LIOERS (ﬂ'(l)), 2)

where y,(+) is a continuously differentiable function with y,(0) = 0.
In practice, actuator fault is inevitable, and a mathematical model
illustrating the actuator fault is provided by

Ho(D) = op(0) + ps (), 1> 14 3)

where 0 < 6 < 1 denotes the unknown loss of effectiveness fault, u(r)
represents the control input signal, 4,(f) means the unknown bias fault,
and 7, indicates the time when the fault occurred.

The primary objective of this paper is to introduce an ISM-based
ETOFTT control method capable of ensuring the system state closely
follows a pre-specified trajectory even in the presence of actuator
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fault. To realize this objective, the ISM-based ETOFTT controller is
formulated by

H(O) = () + Op, (), @

where p,(1) € R™ is an event-triggered OTC law which used to guar-
antee the tracking performance of the nominal plant, u.(r) € R™ is a
discontinuous ISM control law which adopted to deal with the actuator
fault, 6 = ﬁ and @ is the estimate of 6.

Assumption 2. The unknown bias fault u (0 and the inverse of the
loss of effectiveness fault  are norm-bounded, i.e., |4, < 4, and
6]l < 8, where ji, and 6 are positive constants.

3. Integral sliding mode-based event-triggered optimal fault toler-
ant tracking control approach

3.1. ISM controller design

With the objective of acquiring the discontinuous control law 4, (7),
the integral sliding function is specified as

1
P(S0).1) =—/0 M(S@)(1,(S0) +1,(S@)k, )dr+K(S)-K(SO)),

)

where £(S) € R" and M(S) = # € R™" are user-designed
functions. The time derivative of (5) is calculated as

P(S,1) = P(S)S = PS)L(S) + L(S)u,). (6)

Letting (S, t) = 0, the equivalent control is calculated as

1 1
Heeq == —Hn = —Hy- @)

Substituting (7) into (1), the nominal system dynamic is
S =TS+ L ,(S)Hy ®)

Consider the equivalent control is unavailable, we turn to design the
following ISM control law 4. (7) to guarantee the system state stays on
the sliding surface

1o (1) = =Asgn (1 (SIMT(S)P(S)), ©)

where A is a positive constant, sgn(A) = [sgn(A,),...,sgn(A,)] with
A=T[A,....A,] and sgn(-) is a sign function.

Theorem 1. For the nonlinear system subject to actuator fault (1), the
integral sliding mode function designed by (5), and Assumptions 1 and 2,
if the renovating law of 0 is formulated as

A1

0= ;PT(S)M(S)Ig(S)#W (10)
where y > 0 is an user-defined parameter, then the system state stays on the
sliding surface using the discontinuous ISM control law (9).

Proof. We design a Lyapunov function candidate as
Loy = 2PTS)P(S) + L6T4, an
20 2

where § = 0—0. Calculating the time derivative of (11) and considering
system dynamics (1) yields
Ly = éPT(S)(M(S)(If(S) +L,(S)ou+py))

= MS)(L,(S) + L(Smy) ) = 18"
=PT(S)MS)L(S)u + éPWS)M(S)Ig(sm -

— 2P SMS (S, — 107
=PT(S)IMSL(S)u. = PT(SIMS)L(S)p,0
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+OPT(SIM(S)L,(S)uy — 1078
- APT(S)M(S)Ig(S)sgn(IgT(S)PT(S)M(S))

— T (PT(S)MS)L (S, + 16)
+OPT(S)M(S)L(S)uy. 12)

Based on Assumption 2 and the adaptive update law (10), we further
have

ETl

IN

= AIPTSMS) (S| + OIPT(S)MS)L(S)II i,
— IPTSM(S)L(S)II(A - Bfi). (13)

IN

Therefore, if A > 0ji, is held, then £;, < 0. This implies that the ISM
control law (9) ensures the system state sustain on the sliding surface.
This accomplishes the proof.

3.2. Event-triggered optimal tracking controller design

Next, an event-triggered optimal tracking controller is developed for
nominal system (8) to ensure the system state pursues the predesigned
trajectory. The tracking error is expressed as

o(t) = S(t) — z(?). 14

The cost function of the system (8) is defined as

Jw) = / C(o(v), (v))dv, @15)
t

where C(v,0) = v"Qv + 'R is the utility function, Q € R™" and
R € R™™ are positive definite matrices. The Hamiltonian is described
as

H (0, 4y, VI®) = VI T @)L 4(S) + L (S)p, — wy(m)) + C(0, D). (16)
The optimal cost function satisfies
J* ) = ,4”?9%129) /, C(o(v), 0(v))dv, a7

where R(Q) represents the admissible control sets. Thus, the OTC law

is obtained by

u, () = (ZJ(S)RIg(S))_] (—I;(S)le(S) + 1;(5)731//‘1(”) - %I;(S)VJ(D))-
(18)

Combining to (16) and (18), the HJB equation is provided as

0= VJ*T(D)(If(S) + L (S —wy(m)) +C(v,0). (19)

Traditional ADP-based control approaches obtain the optimal cost func-
tion in an iterative manner. However, there consume abundant com-
puting and communication resources since control laws update at each
sampling moment. To conquer this problem, an event-triggered frame-
work is established and the system state and the predesigned trajectory
at the triggering moment are expressed as

Si() =S(P), P, <t < Py (20)
() = (P, P <1 < Py 21

where P, the kth triggering instant. Hence, the homologous tracking
error is determined by

0 () = S (1) — 7 (1), Py <1 < Py (22)
The next triggering instant is calculated as
Pegy =inf{t > P 2 BN 2 o (o)1)}, (23)

where B, (1) = 7,() — v(r) is the measurement error and «; is a Ky
function. According to (18), (20), (21) and (22), the event-triggered
OTC law is provided as
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Hi®y) = (I;(S_‘k)RIg(S'k))_l ( - zg(ék)nzf(ék) + Z;(S_'k)Ru/d(ﬁ'k)
- ST GOVT @) 24)

Assumption 3. The OTC law is Lipschitz continuous in regard to B;(),
that is,

[ (00) = (00| < LB O, @5)

where L, is a positive constant.

Assumption 4. The partial derivative of optimal cost function .J*(v)
in regard to v satisfies,

IVT* I < ¢qlloll, (26)

where ¢, is a positive constant.

Assumption 5. The system function Z,(S) is norm-bounded, i.e.,
0 < ||IZ,(SI < 1. 27)

where 7, is a positive constant.

Theorem 2. Given the nominal nonlinear system (8), the event-triggered
OTC law provided by (24), and Assumptions 3-5, if the triggering condition

2(1 = P Ayin(Q) — 212

2 g 2
I1B:OI" < L,ZI lloll (28)
and the following inequation
2(1 = P Ain(Q) > €} T2 29)

hold, where 0 < p; < 1, then the asymptotic stability of the tracking error is
assured, indicating that the system state effectively follows the predetermined
trajectory.

Proof. The Lyapunov function candidate is formulated as

Ly =T* ). (30
Based on (8), the time derivative of (30) is calculated by

Ly = VI T)(L,(S) + LSy (Bp) = yiy(m)). D
According to (19) and Assumptions 3-5, it holds that

Ly = = C0,0) + VI TWIL(S)(ui®y) — p(v))

=0T Qu+ VT TOLS)IE + @) - 1O

IA

252
1 i1
= P Ain QIO + (7] = a0l + S L3 IBL I + =5 ol
(32)

IN

As a result, it can be inferred that £;, < 0 when the triggering
condition (28) is fulfilled, implying the asymptotic stability of the
tracking error.

3.3. Neural network implementation

In this part, the critic NN is adopted to approximate the optimal cost
function J*(v), which is shown as

T* ) = @7 ) + €, (), (33)

where w* € R is the optimal weight vector, ¢, (v) € R’ is the
activation function, A, is the number of hidden layer neurons, and
e, (v) € R is the approximation error. Then, we derive the partial
derivative of [J*(v) with respect to e as

VI*@©) = V] (0@ + Ve, (0). (34
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The estimated cost function is represented as

Jw) =& ), (35)
where @, is the estimate of w. Similarly, we can obtain

VI ) = V¢ )b, (36)
Consequently, the event-triggered OTC law is rewritten as

w00 = (1] GORTED) ™ (LT SORw, ()

- SISV )] + Ve, ) - TTEIRL, (S ) 37)
Hereafter, we can obtain the event-triggered approximate OTC law as
A0 = (ITSORI(SY) ™ ( —I](SORL(S) + L (SORwy (%)

- ST GOVEl W, ) 38)
The approximate Hamiltonian is given as
H (v, fiyn ) = @] VL) (L(S) + L (S)i, — wy(m) + C,0) 2 e, (39)

By utilizing the gradient descent method, the critic NN weight is
updated as

. 1 (k.
Te = Tl Ay \ om,

A
= (1+%TA)2 (&7a+cwn). (40)

where a, > 0 is the learning rate and 4 = V¢, (0)(Z(S) + I(S)A,).

Lemma 1. Given the nominal nonlinear system (8), the critic NN weight
tuning rule (40) ensures that the estimation error of the critic NN weights
@, will be uniformly ultimately bounded.

Proof. The detailed proof of Lemma 1 is available in Chen, Chen, Chen,
and Zhang (2022), Vamvoudakis (2014), Xue et al. (2020), and thus is
skipped here.

3.4. Stability analysis

Assumption 6. @, @, V{.(v), and Ve, (v) satisfy

@ £ @, 1T < Do 1VEON L& IVe @ <&,

where @, @,,,, @, and €, are positive constants.

Theorem 3. For the nominal nonlinear system (8), the event-triggered

approximate OTC law provided by (38), and Assumptions 3-6, if the
triggering condition satisfies

(1= Pl

2
1Bl < —
M

, (41)

where 0 < p, < 1, then the tracking error is insured to be uniform ultimate
boundedness.

Proof. The entire process of proving is split into two components, and
the construction of the Lyapunov function candidate is as follows.

ETS = J*(U) + J*(Dk)- (42)

Part 1: The event is not triggered, i.e., t € [P, P ).
By calculating the time derivative of (42), one can obtain

Lrs

VI T(I(S) + T, ()i, @) — wy(m))
— C(0,8) + VI TL(S) (4, 01) — 1 (0)

— 7o+ LIVT TSI + L1, @0 — 1P 43)

IA
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According to Assumption 3, (37) and (38), the last part of (43) can be
derived as

%lmn(m =1 <A, @) — @I + k@) — i)
< LABOIP + 114, = @Ol

<|- %(1,}(5k)7elg<§k>)"IQ(&)V@J ),

- (T GIRLS)) T SVe |
+ LB 011 “9

Based on Assumption 5, we assume that (Z;(S’k)RZg(Sk))_1 satisfies

I (I;(Sk)ng(gk))_l Il < A;, where 1, is a positive constant. Therefore,
we further have
12 P +

1 _
Wl < 2/1212 &+ LalIB I (45)

|
E””n(vk) 17g"7¢

Substituting (45) into (43), we can obtain

Lr3<-0"Qu+ = ||VJ”<o>g<5>||2+ ,121242—2

+ 2/1%12-3 + L2 1B )1
< - pzﬂmm(Q)llvllz + (03 = Dain@lloll* + L3 1B, 01

1/121252 @2 + ;/1212-2

7222 =2
+I£j DA 1128,

; = lypo-0 12525220 125222 ;
Letting @, = Lo, + ;AL o, + 5416, Thereforef if the
system state v is located outside the following compact set, Ly, will
be negative.

°]
Q,=quiloll <4/ —F— ¢ (46)
(1 = p3) Anin(Q)
Part 2: The event is triggered, i.e., Vt = P, ;. According to (42), one
can get
ALp3(1) = ALp3 (1) + ALp3 5 (D). 47)

Based on the result in Case 1, we can conclude that £, < 0 for every
t € [Py, P, ). Therefore, we further get

ALy3 (1) = T*@Opy1) = T* (0P ) <
ALp3,() = T Opy) = T* (@) < _l(“Bk+1(Pk)||),

where i(-) is a class-K function, and &, (P,) = 0, — v;. Based on
the aforementioned analysis, it is evident that £;3 < 0 holds at the
triggering instants. This completes the proof.

Remark 1. This paper develops an ISM-based ETOFTT control method
for CT nonlinear systems with general actuator fault. The advantages
of the proposed control scheme are outlined as follows. (1) Different
from traditional ADP-based OTC control approaches (Lu et al., 2022;
Mu et al., 2020) which need to design a discount cost function, this
paper develops a novel cost function without discount factor. As a
result, the problem of the discount factor affecting the system stability
is avoided. Therefore, the controller design process is simplified and the
practicability of the control method is improved. In addition, unlike
existing results (Ha et al.,, 2022; Li et al., 2021; Liu et al., 2020)
that developed time-triggered OTC methods, the proposed OTC law
is updated only at triggering moments. Hence, the computational and
communication burden is reduced. (2) Unlike existing optimal fault
tolerant control methods (Liu et al., 2020; Zhao et al., 2017) addressed
bias faults only, this paper considers general actuator faults which
contains the loss of effectiveness fault and the bias fault. Therefore,
the developed ISM-based ETOFTT control method is more suitable in
practical scenarios. Moreover, by designing the ISM control law and the
adaptive updating law, the effects of both the loss of effectiveness fault
and the bias fault can be eliminated.
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Fig. 1. Critic NN weights.

Remark 2. In this paper, we introduce a novel cost function to
characterize the system’s performance index. Traditional cost functions
are typically quadratic in terms of system states and control inputs.
However, for tracking control problems, control inputs do not approach
zero. In order to prevent the cost function from diverging, a discount
factor is usually incorporated. Nonetheless, the selection of the discount
factor will impact the convergence of the ADP algorithm and even the
stability of the closed-loop system. This paper proposes a novel cost
function which contains tracking errors and their derivatives and the
need of the discount factor is avoided. Therefore, the controller design
process is simplified and the practicability of the control method is
improved.

4. Simulation
4.1. Example 1

In this part, we employ a robotic arm as a means of showcasing the
applicability of the ISM-based ETOFTT control approach. The dynamics
of the robotic arm are depicted as

S =5
S, = —4.905sin(S;) — 0.2S, + 0.1 4, (48)

Due to actuator fault, the actual control input become

Ho(t) = op(®) + p (1), (49)

where ¢ = 0.5 and

o sin®(r), t<5
up(n) =
/ 0, 1>5

The dynamics of the predesigned trajectory is chosen as

| 3cos(31)
10 = [—9sin(3t)] : G0

Initially, an ISM controller is proposed with the purpose of mitigat-
ing the effects caused by actuator fault. Let the user-defined functions
in (5) be K(S) = S, and M(S) = [0, 1], the positive constants in (9)
and (10) be A = 30 and y = 0.01. Under the ISM control law (9), the
actuator fault can be compensated and the nominal robotic arm system
is obtained. Next, the event-triggered optimal tracking controller is
developed for the nominal robotic arm system to assure the system
state tracks the predesigned trajectory. The parameters in (15) are set as
Q =1, and R = I, the activation function of the critic NN is designed as
L) = [v%, 0,0y, vg]T, and the parameters in (41) are picked as p, = 0.1
and L, = 10.
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Fig. 4. ISM control law.

The simulation validation outcomes are presented in Figs. 1-5.
Fig. 1 depicts the weight change curves, showing that the critic NN
weight vector arrives to @, = [2.80,5.39,9.38]T. Fig. 2 presents a
comparison of the amount of updates required by the event-triggered
controller and the time-triggered controller. The results indicate that
the event-triggered controller necessitates only 1323 updates, while the
time-triggered controller in Zhao et al. (2017) demands 4249 updates,
underscoring the former’s superiority in terms of computational and
communication resource conservation. In Fig. 3(a), the progression of
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the sliding mode function is shown, revealing that the sliding mode
function remains in a tiny zone of zero, indicating that the robotic arm
system state remains on the sliding mode surface. Fig. 3(b) displays
the evolution of the estimate of the loss of effectiveness fault. The
curve of the ISM control law is illustrated in Fig. 4, demonstrating the
capability of the proposed ISM controller to offer responses in dealing
with actuator fault. Fig. 5 displays the changing curve of the ISM-
based ETOFTT control law. The tracking error curves is provided in
Fig. 6, where we can conclude that the system state catches up with
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the predesigned trajectory within 10 s In Figs. 7 and 8, we compared
the tracking performance between the ISM-based ETOFTT control ap-
proach and the traditional ADP method. It is clear that the ISM-based
ETOFTT control approach ensures the system state to catch up with
the desired trajectory, whereas the traditional ADP method fails to
track the desired trajectory due to actuator faults. Fig. 9 compares the
cost functions between the ISM-based ETOFTT control method and the
traditional method in Pan, Yang, Pan, and Yu (2018), indicating that
the convergence value of the cost function in the developed method
is smaller than the traditional one. This implies that the ISM-based
ETOFTT control method incurs lower control costs and the proposed
control method exhibits optimized performance. On the whole, the
ISM-based ETOFTT controller guarantees the tracking performance of
the robotic arm subject to actuator fault and the developed ISM-based
ETOFTT control scheme is effective.

4.2. Example 2

Next, we will further confirm the efficacy of the ISM-based ETOFTT
control method by employing a Van der Pol circuit system with the
following dynamics

S =S,
Sy =28, +3(1 - SH)S, + 4, (51)

As a consequence of the actuator fault, the genuine control input is
formulated as

Ho(®) = op(®) + p (1), (52)
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where ¢ = 0.5 and

0, t<5
Hp(1) =4 10sin()cos(r), 5<t<10
0, t>10

The dynamics of the predetermined trajectory is selected as

—0.5sin(?) + 0.6cos(37)

—0.5cos(t) — 1.8sin(3¢)| ©3)

() =
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Firstly, an ISM controller is developed to mitigate the impact of
actuator fault. The user-defined functions in (5) are selected as K(S) =
S, and M(S) = [0,1], respectively. The positive constants in (9)
and (10) are assigned as A = 50 and y = 0.001. By employing the
ISM control law (9), it becomes feasible to effectively compensate the
actuator fault, thereby leading to the acquisition of the nominal Van der
Pol circuits system. Furthermore, an event-triggered optimal tracking
controller is established for the nominal Van der Pol circuits system
to assure that the system state accurately catch up the predetermined
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trajectory. The parameters in (15) are picked as Q = I, and R = I. The
activation function of the critic NN is designed as ¢,(v) = [u%, 0,0y, u%]T.
Additionally, the parameters in (41) are selected as p, = 0.1 and
L, =10.

Fig. 10 illustrates the weight change curves, demonstrating the
convergence of the critic NN weight vector to @, = [8.17,8.58, 1.62]T.
In Fig. 11, a comparison is shown between the number of updates
required by the event-triggered controller and the time-triggered con-
troller. The results demonstrate that the event-triggered controller only
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requires 856 updates, whereas the time-triggered controller requires
2681 updates. This highlights the superiority of the event-triggered
controller in terms of conserving computational and communication
resources. Fig. 12(a) illustrates the progression of the sliding mode
function, demonstrating that it consistently resides within a narrow
region surrounding zero. This indicates that the system state of the
Van der Pol circuits system remains confined to the sliding mode
surface. Fig. 12(b) showcases the development of the estimated loss
of effectiveness fault. Fig. 13 illustrates the curve of the ISM control
law. It can be observed that when the fault occurs, the ISM control
law will provide corresponding compensatory responses to counteract
the impact of the actuator fault. Fig. 14 depicts the overall ISM-based
ETOFTT control law curve. Fig. 15 provides the tracking error curves,
from which it can be observe that the tracking error converges after
10 s. This indicates that the system state successfully catches up with
the predetermined trajectory. Figs. 16 and 17 depict the system state
and desired trajectory curves under the developed ISM-based ETOFTT
control method and the traditional ADP method. It is evident that the
proposed ISM-based ETOFTT control method can ensure that the system
state catches up with the ideal trajectory in the presence of actuator
faults. In contrast, the traditional ADP method is unable to track the
desired trajectory due to the impact of actuator faults. Fig. 18 illustrates
that the control cost of the ISM-based ETOFTT control method is
smaller than that of the traditional one, which means that this approach
can achieve fault-tolerant tracking control in an efficient and energy-
saving way. In summary, the ISM-based ETOFTT controller ensures the
tracking performance of the Van der Pol circuits system even with the
actuator fault, thus confirming the efficacy of the proposed ISM-based
ETOFTT control approach.

Remark 3. In this paper, we evaluate the effectiveness of the proposed
ISM-based ETOFTT control method through the tracking error, the
number of controller update, and the convergence value of the cost
function. The details are illustrated as follows. (1) In simulation, we
adopt tracking error to evaluate the trajectory tracking performance.
As shown in Figs. 6 and 15, the tracking error converges to a small
region around zero, indicating that the system state closely follows
the desired trajectory. This means that the proposed control method
can ensure that the system state tracks the desired trajectory. (2) In
order to highlight the advantages of event-triggered mechanism, we
compared the number of controller update time between the time-
triggered control method and the event-triggered control method. It can
be observed from Figs. 2 and 11 that the event-triggered control method
requires fewer controller updates compared to the time-triggered one.
As each controller update process consumes computational and commu-
nication resources, the event-triggered control method can alleviate the
computational and communication burden of the closed-loop system.
(3) To demonstrate the optimization of the developed control methods,
we compared the convergence values of the cost functions between
the ISM-based ETOFTT control method and traditional control method
in Pan et al. (2018). It can be observed from Figs. 9 and 18 that
the convergence value of the cost function in the ISM-based ETOFTT
control method is smaller than the traditional one. Generally, a smaller
convergence value of the cost function indicates lower control costs and
lower energy consumption for the closed-loop system. Therefore, the
simulation results indicate that the ISM-based ETOFTT control method
can reduce control costs and achieve fault-tolerant tracking control in
an efficient and energy-saving way.

Remark 4. In fact, the parameter A in the ISM control law, the
parameters Q and R in the cost function, and the parameter L, in the
triggering condition will affect the control performance. For example,
(1) In the ISM control law, if A is too small and does not satisfy
A > 0 7> the designed ISM control law cannot guarantee that the
system state remains on the sliding surface, thus the impact of actuator
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faults cannot be eliminated effectively. If A is too large, it may cause
the closed-loop system oscillations or even instability. (2) In the cost
function, the Q value is adopted to limit tracking errors and ensure the
speed of system response. The R value is used to limit the amplitude
and the smoothness of the control input, ensuring the stability of
the closed-loop system. Additionally, it affect the energy consumption
during the control process. (3) The parameter L, in the triggering
condition affects the controller update frequency. If L, is too large, the
triggering threshold will be small, leading to a higher controller update
frequency, which brings a large amount of computation. However,
if L, is too small, the controller update frequency will decrease but
the system state may not track the desired trajectory. In general, the
above-mentioned parameters will affect the control performance of
the developed ISM-based ETOFTT control method. However, there is
currently no unified method to select the values of these parameters.
Researchers usually obtain suitable parameter values based on experi-
ence and continuous tuning. In this paper, we select these parameter
values by “trial and error” with repetitive simulations.

5. Conclusion

In this article, an ISM-based ETOFTT approach is presented for CT
nonlinear systems subject to actuator fault. At first, an ISM control law
is designed to cope with actuator fault and acquire the nominal non-
linear system plant. Subsequently, a novel cost function is developed
to satisfactorily tackle the OTC problem. To acquire an approximate
solution for the tracking HJB equation, a critic-only framework is uti-
lized. Moreover, the developed control law is updated aperiodically to
conserve computing and communication resources. Theoretical analysis
demonstrates that the ISM-based ETOFTT controller assures asymptotic
stability of the tracking error. Finally, simulation outcomes certify
the validity of the presented ISM-based ETOFTT scheme. In practice,
multi-agent systems are widely encountered, such as drone swarms
and autonomous driving systems. Since agents operate in complex
environments, the occurrence of actuator faults is inevitable. However,
compared with single-agent systems, the fault-tolerant control of multi-
agent systems is more intricate due to the fact that the fault of each
agent can propagate to affect other agents through the communication
network. Therefore, in future work, we will further integrate ISM
and ADP techniques to address the fault-tolerant control problem of
multi-agent systems.
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Abstract—This article develops a distributed fault-tolerant
consensus control (DFTCC) approach for multiagent systems by
using adaptive dynamic programming. By establishing a local
fault observer, the potential actuator faults of each agent are
estimated. Subsequently, the DFTCC problem is transformed
into an optimal consensus control problem by designing a novel
local value function for each agent which contains the estimated
fault, the consensus errors, and the control laws of the local
agent and its neighbors. In order to solve the coupled Hamilton—
Jacobi-Bellman equation of each agent, a critic-only structure
is established to obtain the approximate local optimal consensus
control law of each agent. Moreover, by using Lyapunov’s direct
method, it is proven that the approximate local optimal consensus
control law guarantees the uniform ultimate boundedness of the
consensus error of all agents, which means that all following
agents with potential actuator faults synchronize to the leader.
Finally, two simulation examples are provided to validate the
effectiveness of the present DFTCC scheme.

Index Terms— Adaptive dynamic programming, fault-tolerant
control, multiagent systems, optimal consensus control.

I. INTRODUCTION

ISTRIBUTED coordination in multiagent systems
(MASs) has received tremendous attention due to its
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broad applications in multirobot systems [1], distributed sensor
networks [2], battery management [3], spring-mass systems
[4], and unmanned air vehicles [5], etc. For such systems,
cooperative control policies are required to drive all agents
to achieve a unified goal. It is well-known that system
consensus or synchronization is one of the most significant
tasks for MASs. The consensus control can be divided into
two categories, i.e., the leaderless consensus and the leader-
follower consensus. In recent years, many researchers have
paid attention to developing consensus control schemes for
MASs. In [6], a robust adaptive fault-tolerant control (FTC)
scheme was developed to address the leaderless consensus
of MASs with uncertain nonidentical dynamics and actua-
tor faults. In [7], a distributed sliding-mode controller was
developed for second-order MASs to achieve leader-follower
consensus. In [8], the distributed resilience consensus problem
of MASs with actuator faults was investigated by designing
an adaptive controller. It is noted that all the above-mentioned
results only guarantee the stability of the consensus error.
However, the control efficiency such as the energy consump-
tion and the production cost which are important indicators in
practical applications is not taken into account. Consequently,
optimal consensus control receives wide attention and it aims
to develop distributed control protocols based on the local
information of each agent and its neighbors, such that all
agents achieve synchronization and optimal performance. It is
worth pointing out that the game theory provides an ideal
perspective to solve the optimal consensus control problem
of MASs [9], [10], [11], [12]. Under the game theory, each
agent chooses a local optimal control policy to minimize its
performance index. However, obtaining the analytic solution is
intractable by solving the coupled Hamilton—-Jacobi—Bellman
(HJB) equation due to its high nonlinearities [13], [14], [15],
[16], [17].

For the sake of the “curse of dimensionality” in solving
the coupled HIB equation by dynamic programming, adaptive
dynamic programming (ADP) has been extensively investi-
gated [18], [19], [20], [21], [22], [23], [24]. In recent years,
several researchers have developed optimal consensus control
schemes for MASs by using the ADP technique. For linear
systems, in [25], an off-policy reinforcement learning (RL)
method was proposed to address optimal consensus control
problems. Under the framework of graphical games, a local
performance index function in terms of the tracking error

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Guangdong Univ of Tech. Downloaded on January 26,2023 at 02:19:14 UTC from IEEE Xplore. Restrictions apply.

98


https://orcid.org/0000-0003-3381-6340
https://orcid.org/0000-0002-7684-7342
https://orcid.org/0000-0003-3715-4778
https://orcid.org/0000-0003-1303-1781

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

and the control input was designed for each agent, and the
off-policy RL method was developed to obtain the approximate
solution of the coupled HIB equation. In [26], the optimal con-
sensus control problem of discrete-time (DT) linear MASs was
addressed by using the RL method. By designing a discounted
performance index function, the coupled DT HJB equation was
solved by an actor-critic framework. For nonlinear systems,
in [27], an augmented system was established and the solutions
of the corresponding coupled HIB equations were obtained by
using the policy iteration (PI) algorithm. In [28], a Q-function-
based PI algorithm was developed to realize the model-free
distributed optimal consensus control of DT nonlinear MASs.

It is worth pointing out that the aforementioned works have
not considered actuator faults. As industrial systems become
complex and large-scale, the occurrence of actuator faults is
inevitable. Once the faults occur, the control performance will
be degraded or even become unstable [29]. To ensure relia-
bility and control accuracy, many ADP-based FTC methods
have been developed recently. In [30], a PI-based online fault
compensation control method was developed for continuous-
time (CT) nonlinear systems. In order to handle actuator faults,
the FTC was constructed by an online fault compensation
term and a PI-based optimal regulation term. In [31], the FTC
problem of CT nonlinear systems was tackled by developing
an ADP-based control method. The actuator fault was esti-
mated by a fault observer, and a novel performance index
function was designed to transform the FTC problem into
an optimal control problem. In [32], a sliding-mode FTC
method was proposed to deal with actuator faults of nonlinear
systems by using the RL method. In [33], the FTC problem
of complex unknown dynamical networks was considered.
The static feedback gain which was obtained by the iterative
ADP algorithm was employed to compensate for the actuator
faults.

The above-mentioned works only considered single agent
systems, but multiple agents are required to fulfill complex
practical tasks, such as industrial manufacturing [34], atti-
tude alignment of space crafts [35], and disaster relief [36].
However, the occurrence of actuator faults is inevitable in
systems with large-scale, distributed, and autonomous agents.
As aforementioned, the ADP-based FTC has shown proper
advantages, i.e., optimality, adaptivity, and learning ability.
Therefore, it is reasonable to tackle the fault-tolerant con-
sensus control (FTCC) problem of MASs by using the ADP
technique. Compared with a single-agent system, the FTCC
problem of MASs is more intractable because agents in MASs
are interconnected through mechanical interconnections or
communication networks. It implies that a fault that occurs
in one agent may affect other interconnected agents or even
destroy the control performance of the whole system. More-
over, the interconnection of MASs leads to complications of
fault detection and low fault estimation accuracy. Thus, the
major challenges lie in that: 1) how to obtain the accurate
fault information of each agent and 2) how to design a
fault-tolerant controller to compensate for the actuator faults.
From the above discussion, it is urgent to develop a distributed
fault-tolerant consensus control (DFTCC) method to guarantee
the stability of MASs with unpredictable faults. However, this
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problem has been rarely investigated, which motivates our
research.

In this article, an ADP-based DFTCC approach is developed
for MASs with potential actuator faults. The contributions and
novelties of this work are summarized as follows.

1) Different from existing approaches [30], [31] which
addressed the FTC problem for single-agent systems,
this article develops an ADP-based DFTCC approach for
MAS:s. It guarantees the consensus error of each agent to
be uniformly ultimately bounded (UUB), which means
that all agents agree upon the leader state even if faults
exist.

2) A local fault observer is established to estimate the
potential actuator faults of each agent. Subsequently,
the FTCC problem is converted to an optimal consensus
control problem by designing a local value function that
contains the estimated fault, the local consensus error,
and the control inputs of the agent and its neighbors.

3) Compared with traditional ADP-based control appro-
aches to address simple HIB equations, a distributed PI
algorithm is developed to solve coupled HIB equations
that reflect the interconnections among each agent and
its neighbors. Moreover, the critic neural network (NN)
is adopted to obtain the approximate local optimal
consensus control law of each agent.

The rest of this article is organized as follows. In Section II,
the FTCC problem for MASs is formulated. In Section III,
a local fault observer and a critic NN are established for each
agent, and the ADP-based DFTCC approach is developed.
Moreover, the stability of the closed-loop system is provided.
In Section 1V, the effectiveness of the developed method is
verified by two simulation examples. In Section V, a brief
conclusion is given.

II. PRELIMINARIES
A. Graph Theory

Consider the undirected communication topology graph
denoted by II, = {P,¢, A}, where P = {pi,..., py} is a
set of nodes, & = {(pi, pj): pi, pj € P} is a set of edges,
and A = [a;;] is a weighted adjacency matrix. If and only if
agent i and agent j are directly connected, then (p;, p;) € £.
Moreover, a;; > 0 if (p;, p;) € &, a;j = 0if (p;, pj) ¢ &, and
aij=0foralli=1,...,N. Let N; = {j: (Pi,Pj) eé,j#
i} be a set of neighbors of the agent i, N; be a set of agent i
and its neighbors, D = diag{d,, ..., dy} with d; = ZjeN,- ajj
be the degree matrix of Il,, and £L = D — A = [l;;] be the

Laplacian matrix with /;; = —a;; and [;; = 27:1 ai;.

B. Problem Formulation

Consider the nonlinear MASs with one leader and N
followers. The system dynamics of each following agent is
described as

%= fi(x)+ Gl —uip), i=1,2,... (1)

where x; € R™ is the system states of the agent i, u; € R™ is
the control input of the agent i, u;y € R™ is the actuator fault,

, N
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and fi(x;) € R" and G,;(x;) € R"*™ are known nonlinear
system functions.

Assumption 1: The system functions f;(x;) and G; (x;) are
Lipschitz continuous on a compact set £ containing the origin
with f(0) = 0, and the system (1) is stabilizable on Q.

The system dynamics of the leader is given by

X0 = folxo) 2)

where xo € R™, and f;(xg) € R™ is a differentiable function.
The local neighborhood consensus error of the agent i is
defined as

& = zaij(xi — xj) + ¢i(x; — xo) 3)
JEN;
where ¢; > 0 is the pinning gain. Thus, the dynamics of

the local neighborhood consensus error can be obtained by
differentiating (3) as

& = Z a;;j(%; — x;) + ¢ (X; — %o)
Jen;
= Z aij (fi (i) + Gi(xi) (i — wiy)
JEN;
= i) = GGy —ujyp))
+ci(fi (i) + Gi(xi) i — uip) — fo(xo))
= Z aij(fi (i) + Gi(xi) (i — uif))
JEN;
+ci(fi (i) + Gi () (ui — uip))
—cifolxo) = D aij folxo) + D aij fo(xo)
JEN; JEN;

— Z ajj (fj(xj) +G;(xj) () — ”jf))

JEN;

= Z aij 4+ ci | (fi (i) + Gi (i) (ui — uir) — fo(xo))

JEN;

— D> (i + bi) (Fi0e) + G ) wj — i) — folxo))

JEN;
= (i + bii)(-7:i + Gi(xi)(u; — Mif))
+ D+ bip) (Fj + G ) = ujp))

JEN;

= D Uij+bi))(Fj + G —ujp) 4)
JEN;

where .7:1 = ﬁ-(xi) — f()()C()), bii = C; and b,‘j =0 1f] (S Ni.

In order to solve the FTCC problem of system (1), we need
to obtain a set of feedback control policies u;(x), ..., uy(x),
such that all the followers synchronize with the leader even if
the fault occurs. Next, we will show that the FTCC problem
of system (1) is transformed into an optimal consensus control
problem by designing a modified local value function.

The nominal system corresponding to system (1) without
actuator faults is expressed by

%= fi(xi) + Gi(xiu. ©)
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Then, the dynamics of the local neighborhood consensus
error without actuator faults is given by

& =D Ui+ bi)(Fj + G (xj)uy). ©
jen;

The local value function of the agent i is defined as
o0
Vi€ = / (pﬁ?_-fﬁif + Ci (& ui, u—p))de
t

where p is a positive constant, #;; € R" is the estimation of
uir, and the utility function C;(-) is designed as
Ci(&rouisuci) = E Qii&i + u! Riju; + Z MJT-Riij @)
JEN;
where u;y = {u;|j € N;} are the control inputs of the
neighbors of the agent i, Q;; € R"*" R;; € R"™*™ and
R;; € R"™/>™i are positive definite matrices.

Assume V;(£;) € Z', where Z! is a space on Q of functions
with continuous first derivative. Then, the Hamiltonian of the
agent i is defined as

Hi (&, VVi(ED, uiy ui—i)
AT ~
= pil;piip + Ci (& uiy u-py)

+VVIEN | 2+ bip) (Fj + G Geuj)
JEN;
The local optimal value function of the agent i

V(&)
= mi?g)/ (pﬁ;-l}-ﬁ,-f+C,~(€,~(T),ui(r),u(_i)(r)))dr
t

u; eN
satisfies the HJB equation as
uiIeI})%?Q) Hi (&, VYV (Do uisuiy) =0 (8
where N(Q) is a set of admissible controls. Then, the local
optimal consensus control law is derived by

. di + ci
u. — —

! 2
Based on (8) and (9), we can obtain

R;;'GT (x)VV (&). ©

0= pﬁ;l}ﬁif +C; (8,‘, u;‘, u?ﬁi))

+VVTE) | D +bi) (Fj + G

jen;

(10)

Noticing that (10) is the HIB equation, which is difficult to
solve due to its high nonlinearities [38], [39], [44], [45]. In the
next section, the ADP technique is adopted to overcome this
bottleneck.

Remark 1: In the optimal control community, the value
function represents the objective to be optimized. For the
nominal system, a value function is a quadratic form with
respect to the system state and the control input. In this article,
the fault estimation which is obtained by the fault observer is
added to the value function to compensate for the actuator
fault of each agent in real-time. Therefore, the influence of
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the actuator fault can be eliminated. It is worth mentioning
that the controller design process not only compensates for
the actuator fault but also optimizes the control performance.
Therefore, the DFTCC is achieved in an optimal manner.

III. FAULT TOLERANT CONTROLLER DESIGN
A. Problem Transformation

In this section, by using the Lyapunov stability theorem, we
demonstrate that the local optimal consensus control law (9)
guarantees the UUB of the local neighborhood consensus error
of each agent even suffering from actuator faults, i.e., all
following agents with potential actuator faults synchronize
with the leader. It means that the FTCC problem of system (1)
is transformed into an optimal consensus control problem, and
the local optimal consensus control law (9) is thus the solution
to the FTCC problem. Before proving, some assumptions
which were used in [30], [31] and [40] are provided.

Assumption 2: The actuator fault u;; is norm-bounded, that
is,

(1)

lluipll < itiy

where ii;; is a positive constant.
Assumption 3: The system function G;(x;) is norm-
bounded, that is,

IG;(xp)ll < G;

where § j 1s a positive constant.

Theorem 1: Considering the nonlinear MASs with the
leader (2) and followers (1), the dynamics of the local neigh-
borhood consensus error given by (4), the local optimal con-
sensus control law given by (9), and the Assumptions 2 and 3,
the local neighborhood consensus error of each following
agent with potential actuator faults is guaranteed to be UUB
if the following inequality:

(12)

« 2
2 dmin (@D IEN? > [VVFED| (13)
holds, where 0 < y < 1.
Proof: Select a Lyapunov function candidate as
L=V&). (14)

Taking the time derivative of (14) along with the local
neighborhood consensus error (3), we have

L=VVTE) D Uij+bi)(Fj+Gix)) () —ujy))
JeN;
= VV,*T(E,) Z(l,’j + bij)(}—j + gj(xj)uj)
jENi

- vV Z(lij + bij)Gj(xj)ujs-

Jjen;

15)

According to (10), we can obtain
VVi*-r(‘c:i) Z(lij + bij)(}—j + gj(xj)uj)
JeN;
= _Ci (gia u;‘k’ u?—i)) - pﬁ;[}ﬁlf (16)
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Combining (15) with (16), we can get
L= —pitjiiiy — E Qu& — uT Ruuf — D" ui Ryju
JjEN;
—VVIT(E) D Ui + bij) Gy (xu s
JjeN;
—pﬁ;l;cftif —&'0i&
—VVIT(E) D Ui + bij) Gy (xu s

JEN;

*
J

IA

IA

1
—pifyiiy = £ Qi — S VVT(ENVV] ()
:

VVT(E) = D Uij +bij)Gi(xjujs

JjeN;

L1
2
< | VVITE) = D (i + biy) G (xj)ujy

JjeN;
T
1
-3 Z(lij + bij)G;(xj)ujr

jENi

| Dy +bip)Gixujy

jeN;

—piliip — & Qi + | VVIE) |
2

IA

+ Z(lij +bij)G(x;)ujy

JEN;

= i (QDIEN + (% = D min(Qid) IIE: N1
AT A " 2

= pijyiis + [VVIE))|

IA

+ N D i+ by’ G, (17)
JEN;
If the inequality (13) holds, we further have
L= (% = D2win (@D IEI + 21 (18)

where 1, = N,‘ ZjEN,-(lij + bij)zg_fﬁff. Hence, ﬁ < 0if &
lies outside the compact set

i
Qe = 8,‘2 8,‘ = . 19
‘ [ e <\/ (1—x2>zmm<Qii>} o

It means that the local optimal consensus control law given
by (9) can guarantee the local neighborhood consensus error
of each agent with potential actuator faults to be UUB, i.e.,
(9) is the solution to the FTCC problem. Thus, the problem
transformation is reasonable. This completes the proof.

B. Fault Observer Design

In this section, a local fault observer is designed to estimate
unknown potential actuator faults. Consider the agent i with
actuator faults (1), a local fault observer is designed as

%= F@) + GG — i)+ Li(xi — %) (20)
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where X; is the observation of the system state x;, L; is the
positive definite observer gain matrix, and iI;, is the estimated
actuator faults which is updated by

X T/~
iif = —L2G; (X)eio
where L, is a positive definite matrix, and e¢;, = x; — X; is

the state observation error of the agent i. According to (1)
and (20), we can get
eio = f(xi) +Gi(xpu; — Gi(xi)uiy + Gi(%;)itiy — Liei,
(22)
where f(x;) = f(x;) — f(&) and Gi(x;) = Gi(x;) — Gi(%).
Lemma 1: Considering the agent i with actuator faults (1)
and the local fault observer given by (20), the fault observation
error can be guaranteed to be UUB with the adaptive updating
law (21).
Proof: The proof of Lemma 1 has been provided in [31],
so the detail is omitted here.

21

C. Neural Network Implementation

In this section, critic NNs are adopted to approximate the
solutions of HIB equations. According to the universal approx-
imation property of NNs, the local optimal value function of
the agent i can be expressed as

VIE) = WiTpie(E) + ic(E)

where W e R’ is the ideal weight vector, ¢;.(£;) € R« is
the activation function, /;. is the number of hidden neurons,
and ¢;.(&;) € R is the reconstruction error. Then, the partial
derivative of V(&) with respect to &; is given by

(23)

VVI(E) = VoL (EOWS + Ve (). (24)
The approximate local value function is defined as
Vi(&) = Wigic(&) (25)

where W;, € Rl is the estimate of W;,. Similarly, we have
V(&) = Vol (E)Wi. (26)
According to (9) and (24), the local optimal consensus
control law of the agent i is expressed as
N d; +c;
u, ————
! 2
Then, the approximate local consensus control law of the
agent i is given by
d,‘ + Ci
2
Based on (10) and (28), the approximate Hamiltonian is

ﬂi (£i5 Wic» ﬁi; ﬁ(*l))

T AT N AT N
= gi Qi,'gi + u; Riiui + z uj Rijuj
JEN;

R;'GT () (Vol (EDWS + Vel (£)).

i

27)

ap = (28)

R;'Gl (x)) Vo (E)Wi.

+ Wik Vo) | DU +bip) (Fi +G(x)a)

jENi

r;
£ ¢ (29)

Authorized licensed use limited to: Guangdong Univ of Tech. Downloaded on January 26,2023 at 02:19:14 UTC from IEEE Xplore. Restrictions apply.

Let Wi, = W, — W,-c be the weight estimation error.
The gradient descent algorithm is employed to minimize the
target function E;. = (1/2)eiTCeic. Hence, the critic NN weight
updating rule is given by

A 1 ﬁEiC ace,-cl"i

Wie = —a. 2( oy ) = - 5

(1+171;)" \oWic (1+17T;)
where o, > 0 is the learning rate.

Theorem 2: Consider the agent i with potential actuator
faults (1), if the critic NN weights are updated by (30), then the
weight approximation error W;. can be guaranteed to be UUB.

Proof: The proof of Theorem 2 is similar to that in [31],
[40], [41], [42], and [43], so it is omitted here.

According to the above discussion, the structure of the
ADP-based DFTCC approach is displayed in Fig. 1.

Remark 2: In this article, the critic-only structure is estab-
lished to obtain the approximate value function, rather
than the actor-critic structure. That is because: 1) accord-
ing to (28), we know that the local consensus control
law relies on the value function. Once the approximate
value function is obtained by using the critic NN, then the
approximate local consensus control law can be obtained
via (28). Therefore, only critic NN is employed and 2) in
fact, the critic-only structure is widely used in existing
ADP-based control schemes [31], [32], [40]. Compared
with the actor-critic structure, the critic-only structure has
a low control complexity, which is beneficial to practical
applications.

Remark 3: As we all know, existing control architectures
can be divided into three categories, i.e., centralized control,
distributed control, and decentralized control. The centralized
control approach requires the overall system information,
while the distributed control uses the information of the local
agent and its neighbors, and the decentralized control needs
the information of the local agent only. Thus, in this article,
the developed ADP-based DFTCC approach is a distributed
one since the states of the local agent and its neighbors are
the only required information.

(30)

D. Stability Analysis

In this section, we will prove that the approximate local
consensus control law (28) can guarantee the local neighbor-
hood consensus error of each following agent with potential
actuator faults to be UUB. Before the stability analysis, the
following assumption which is common in ADP literature [41]
is provided.

Assumption 4: V;(E), Veio(E), Wie and W are norm-
bounded, that is,

IVpic(ED =

Pic, Ve (€N < &ic
”ch” S Wic,

Wil < Wi
where @j¢, Eic, W;. and W;Z, are positive constants.

Theorem 3: Consider the following agent i with potential
actuator faults given by (1), the dynamics of the local neigh-
borhood consensus error of each agent (6), the critic NN
weights updated by (30), and the Assumptions 2—4. Then, the
approximate local consensus control law (28) can guarantee
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Fig. 1. Structure of the ADP-based DFTCC approach.

the local neighborhood consensus error of each following
agent with potential actuator faults to be UUB.
Proof: Select a Lyapunov function candidate as

L =ViE). 31)

Taking the time derivative of (31) along the local neighbor-
hood consensus error (3), we have

Ly =VVITE) D Uy +bi) (Fi + Gi(x )@y —
JEN;
= VVT(E) D Wij + bij) (Fi + Gi(x))ay)
JEN;

—VVITE) D Uiy + bi))Gi (xju .

JjeN;

ujr))

(32)

According to (10), we can obtain

VVT(E) D Ui+ bip) F;
jENi
= —(C; (g,‘, I/t;k, u?ﬁi)) — VVI»*T(&‘) Z(lij + b,»j)g,- (xj)uj
jENi

(33)

Let ¥ =[G (x1), ..., Gy, (x,v,,)]T[gl(xl), ..., G (xg,)] and
Amax () be the maximum eigenvalue of ¥. Based on (33) and
using Young’s inequality ||A+ B||* < 2||A||* 42|/ B||*>, we can
obtain (34), as shown at the bottom of the the page. According
to (27) and (28), we can get

A * 2
;= uj—uj)
d/‘ +CjR

S B TN A

JEN;

1
—Cl‘ (gi, u?, u?‘_,«)) + EVV,‘*T(gi)VVi (&)

A

(in + b)) (@ — uf —ury)
+ = . v

(i, + big) Gy, —uy —ug,y)

—Ci(Erui uly) + VVTE) DUy +bi)Gi () (@) — uf — )

(i + bil)(fh —uj —uiy)

(Ui, +sz)(”N Wy —Uug,s)

1
= _Ci(gia u;'ka u?ﬂ‘)) EHV(DM(X) +ngc(x)|| + lmax(lP) Z(ll] +blj)||uj ujr H
JjeN;
1 2
2 N
< —=Ci(&i,uf u_;) + P Wi+ + gimax(‘f’) Z(lij +bij)||a; — Wi —ujy I (34)
JEN;
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+ UG R () Vo)W
+ UG RV —u 2
_ |4 LR GT () VTN W
+ UG RGT Vel (E)) - 2
<@ +enr; lgT(x,)w,c(e)ch 2
'(d e )RIGT ) LE| + 2l

< (dj+cj)2 —2g2¢lc
+ 205,

o+ (dj + )R GiE],

(35)
Substituting (35) into (34), we have
Ly < C (5,, u;, u( l)) -i-goqu*z + 8

+ Ezmax(% Z(l,-j +bij)
JEN;
x((dj—}—cj)2 —Zgzgoﬂ
+(dj +c;)’R;Gje §C+2u )
_51' Qii&i + 22
~min QD IEN = (1 = ) Amin Qi) IE N + 22

INTA

where
12 = golC‘al;‘<2 + E-:IZC
+ Eimax(‘f’) Z(lij + bij)

jeN;
X ((dj + Cj)2 _zgzgo]é

+(dj +¢;)’R;7G &, + 20 )

JJC

Therefore, [:1 < 0 if & lies outside the compact set

A2
Qe = 5,‘2 5,‘ = . 36
“ [ el </ (l—cz)imm(Qii)} o

It means that the approximate local consensus control
law (28) guarantees the UUB of the local neighborhood
consensus error of each agent with potential faults. The proof
is completed.

Remark 4: It is noted that W} and &;. are the optimal
weight vector and the reconstruction error of the critic NN,
respectively. In fact, after the critic NN is successfully trained,
the obtained optimal weight vector and the approximate error
cannot be infinite. Therefore, it is reasonable to assume that
they are norm-bounded. Moreover, according to Theorem 2,
the weight approximation error W;. is guaranteed to be UUB,
so it is reasonable to assume that it is also norm-bounded.

Remark 5: Different from existing results [27] and [28]
which tackled the consensus control problem of MASs only,
this article further considers actuator faults and develops a
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2 3

Fig. 2. Structure of communication topology.

TABLE I
PARAMETERS OF THE COMMUNICATION TOPOLOGY

Parameter 1 c1 c2 c3 a1z a3 az1 a23 asl as2
Value 1 0 0 0 0.1 0.1 0.5 0.5 0.4 0.4

DFTCC approach via ADP. In order to eliminate the influ-
ence of actuator fault, a fault observer is designed for each
following agent to obtain the fault information, and a local
value function is designed, which reflects the estimated fault,
the local consensus error, and the control inputs of the agent
and its neighbors.

Remark 6: In recent years, several FTC approaches have
been developed for MASs [6], [7], [8]. However, existing
results only guarantee the consensus of MASs with actua-
tor faults, but the control performance such as the energy
consumption and the production cost which are important in
practice are not taken into account. In this article, the FTC
problem of MASs is investigated via ADP. The developed
ADP-based DFTCC approach not only guarantees the stability
of MASs with actuator faults but also optimizes the control
performance.

IV. NUMERICAL SIMULATION

In this section, simulation examples are adopted to verify the
effectiveness of the developed ADP-based DFTCC scheme.

A. Example 1

Consider a MAS consisting of one leader and three fol-
lowers, the communication topology is displayed in Fig. 2,
and the corresponding parameters are provided in Table I. The
dynamics of each following agent with potential actuator faults
is provided as

xi = fi(xi) 4+ Gi(xi) (ui — uip)
where

7o Xi2 () = 0
filxi) [;1:|’ Gi(xi) = [cos(in,1) + 2i|
Fi=—05x —xip+ xi2,1xi,2 —0.25x; 2 (COS(ZXU) + 2)2
+0.25x; 5 (sin® (4x7, +2))

(37)

X, = [xi,l,xi,z]T is the system state of the agent i, and the
actuator fault u;; € R is given as

P cos(5t/2x) +sin(t), 10s <t < 20s
Vo 0, others
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Fig. 3. Trajectories tracking of Example 1.

urp =0, 0<1r=<30s

10sin(¢/27) — cos(2t), 20s <t < 25s
u =
i 0, others.
We suppose that agents 1 and 3 are faulty, and agent 2 is

fault-free.
The reference dynamics of the leader is provided as

) = [—cos(t) - sin(t):|.

sin(t) — cos(t) (38)

In the simulation, the initial states of the following agents
are chosen as x; = [1,—1]T, x, = [0.5,—0.5]" and x; =
[1.5,—1.5], respectively, and the initial states of the observers
are selected as £; = [2, —2]T, £, = [0.5, —0.5]" and %3 =
[1.5,—1.5]". Let Q;; = 200/, R; = 0.11, R;j = 0.011,
p =1, L, =100, L; = 300. Let the activation function of
the critic NN be g, = [E7, £2€i.1, €71, and the learning rate
of the critic NN be a, = 1.

Simulation results are displayed in Figs. 3-8. In Fig. 3,
we can observe that the trajectories of all following agents
catch up with the leader within 10 s. Fig. 4 illustrates the
consensus errors of each following agent converge to a small
region of zero. The fault estimations of all following agent
are given in Fig. 5, where we can find that the actuator
faults can be estimated by fault observers precisely. Fig. 6
shows the critic NN weight vectors will converge to W; =
[4.13,8.33,8.92]T, W, = [20.00,8.79, 15.42] and W; =
[12.16, 8.32,4.70]", respectively. Fig. 7 displays the control
inputs of all following agents. It is clear that the controllers
provide quick compensation after faults occur. Therefore, the
leader and all followers can maintain consensus in the presence
of actuator faults.

In order to verify the trajectory tracking performance of the
developed ADP-based DFTCC approach, a different reference
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Fig. 4. Consensus errors of Example 1.
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Fig. 5. Fault estimation of each agent of Example 1.

dynamics of the leader is selected as

. |:—O.5)C0,1 - X()’QCOS(.X(),I)}
X0 =

. 39
SlI’l()C()j]) — X0,2 ( )

where xo = [xo,l,xo,z]T is the leader’s state vector. From
Fig. 8, we can find that the trajectories of the leader and all
followers can achieve consensus.

B. Example 2

To further verify the effectiveness of the developed
ADP-based DFTCC approach, three 2-DOF modular
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Fig. 6. Critic weights of Example 1.

reconfigurable robots are adopted. The communication
topology is the same as those of Example 1. The dynamics of
each following agent with potential actuator faults is given as

Mi(qi)gi + Ci(qi, G1)gi + Gi(qi) = ui — uiy (40)
where g; = [gi1, gin] € R? is the joint displacements of the
agent i, M;(q;) € R>*? is the inertia matrix, C;(g;, g;) € R*>*?
is the Coriolis and centripetal force, G;(g;) € R? is the gravity
term, and u;; € R? is the unknown actuator faults. The system
functions and the actuator faults of each agent are provided at

]
o
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2 PN YT AN A
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=
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Fig. 7. Control inputs of Example 1.

the bottom of the page. In this case, we assume that agents 1
and 2 are faulty, and agent 3 is fault-free.
The reference trajectory of the leader is selected as

_|0.6cos(3r) — 0.4sin(4¢)
r() = 0.6cos(2t) — 0.2sin(z) |

Let Qii = 150]4, Rii = 0.1]2, Rij = 001]2, p = 1, L2 =
100, the local fault observer gain be L; = 100, the initial states

(41)

Agent I:
_ [0.17 — 0.1166c0s*(g12) —0.06c0s(g12)
Mi(q1) = | —0.06c0s(¢12) 01233 |0 Gtan
0
Gi(q1) = _—5.88005(q12)i|
Agent 2:
_ [0.17 — 0.1166c0s? (g22) —0.06c0s(g22) L
Ma(g2) = | —0.06c05(g22) 0.1233 | ©2@d2) =
Go(g) = [—5.88c0s(g21)sin(g2) + 3.92sin(g21)
2= —5.88¢08(¢2)
Agent 3:
Ms(gs) = [ 0.36c0s(g32) — 0.6066 —0.18cos(g32) + 0.1233
3\93) = | —0.18cos(g32) + 0.1233 0.1233
Galgs) = [ —5.88sin(g31 + g3) — 17.64sin(g31)
)= | —5.88sin(g31 + ¢32)

0.1166Sin(2q12)c}12 0.068i1’1((]12)£}12
0.06sin(g12)¢12 — 0.0583sin(g12)¢11 0.06sin(g12)g11

= |

0.1 166Si1’1(26p2)5]22 0.O6sin(q22)5122
0.06sin(g22)¢22 — 0.0583sin(g22)¢21 0.06sin(g22)G21

}

—0.36sin(g32)g3>  —0.18sin(g32)g3

. Ci(g3, q3) = i ] j i ]
i| 3(g3, 43) |:0,18s1n(q32)(Q31 —¢q32) 0.18sin(g32)g31

}

|

= 0; 0,

o B ssinG2m) —sin@n: 2 +
27 1oz 01,

uzp = [0;0], 0=<1t<30s
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[T+ sin(3t/2x) 4 cos(3¢); 1 4+ cos(t/m) + sin(3¢)],

10s <t < 20s
others

5cos(5t/2m) + sin(2t)], 20s <t < 25s
others
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of the critic NN be Qic = [812,1 , gij18i,3, 523, 522, gi,28i,4a 812,4],
of the agents be x; = [—1, 1,0, 0", x = [—1.5,1.5,0,0]7 and the learning rate of the critic NN be o, = 0.8.
and x3 = [—2,2,0,0]7, the initial states of the observers be Simulation results are provided in Figs. 9-13. The trajec-

A

£1 =% = £ = [2,1.5,—1, —0.5]", the activation function tories of the leader and all following agents are given in
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Fig. 13.  Control inputs of Example 2.

Fig. 9. We can find that all following agents can follow
the leader within 10 s. Fig. 10 shows the consensus errors
of all agents, where we can observe that the consensus
errors converge to small region of zero as time increases.
The weight evolution curves of the critic NNs are shown in
Fig. 11, which converge to W, = [53.99, 107.88, 19.28, 25.46,
33.15,67.50], W, = [69.48,5.08,25.51,22.23,34.21,
92.50]" and W5 = [57.18, 62.52, 77.67, 23.37, 38.54, 56.15]",
respectively. Fig. 12 displays the fault estimation of each
agent. We can observe that the local fault observers can
estimate actuator faults accurately. The control inputs of all
agents are illustrated in Fig. 13. It is found that when faults
occur, the controllers present a quick response to resist faults
so that the trajectory of the leader can be tracked even if the
faults occur. From the above results and analysis, we conclude
that all following agents with potential faults can successfully
follow the leader. It means that the developed ADP-based
DFTCC approach is effective.

Remark 7: In fact, the ADP-based DFTCC is developed
based on the critic NN, which means that if the critic NN
approximates the optimal value function successfully, the
control input is obtained by calculating (28). Therefore, the
implementation complexity of the controller mainly depends
on the acquisition of the optimal weights of the critic NN.
Once the optimal critic NN weights are obtained, the devel-
oped ADP-based distributed fault-tolerant controller can be
employed on MASs directly. It is noted that the activation
function, the learning rate and the initial weights all affect
the training process of the critic NN, how to select them is
a challenging problem. However, there is no guiding way to
select them and researchers usually choose them by “trial and
error” with repetitive simulations. Therefore, the selection of
them is not unique and they can be selected to be different as
long as the simulation results are satisfactory.

V. CONCLUSION

In this article, the FTCC problem of the MASs is addressed
by proposing an ADP-based DFTCC approach. To begin with,
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a local fault observer is designed to estimate the potential actu-
ator faults of each agent. Then, the FTCC problem is converted
to an optimal consensus control problem by designing a novel
local value function that contains the estimated faults, the local
consensus errors, and the control laws of the local agent and
its neighbors. A critic-only structure is adopted to solve the
coupled HJB equation. Moreover, the Lyapunov-based stability
analysis demonstrates that the consensus errors are UUB.
Finally, the effectiveness of the developed ADP-based DFTCC
approach is verified by two simulation examples. The main
contribution of this article lies in designing an ADP-based
fault-tolerant controller for each agent such that all following
agents with potential actuator faults can still follow the leader.
The related future work is given as follows.

1) Assumption 4 is necessary for guaranteeing the stability
of the local neighborhood consensus error of each agent,
and we will try to relax it in our future work.

2) Since the convergence rate of the ADP algorithm is a
challenging problem and significant in practical applica-
tions, we will try to investigate it in our future work.
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Abstract—In this article, the event-triggered robust control of
unknown multiplayer nonlinear systems with constrained inputs
and uncertainties is investigated by using adaptive dynamic pro-
gramming. To relax the requirement of system dynamics, a neural
network-based identifier is constructed by using the system input-
output data. Subsequently, by designing a nonquadratic value
function, which contains the bounded functions, the system states,
and the control inputs of all players, the event-triggered robust
stabilization problem is converted into an event-triggered con-
strained optimal control problem. To obtain the approximate
solution of the event-triggered Hamilton-Jacobi (HJ) equation, a
critic network for each player is established with a novel weight
updating law to relax the persistence of excitation condition
based on the experience replay technique. Furthermore, accord-
ing to the Lyapunov stability theorem, the present event-triggered
robust optimal control ensures the multiplayer system to be uni-
formly ultimately bounded. Finally, two simulation examples are
employed to show the effectiveness of the present method.

Index Terms—Adaptive dynamic programming (ADP), event-
triggered control (ETC), multiplayer nonzero-sum games
(MNSG), neural networks (NNs), robust control.

I. INTRODUCTION

WITH the rapid development of modern industries, con-
trol systems are becoming more and more complex

Manuscript received March 29, 2022; accepted May 12, 2022. This
work was supported in part by the National Natural Science Foundation
of China under Grant 62073085 and Grant 61973330; in part by the
Beijing Natural Science Foundation under Grant 4212038; in part by the
Guangdong Introducing Innovative and Enterpreneurial Teams of “The Pearl
River Talent Recruitment Program” under Grant 2019ZT08X340; in part by
the Guangdong Basic and Applied Basic Research Foundation under Grant
2021A1515110022; in part by the Beijing Normal University Tang Scholar; in
part by the Open Research Project of the State Key Laboratory of Management
and Control for Complex Systems, Institute of Automation, Chinese Academy
of Sciences under Grant 20210108; and in part by the Open Research Project
of the State Key Laboratory of Industrial Control Technology, Zhejiang
University, China under Grant ICT2021B48. This article was recommended
by Associate Editor P. Shi. (Corresponding author: Bo Zhao.)

Yongwei Zhang and Shunchao Zhang are with the School of Automation,
Guangdong University of Technology, Guangzhou 510006, China (e-mail:
yongwei_zhang @mail2.gdut.edu.cn; 1111904006 @mail2.gdut.edu.cn).

Bo Zhao is with the School of Systems Science, Beijing Normal University,
Beijing 100875, China (e-mail: zhaobo@bnu.edu.cn).

Derong Liu is with the School of Automation, Guangdong University
of Technology, Guangzhou 510006, China, and also with the Department
of Electrical and Computer Engineering, University of Illinois at Chicago,
Chicago, IL 60607 USA (e-mail: derong@uic.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2022.3175650.

Digital Object Identifier 10.1109/TCYB.2022.3175650

and uncertain, which may severely degrade the control
performance or even lead to system’s instability. Much effort
has been devoted to the robustness of such systems. In recent
decades, the robustness has attracted extensive attention in
designing optimal control systems. In [1], the robust adaptive
dynamic programming (ADP), which combined backstep-
ping, robust redesign, and small-gain technique, was proposed
to solve optimal control problems for uncertain nonlinear
systems.

For the purpose of designing optimal controllers for non-
linear systems, it is required to solve the Hamilton—Jacobi—
Bellman (HJB) equation, which is difficult or impossible due
to its high nonlinearities. Fortunately, ADP, which was put
forward by Werbos, is an effective approach to deal with this
difficulty [2]-[8]. During the past decade, extensive ADP-
based literature has been reported to address varieties of
control problems of discrete-time (DT) systems [9]-[11] and
continuous-time (CT) systems [12], [13] with trajectory track-
ing [14], [15], input constraints [16], fault tolerance [17],
and so on. For robust stabilization problems, several ADP-
based approaches were also developed. In [19], the robust
controller for CT nonlinear systems with input constraints
was designed by using reinforcement-learning (RL)/ADP
approach. A suitable value function was selected to cope
with the constrained input and the matched perturbation. For
systems with unmatched disturbances, in [18], a robust con-
trol approach was proposed for nonlinear affine systems via
ADP. By constructing an auxiliary system and a modified
value function, the robust stabilization problem was converted
into an optimal regulation problem. In [20], a robust control
approach was proposed to deal with the general uncertainties.
Through system transformation, an optimal controller of the
nominal system was designed to stabilize the original system.
Moreover, the uniform ultimate boundedness (UUB) was ana-
lyzed for both the nominal plant and the original uncertain
system. However, the aforementioned robust control strategies
were proposed based on the time-triggered mechanism with
heavy computational and communication burden since they
require data transmission at every sampling instant.

Different from time-triggered control schemes, the event-
triggered control (ETC) updates system states and executes
with a proper triggering condition; thus, it requires less sam-
pling instants and less computational and communication
resources [21], [22]. Thus, the ADP-based ETC (ADPETC)

2168-2267 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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has become a hot research topic recently. In [25], the event-
triggered neurodynamic programming with an actor-critic
(AC) framework was applied to acquire an optimal controller
for DT nonlinear systems. In [23], the decentralized trajectory
tracking control problem for modular reconfigurable robots
was investigated by using the event-triggered method. In [16],
a robust ETC (RETC) strategy for uncertain nonlinear CT
systems with constrained input was proposed by using an
adaptive critic structure. In [24], a decentralized ETC approach
was presented for CT nonlinear interconnected systems. In
addition, ADPETC methods were applied to network control
systems [26] and power systems [27]. It should be noticed
that the controllers developed in aforementioned works were
updated at the triggering moments, hence, the computational
and communication burden are alleviated.

In the aforementioned literature, single controllers with cen-
tralized control structure are employed to drive the systems
that are not sufficiently large scale and complex. However,
for complex and large-scale systems, such as communica-
tion networks, power systems, and networked control systems,
multiple controllers, which can be regarded as multiplay-
ers, are necessarily required to perform satisfactory control
performance [28], [29]. The optimal control problem of multi-
player systems can be regarded as a nonzero-sum game, which
presents both competitive and cooperative relationships, and its
objective is to generate a set of control policies to approach
a Nash equilibrium, which not only minimize the value func-
tion for each player but also guarantee the system to be stable.
In [30], the game theory and the optimal control theory were
integrated to address the DT multiplayer nonzero-sum game
(MNSG) problem with the AC structure. The policy iteration
algorithm was adopted to acquire a series of control laws to
minimize the value function for each player. For CT MNSG
problems, in [31], an ADPETC scheme was developed. The
value function and the control strategy of each player were
approximated by a citric neural network (NN).

It is worth pointing out that most of the existing results
are developed for nominal multiplayer systems only. However,
multiplayer systems are large scale, which indicates that
their mathematical models are difficult to establish. Even if
the mathematical model is obtained, dynamical uncertainties
inevitably exist. Moreover, due to the physical characteristics
of the actuator, the amplitude of its input or output is usually
limited to result in a decreased execution ability. Consequently,
the control performance may be reduced and even the system
stability may get compromised. To the best of our knowl-
edge, input constraints and system uncertainties have not been
considered simultaneously in previous works. In addition, the
existing time-triggered control approaches require plenty of
computational and communication resources since the con-
trollers are updated at every sampling instant. Based on the
above discussion, it is urgent to investigate the robust con-
trol problem of multiplayer systems with input constraints and
dynamical uncertainties based on the event-triggered mecha-
nism. The main challenges are as follows: 1) a suitable value
function needs to be constructed for each player to deal with
input constraints and dynamical uncertainties; 2) the coupled
Hamilton—Jacobi (HJ) equation is necessary but difficult to
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solve to obtain the Nash equilibrium; and 3) to reduce the com-
putational and communication burdens, an event-triggering
condition, which is suitable for multiple controllers, needs to
be designed. These motivate our research.

To tackle this problem, an ADP-based RETC approach is
presented. To begin with, an NN-based identifier is established
to estimate the unknown system dynamics. Then, critic NNs
are constructed to approximate the solution of HJ equation
of each player, and the experience replay (ER) technique is
adopted to remove the persistence of excitation (PE) condition.
Moreover, a novel event-triggering condition is derived based
on Lyapunov’s direct method. Consequently, the developed
ADP-based RETC approach reduces the computational and
communication burden in contrast to time-triggered ADP-
based methods. The novelties and contributions of this article
are presented as follows.

1) Different from existing methods [16], [33], which
addressed the robust control problem for nonlinear
systems with single controller only, this article develops
an ADP-based RETC approach for multiplayer nonlinear
systems. By system transformation and designing a mod-
ified nonquadratic value function for each player, the
robust stabilization problem is converted to a constrained
optimal control problem.

2) Unlike existing results [29], [35], which developed time-
triggered control methods for multiplayer systems, this
article investigates the MNSG problem with the event-
triggered mechanism. It reduces the computational and
communication burden in two aspects, that is: a) the
developed robust controllers are updated at triggering
moments and b) the value function of each player is
approximated by critic NN.

3) An NN-based identifier is established to estimate
the unknown system dynamics by adopting the mea-
sured system data. Moreover, the ER method, which
removes the PE condition, is employed to design novel
weight updating laws. Furthermore, under a new event-
triggering condition, the critic NN weight estimate error
dynamics and the multiplayer system are both guaran-
teed to be UUB.

The remainder of this article is organized as follows. In
Section II, the problem statement is presented. In Section III,
the unknown dynamics is reconstructed by the NN-based iden-
tifier, and the ADP-based RETC method is designed. Then,
the NN implementation and the stability analysis are given.
Section IV provides simulation results of the developed control
method. In Section V, corresponding conclusions are given.

II. PROBLEM STATEMENT
Consider the unknown multiplayer CT nonlinear systems
with uncertainties as
N
x(1) = F(x(®) + Z Gi(x(0)) (uj(0) + Aj(x(1))) (1

j=1

where x(t) € R" is the system state, u;(t) =
[ujl,ujz,...,ujmj]-r e R™ is _the control input of the jth
player and satisfies | < upe,x = 1,2,...,m;, where
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jc > 0 is the bound, A;(x(f)) € R" represents the norm-
bounded uncertainty, || A;(x)|| < na(x) with nj(x) is a known
positive function, 7;(0) = 0, and N is the number of con-
trollers. F(x) € R" and Gj(x) € R"*" are unknown nonlinear
system functions. Assuming that 7 (x) and G;j(x) are Lipschitz
continuous on a compact set 2 with F(0) = 0.

The nominal system corresponding to system (1) can be
given as

N
i) = Fx@®) + Y Gilx(t)u(z).

j=1

2

Denote u—; = {u; : j = 1,2,...,N,j # i} as the supple-
mentary set of player i. The value function for each player is
defined as

0 N
Vi) = / £ 1 (V) + Cix(v), wi(v), u_i(v)) |dv
t j:1

i=1,2,....N 3)

where & is a positive constant, C;(x(v), u;(v), u—;(v))
xTQix + Wi(Uns) > 0 is the utility function, where Q;
R™" is a symmetric positive-definite matrix and Ups
[u1,...,unr]. In order to cope with the optimal control for
systems with constraints, inspired by [16] and [39], W;(Un\)
is chosen as

N o
Wity) =23 / ' 6_T<‘I'j_ls>ds
j=1 7"

where 8(-) € R" is a monotonic odd function satis-
fying 18,()] < 1, ¢ 1,2,...,m; with §71() =
[8;1(~), e, 8;1/_1(~)]T, and ¥; = diag{u;1, ..., ﬁjmj} is a diag-
onal matrix that contains all the bounds. In this article,
84(+) is selected as the hyperbolic tangent function, that is,
84(-) = tanh(-).

Definition 1 ([28], [30], [36]): An N -tuple of admissible
policies {uf, ..., u} } is called the Nash equilibrium for the
N -player nonzero-sum game, if for any u; and 1 < i < N,
the following inequality is satisfied:

m ol

“4)

V,-(uT,...,u}",...,uj‘\f)§V,-(u’f,...,u,~,...,u}‘\/). 5)

Denote 9(£2) as a set of admissible control. Assuming (3)
is continuously differentiable, the Hamiltonian of system (2)
is defined as

N
Hilx, Vi), Un) = YV [ FG)+ ) G
j=1
N
+EY i) + Cilx, i uy).

j=1

(6)
Thus, the optimal value function

ol N
Vi) = min / (sanmx(v))+c,»<x<v>,ui<v),u_i(v>))dv
weR(Q) J; =

(7

Authorized licensed use limited to: Guangdong Univ of Tech. Downloaded on January 26,2023 at 02:19:13 UTC from IEEE Xplore. Restrictions apply.

satisfies the HJ equation

min ’Hi(x, VVi ), Z/[N’) =0. (8)

ueR(Q)

Then, the optimal control law for the ith player can be obtained
by differentiating (6) with respect to u; as

uf (x) = arg min H; (x, VVi(x), Z/IN)

weR(RQ)

—%8(%@? (x)W:f(x)). ©

According to (6) and (9), we can obtain

0= 7'[,'()6, VV?(x), Z/{K[)
N
= VT | Fo + ) Gwu
j=1
N
+ £ k) +xTQix + Willdio).
j=1

(10)

It is noticed that the time-triggered HJ equation (10) is solved
with huge amount of transmitted data and results in enormous
computational and communication burden in existing ADP-
based control methods. In the next section, the ADP-based
RETC approach is developed to overcome these shortcomings.

Remark 1: Inspired by [16] and [39], the nonquadratic
form with a monotonic odd function tanh(-) was adopted to
deal with the constrained input. It is noticed that existing
approaches [16] and [39] have considered single controller
only; however, this article aims to develop multiple robust
controllers for multiplayer systems with dynamical uncertain-
ties. Therefore, the designed value function contains the bound
functions, the system states, and the control inputs of all play-
ers, which reflects the uncertainties, the regulation, and the
control simultaneously. By using this modified value function,
the robust stabilization problem is converted to a constrained
optimal control problem.

Remark 2: Different from zero-sum games and full coop-
erative games, the MNSG reflects both competitive and coop-
erative relationships, that is, all players have their individual
control goal and a common goal [28], [31], [40], [41]. For
MNSG, it aims at obtaining a set of control policies to find
the Nash equilibrium, which not only minimize the value func-
tion for each player but also guarantee the system to be stable.
On the one hand, the competition illustrates that each player
expects to achieve their own target, that is, minimize individual
value function (3). However, since the value function of one
player contains the control laws of other players, the realiza-
tion of optimal control goal of one player will affect the control
performance of others. Therefore, there exists competitive rela-
tionship among players. On the other hand, the cooperation
lies in that the control policies generated by all players make
contribution to stabilize the entire system. It implies that each
player cooperates with others to achieve the same goal.
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III. EVENT-TRIGGERED ROBUST CONTROLLER DESIGN
A. Event-Triggered Robust Controller Design

The sequence of triggering instants is defined as {Sy}3° .
where Sy is the ¢th sampling instant. Under the event-
triggered framework, for V¢ € [Sy,Sp+1),9 € N, the
event-triggered error ey (¢) is defined as

(11)

where xp (f) = x(Sp) is the sampled state. The event-triggered
optimal control law is given as

ey () = Xy (1) — x(1)

u; (Xp, 1) = u; (Xp)

1
= —wia(zgf Gcﬂ)vvgk(fcﬁ)), t €[Sy, Sy1). (12)

According to (10),
defined as

the event-triggered HJ equation is

Hi(x, VVIx), Upr (X))

IEEE TRANSACTIONS ON CYBERNETICS

Assumption 2 [21], [22]: The control law is Lipschitz
continuous, that is

|t ) — kG| < Lulles 011 (15)

where £, is a positive constant.

Theorem 1: Consider the unknown multiplayer nonlinear
system (1) with its nominal form (2), and the event-triggered
optimal control law (12). The multiplayer system (1) is guar-
anteed to be UUB only if the following triggering condition:

(1= ™) hmin( Q0] + (6 — G2) T, 12, @)
G2L N

lles ()11 <

lI>

(16)

and the inequality & > G2 hold, where 0 < 7 < 1 and G > 0
are design parameters.
Proof: Select the Lyapunov function candidate as

L7 =V} (x).

2
ller|l

7)

Taking the time derivative of (17) along with the solutions

N of (1), we can obtain
=T [ F@+ ) Gi@u ) ' N N
v =1 Ly =VVIT | F0)+ ) G@ur ) + Y G Ajw)
j=1 j=1
+ &Y 0 ) +xT Qur + Willir () =0 (13) (18)
=1
! According to (10), we can obtain
where Uy, (Xp) = [u](Xg), . .., p (Xg)]. N
0 Eﬁsissb’tmpnon 1 [38]: Gj(x) and VV7(x) are norm-bounded, VV;-*T OF(x) = —& z; nsz(x) B Oix — W (Uj{/ )
/:
|G| < G [VViw| < Vi (14) Ll ,
. - VT Y Gitou ().
where G; and V; are positive constants. =1
) N N
Lr = —£& Z nsz(x) —xTQix — Wi(u* ) + VV?T(X) Z Gi(x) (u;f()_czy) + Aj(x) — u]’»"(x))
J=1 j=1
N | . 1| 2
= =& Y 0@ =T Q= W) + 5 [VVi [P + 3| X0 G0 (1 @) + 410 — 7 )
j=1 j=1
N 1.
< - Zl: UJ‘ZM(X) — XTQ,'X + EVZZ
]:
: ui(Xy) + A1(x) — uj(x) T uy (%) + A1(x) — uj(x)
+ 3 : [G1®), ... GV TG @), ..., G (] :
Upnr (X)) + AN () — uyr(x) wh(X9) + A (x) — (%)
Y 2 T lop 1 o0 Y * (= N
<=6 ) 300 =T Qu+ ST+ SIGIR Y | Go) + Ay — w0
j=1 j=1
N 1. N , N
= =6 ) nh@ —xT Qe+ V2 G2 Y ur ) —r 0|+ G Y n )
j=1 Jj=1 j=1
- _ N 1-
< == ) min( QI + G LuN ler O + (G2 = €) 3 0y = hmin(Q0) 1> + 577 (19)
j=1
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Define G = [G] (%), ...,gN(x)]T[gl (), ..., Gn ()] and it is
assumed to be norm-bounded as |G| < G. Then, (19) is
obtained. If the triggering condition (16) holds and & > G2
is satisfied, then (19), as shown at the bottom of the previous
page becomes

. 1-

Lri = =t hmin(Q) ¥ + V. (20)
Thus, £71 < O as long as the state x lies outside the
compact set

V2

I S
27"Z)Lmin(Qi)

Q= x:xll =

2y

B. System Identification via NN

In this section, an NN is adopted to estimate the
unknown multiplayer system dynamics by utilizing measured
input/output data. Inspired by [34], system (2) is recon-
structed as

N
F=T"x+ w}-qf(x) + Z a)gjogj(x)uj + e(1)
j=1

(22)

where IT € R™", oy € R™", and wg; € R"™" are optimal
NN weight matrices, o7(x) € R”" represents the activation func-
tion, and og;(x) = [ogj1 (Y] x), 06 (¥ i), ..., ogin(WT 01T €
R™™ is a matrix function with momotonically increasing
function ogj(-) € R™ and constant matrix ; € R™",
[ =1,2,...,n g@) € R" is the reconstruction error. Then,
the NN-based identifier is
o N
F=MTT 0%+ o] Oop (%) + Y a(0ogi(H)u + v (23)
j=1
where [1(7) € R"™*", or(t) € R™", and og;(t) € R™" are
the estimates of the corresponding weight matrices, v € R"
is defined as v = 0%, 6 > 0 is a design parameter, and ¥ £

x — x is the identification error. Then, the identification error
dynamics is

=%+ 07 (0% + &/ (o (%)

=

N
+ Z(%;(t)agj@) + wg;(0g;(x) — 0g;(%) >”j
j=1

+ of (o7 (x) — oy (%)) + £(1) — 0% (24)

where TI(f) = T — T1(2), @¢(t) = wyr — &(1), and dg;(1) =
wgj — C:)gj(l).
Assumption 3: The NN reconstruction error &(f) satisfies

eT(De(r) < pr1X & (25)

where p; is a positive constant.
Assumption 4: The optimal NN weights are norm-bounded,

that is
lorll < @y, llog;ll < og; (26)

where @y and @g; are positive constants.
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Theorem 2: Consider the  nominal system  (2),
Assumptions 3 and 4, and the reconstructed system
dynamics (23). The identification error X will reach zero if
NN weights @), wy(t), and og;(t) are updated by

AT

() = Eui% 27)
wr(t) = Eror (R (28)
Cbgj(t) = EgjO'gj(fC)uijT 29)

where E,, &y, and Eg; are symmetric positive-definite
matrices.

Proof: The proof of Theorem 2 has been provided in
[34, Th. 3.1], so the detail is omitted here.

According to Theorem 2, system (2) is expressed by
N
i=T"x+ dror(x) + Z é)gjogj(x)uj
j=1

(30)

where I1, @y, and @g; are converged values of corresponding
weights. Then, from (2) and (30), we have

F) =M x+dpop), Gix) = dgogix). (1)

|

Remark 3: The designed NN-based identifier learns the

unknown system dynamics offline. Compared with the online

observer, more historical system data are available and used in

the offline learning and the data usage efficiency is improved.

Moreover, the identification error of the NN-based identifier
will be asymptotically stable, rather than UUB [33].

C. Neural Network Implementation

In this section, critic NNs are constructed to approximate the
solutions of event-triggered HJ equations. The optimal value
function V7 (x) is approximated by NN as

V() = 05oe(x) + eci(x) (32)

where w.; € RZ¢ is the ideal weight vector, o.(x) € R%¢ is the
activation function, £, is the number of hidden layer neurons,
and &.;(x) € R is the approximation error. Then, according
to (32), we have

V() = Vo (0w + Ve (x). (33)
The approximate value function is formulated as
Vix) = dfoe(x) (34)
where @; is the estimate of w,;. Similarly, we have
vVix) = Vol 0. (35)

Based on (12) and (33), the event-triggered optimal control
law is

_ I 1 _ _
i(Ty) = —wia(zgf &) Vol Gioer + Vscxxﬁ))).
Based on (35), we have

i1 (Xp) = —%8(%97(@)%5 (»‘cwcbd). (36)
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According to (6) and (36), the approximate Hamiltonian is
H,i (x, Un (Es). C?)ci)
N A
=&Y i@+ Que+ Wil o) )

j=1

N
+ 05 Vo | Fo + Y Gi@iyxs) | £ e (37)

J=1

i

where L?N()_Cﬁ) = [u1(xy), ..., upn(Xy)]. To derive the updat-
ing law of the critic NN, the objective function E.; = %eg—ieci
is minimized by the gradient descent algorithm as

: 1 (3Ea>
Wei = —Q, ~
“ “A+11)2 \ 9
_ OZCT,'
T a+TT)?

N
OLYi+E Y iy () +xT Qix
J=1
+ Wil o)) (38)
where «, > 0 is the learning rate. For the purpose of relaxing
the PE condition, ER technique is adopted. Inspired by [24],

by using the historical system data, a new critic NN weight
tuning rule is designed by

oY N
I3 cli AT 2
Wi = ———————— | @ i + 21 (x)
T a2\ 5;"””
+ X" Qx4+ W, (@\/(%))
Np e Yig N
cli ~T 2
S L A 2 (x(12))
; A+ g;n"M ‘

+ 2T (1) Quxta) + Wi (UnG))

ta €[Sy, Sv+1) (39)

where d € {1,2,...,Np} is tljl\t} index of stored data, and
Yig = Vo (x(ta)) (F(x(ta) + D i Gi(x(ta)itj(Xp)).
Define the weight estimation error as @¢; = @i — @ and

recall @, = —dg;. Inspired by [33], we have
Mo o, P
< T T\ c®i
Wej = —0¢ cDiqu + ‘; ®id¢id wei + H_—mé‘[-]i
Al acPig
Y —¢mia 1a €[Sy, S9+1) (40)
ot 1+ TidTid
where
N
eni = —Veli () | F) + ) Gy (xs)
j=1
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»
\

~ . \
x - Critic Ne\tWOI"k

Vi(z) |: .

N "
Approximate | | Tuning rule !
Hamiltonian (39)

Event generator

V,-(;ir,;) Ty Zero-order | @i(Z9.1)
hold
A,
Event-triggered = %i(Zv) NN-based | & 1 x
S — 35
control law identifier S
Fig. 1. Structure of the ADP-Based RETC method.

N
erig = —Vegx(ta)) | Fe(ta)) + Y Gix(ta))iy(%o)
j=1
Tig
iy = ————
T T,

and &; = (Y;/[1+ YT Yi]).

Remark 4: In the present ADP-based RETC method, the
ER technique uses historical system data to update the network
weights. Compared with traditional methods to relax PE con-
dition, the ER technique is convenient to implement in practice
since the historical system data are easy collected during the
learning process.

Remark 5: Let ¥ = [0:(x(t1)), . .., 0c(x(tA7,))] be the his-
torical data matrix. According to [36], the matrix ¥ requires
to include enough linearly independent elements such that
rank(X) = L..

Remark 6: According to (36), we find that the designed
event-triggered optimal controller of each player relies on
the overall system state. Therefore, the developed ADP-based
RETC approach is a kind of centralized control method.

Based on the above discussion, the structure of the ADP-
based RETC method is shown in Fig. 1.

D. Stability Analysis

In this section, the stability of the multiplayer system (2) is
demonstrated by using the Lyapunov stability theorem. Before
proving, some assumptions, which were used in [16], [32],
[34], and [42]-[44], are provided.

Assumption 5 [32], [34], [43], [44]: wci, Voc(x), Veci(x),
and epg; are norm-bounded, that is

lweill < @ci, Vo) < 6c
Ve < &ci, llenill < &mi

where @, 0., £, and &p; are positive constants.
Assumption 6 [16], [42]: §(-) is Lipschitz continuous, that is

18(¢1) — 8l < Lsligr — &2l

where L5 is a positive constant, and ¢; and ¢ are m-
dimensional vectors

Theorem 3: Consider the unknown multiplayer nonlinear
system (1) with the nominal form (2), the event-triggered
approximate optimal control law (36), and the critic NN weight
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updating law (39). Then, both the multiplayer system (2) and obtain
the critic NN weight estimation error @,; are UUB when the

2
event-triggering condition i (xy) — u;" (x) H

a2 > (E SN 3@+ (1 - rz)kmm(Qi)llxllz) = (aj(xﬁ) - u;(fcﬁ)) + (u;(xg) - u;f(x)) I?
4 1 2
N1+ 5:)L2 i) — o)
2 Jler|? (41 Nty — ol
o + (1 + —2) |4 Go) — )|
and the inequality

- Y 1 ~ _
(1+ G Wil>£3G757 = 5+ BNWIPLGH (2 oy +23)

o (42)
N T
2imin (@107 + L5 @ig @)
imin Z id id + ( ﬂ2>‘c3”el9”2 (48)
hold, where 8 > 0 is a design parameter.
Proof: Select the Lyapunov function candidate as where

L= £1+£2+£z

—ZV*<x>+ZV*<xﬁ)+ Zw @i (43)

Jis) — |

N —)

Case 1 (Event Is Not Trlggered): Taking the time derivative 1 T - 2
of (43) and utilizing system (2), we have - ‘I’j5<§gj (x9) Vo, (J_Cﬁ)é)c]) H
SR Y S G o < L1122 GT Go) (Vo o)y + Ve (i)
L= | VWV F@+ ) GiwiyEs) (44) = gV Es 1155 o) Ve o)wq T Veqxn
— — . - A2
. = — G o)V )|
Ly = “3) Lwr2laTaalPiesT e s L
% No = 211223 6T G || Vol Go)dg + Ve )|
Ly ="| —aal| @0 + 3 @], | 1 -
2,252 =20~ |12 4 22
= = = SIWIPL3G (32 oy + 2). (49)
occa) oew ; Pig 4 According to (47) and (48), we have
S e+ Y ey | (@6)
1+ S+ YT
- N N
According to (10), we can obtain (47), as shown at the L < Z —£ anzM(x) —xTQix —i—./\/_cchT)gl
bottom of the page. By using Young’s inequality, we further i=1 j=1 i=

N N N N N
—E ) 00 —xT Q= WiUx) | = Do VVIT® D Gowr ) + > VVIT@) Y Gy (xs)

j=1 i=1 Jj=1 i=1 j=1

o8

Il
<N

N N
—& D 0l = Qux = WiUR) | + [VV@ + -+ + YV W] Y G (i) — i )

N

i=1 j=1 j=1
N N 1 T
<D € 2@ = Q= WiUy) | + S [VVIC) + -+ VYR @] [VVI) + -+ V)]
i=1 j=1
[ G — i T B () — uF ()
+ 3 : [G1(x), ..., GO [G1(), - .., Gn ()] :
i (p) — 0, (x) iw(fc@) — uw(x)

sgj fu(0) — 3T Qux +—ZH% Wi + Ve | + 567 ZHM,(X&)—M(X)H

(¢
2

[l\Aﬁz

—
—

[l\Aﬁz
Mz

£ nh) —aTQux +Narzz@3i+/vzé§i+%g‘zzua,-@ﬁ)—u;(x)\)z @)
i=1 i=1 =1

I
_
I
_

J
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1 2\ 32 2N 252( =211~ 112 , =2 Let
+ ;(1+8)28 Y 1w12G (o2 oy + 22) 1 v
— .
- h =3 (1480)0 L IwirLigie
+ NZSCl-i- N92<1+ﬂ2)£2||eﬂ|| (50) N = (N Ly N
(07
+ NGEY o+ =D Z + N
Apply the inequality ATB < ATA/2 + B"B/2 to the last two i=1 i=l =
terms of (46), we have Then, (54) becomes
N N
Y il Pieni _ en o L3 =(1= ) Amin( QI = & Y 0y ()
ansz<Z C”Tq>q>w = min (& Nim
; 1+T-TTZ' T4 2 ci i=1 j—l
i=1 [ i=1
2 2 2 2 2
n Z % T 51) - —NG <1+ ﬁz)c llesll ler Amin (Q9) 1]
1
N Np
N Np T N ND 1
a0, Pid e N, = Y| s 0chimin | 2]+ D@,
T OF @i ®dL i chimin | PiP; idPiq
§d=11+TiTTi id ) ;; i Pid P g Pci = 2 =
N N,
“ ST 52 — (14 PP £G62 |1l + 2
?ZngidgHid' (52) 4 i sY;0¢ ci 1-
i=1 d=1

(55)
Then, according to (51) and (52), we can obtain .
Hence, under conditions (41) and (42), L < 0 if @ or x

Nop lies outside the compact set (56), as shown at the bottom of
Ly<—— Zx,mm Q0] + Y Dig®; | el the page or
i=1 d=1
N Q= lxll < \/ } (57)
n ac(Np + 1) 25[211 (53) { Z 1)‘-mm(Q )
2 i=1 Case 2 (Event Is Triggered): According to (43), we can
obtain
Combining (45), (50), and (53), we obtain
AL®) = AL (1) + ALy (D) + AL3(D). (58)
N .
From case 1, we have £ < 0 for all ¢ € [Sy, Sp+1). Then, we
L= Z —£ Z M (¥) — X TQux | + Ne? Z @ei further obtain
i=1 j—l
A — * _ * <
NS () £ = 255 - LS =
B i=1 i=1
N
N _ _
1 5 50 _21 ~ ALy (1) = A - ' < - S
+ (14 P)E I PEG o, 2(1) ; F@o+1) ; F@9) <~ (lleg+1(Sa)I)
j=1
N
N 1 ~T - - -
1 2\ 52 2 25222 AL (1) = = i (X9 41)Dci(X41)
+ ;(1+8Y)g anjn £3G7e 2 ; “
Np _
_ <
- Zkzmm @0 + 3 @] |l Z“’“ So+))@ai((S5.,1)) | <0
i=1 d=1
0o Np + 1) N where w (-) is a class-l§ function, and e19+'1(S§) = )'cI;?L] —Xy.
4 LD Z g%ﬁ. (54) From the above analysis, we know that £ < 0 is satisfied at
i—1 the triggering instant. The proof is completed. |
- . 4x
Qo = { @ci © lldill < (56)

2acimin (@i + L4 @u®ly) - (1+62) G2 WiIPL3G] 52
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E. Exclusion of the Zeno Behavior

In this section, we will demonstrate that the Zeno behavior
will not occur.
Assumption 7: F(x) satisfies

IFN < Zrlixll (59)

where Zy is a positive constant.

Theorem 4: Considering the unknown multiplayer nonlin-
ear system (1) with the nominal form (2) and the event-
triggered approximate optimal control law (36), the minimal
intersampling time Atpni, has a lower bound given by

lles |l

B >>0

where Z; and B are positive constants.
Proof: Taking the time derivative of the event-triggered error
ey (1), we can obtain

1
Afmin > Z 1n<1 + (60)

e (1) = x() — X9 (1) = (1), t € [S9, Sp41).  (61)

Substituting (2) into (61), we have
llesll = llxll
N
= |70+ 3 Gooae)|
j=1

< Zrlxll + Zgn
< Zrllxy +egll + Zgn

< Zrllesll + Z¢llxs |l + Zon (62)

where Zg, = ij\zfl g‘jaj. According to [23, Th. 4], we have

Zrllxsll + Zen _Sy)—
leoll = ZE o= (B0 ) (63)

for all t € [Sy, Sp+1). According to (63), it indicates that the
v'th intersampling time satisfies

lles |l

B )>O

where B = . . It means that Aty = min{Sy4+; —
Sy} > 0 in (60). This ends the proof. [ |

Remark 7: It is noticed that the event-triggering condi-
tion (16) in Theorem 1 and the event-triggering condition (41)
in Theorem 3 are different. The event-triggering condition (16)
is developed for original system (1), which shows the mul-
tiplayer system (1) is guaranteed to be UUB under this
condition. However, the event-triggering condition (41) is
designed for the nominal system (2), which proves that the
multiplayer system (2) and the critic NN weight estimation
errors are both UUB if the condition (41) holds.

1
S — Sy > —1In| 1
D41 a_zf n( +

Zrll X5 1+ Zgn
Z

IV. SIMULATION

In this section, two simulation examples are employed
to verify the effectiveness of the present ADP-based RETC
scheme.
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Fig. 2. Curves of identification errors.
A. Example 1
Considering the uncertain CT nonlinear system as
X =F(x) + Gi1(x0)(u1 + pixisin(xz))
+ G2(x) (u2 + p2x1c0s(x2)) (64)
where
— X2
F) = |:—0.5x1 — O.sz(l + (cos(2x1) + 2)2)}

0 0
Gi1(x) = |:cos(2x1) + 2]’ Ga(x) = [sin(4x%) + 2}

x = [xl,xz]T, p1 and pp are unknown parameters and cho-
sen randomly within [—(ﬁ/Z), (ﬁ/Z)]. For simplicity, we
choose p; = p» = 1, § = 10, and niy(x) = nam(x) = ||x||
in this simulation. Then, the nominal system of (64) is given
as ¥ = F(x) + G1(®)u; + Go(x)up. Assume the control input
constraints be u#; = 0.3 and uy = 0.2.

The initial weights of NN-based identifier [1(r), @y(r),
g1 (1), and &g (f) are chosen randomly within [—1, 1]. The
activation functions oy(-) and og;(-) are chosen as tanh(-),
respectively. i; is selected randomly within [—1, 1] and
remains unchanged. Other parameters of NN-based iden-
tifer are selected as E, = &f Eg1 Ego
[0.01, 0.001; 0.001, 0.01] and O 1. The activation func-
tion and the learning rate of critic NNs are selected as
o.(x) = [x%,xlxz,x%]T and o, = 10, respectively. The initial
weights of the critic NN are selected randomly within [—1, 1].
Let xo = [1, =117, Q; =25h, Q» =30h, B =1, £, = 1.4,
and Np = 8.

Simulation results are depicted in Figs. 2-9. Fig. 2 illus-
trates that the identification errors of the NN-based identifer
converge to equilibrium after + = 75 s. It means that the
NN-based identifier can identify the unknown dynamics of
nominal system successfully. In Fig. 3(a), we can observe
that nominal system states reach a small region of zero after
30 s. The ETC curves are displayed in Fig. 3(b). As illus-
trated in Fig. 3(b), the control inputs are piecewise signals
and satisfy u; < u; (i = 1,2), which means that con-
trol input signals vary within the control constraints. The
weight updating curves of critic NNs are displayed in Fig. 4,
which converge to @, = [—0.466, —0.456, 0.478]T and
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Fig. 5. Evolution of triggering condition.

x = [—0.689, —1.034, —0.265]T, respectively. The evolu-
tion of the triggering condition is displayed in Fig. 5, where we
can see that the event-triggered error ey (f) and the threshold er
converge to a small region of equilibrium when time increases.
Fig. 6 shows the sampling period of the ETC law. We can find
that the sampling periods are multiples of 0.05 s. Comparison
results on the numbers of samples between the ADP-based
RETC method and the time-triggered one are shown in Fig. 7.
It is clear that the event-triggered controller only updates 455
times, but the time-triggered controller requires 800 times.
Hence, the ADP-based RETC method reduces the compu-
tational and communication burden. Fig. 8 shows that the
ADP-based RETC method can ensure the system (64) to be
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stable. Fig. 9 displays the value functions of two players. We
can find that the value functions converge to different val-
ues, which means that two players achieve their individual
objectives.

Remark 8: The activation functions of all players are
selected as o.(x) = [x%,xlxz,x%]T. In fact, selecting activa-
tion function is a challenging issue since it affects the control
performance directly. In this article, we select o.(x) by “trial
and error” with repeated simulations.

Remark 9: The design parameter £, affects event-triggered
controller design. On the one hand, a large £, will lead to
a small triggering threshold e7; thus, more frequent control
updating and computation to maintain the control performance
and system stability. On the other hand, if the selected £,
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is too small, the controllers will update less frequently but
may lead to system instability. Therefore, we need to select
an appropriate £, by “trial and error” with repeated simula-
tions to guarantee the system to be stable and to reduce the
computational and communication burden.

B. Example 2
Consider the torsional pendulum system [37] expressed by
dx
— =¥+
dr Xui

dx
dt
where x is the angle, # is the angular velocity, M = 1/3 kg
is the mass, [, = 2/3 m is the length of the pendulum bar,
J = (4/3)ML kg-m? is the rotary inertia, f; = 0.2 is the
frictional factor, and g = 9.8 m/s? is the gravity acceleration.
By replacing x and # with x; and x;, the torsional pendulum
system with uncertainties is expressed by

aw .
\77 = uy — Mglpsin(x) — fa——- + Vu3

k= F() + G0 (1 + prasin (x)eos?(xn))
+ Go) (12 + paxacos’ (x1)sin’ (12)

+ G300 (13 +paxicos’C)sin’ () (65)

where
F) 2 g =7
X) = . k) =
——N‘[jgl" sin(xp) — %xz ! —%xl

0
gz=[L}ga=[§}
J J

P1, P2, and p3 are selected randomly within [—2, 2]. According
to (65), the nominal system is presented as x = F(x) +
G1®u; + Go(X)up + G3(x)uz. In this simulation, let & = 10,
Q=h, Q2=2h, Q% =15hL, =1L, =1 Np =38,
pi =p2=p3 =1L nqu®x = mux) = mux) =[x,
and u; = 0.8,u» = 0.6,u3 = 0.5. The initial weights of
the NN-based identifier are selected randomly within [—1, 1],
the activation functions or(-) and og;(-) are the same as
those of Example 1, E, = Ef = Eg; = Eg; = Eg3 =
[0.01, 0.001; 0.001, 0.01] and 6 = 0.5.

Simulation results are depicted in Figs. 10-17. The iden-
tification errors are displayed in Fig. 10, where we find that
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identification errors reach zero after 80 s. Then, the ADP-based
RETC approach is applied to the system (65). Fig. 11(a) shows
the nominal system states converge to a small region of zero
with the developed control inputs displayed in Fig. 11(b). We
can observe that control inputs are piecewise signals and sat-
isfy u; < u; (i = 1,2,3), which means that the control laws
are limited within the constraints. Fig. 12 reveals that the critic
NN weights converge to &.1 = [2.745, 0.847, 377417, & =
[2.872,1.342,3.453]T, and & = [2.031, —1.060, 5.645]",
respectively. Fig. 13 shows that the event-triggered error ey ()
and the threshold er converge to a small region of equilib-
rium after + = 30 s. The sampling period is illustrated in Fig.
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14, where the minimum sampling period is 0.05 s. The sam-
ples number illustrated in Fig. 15 indicates that the ADP-based
RETC method greatly reduces the updating times in contrast to
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the time-triggered method. Therefore, the computational and
communication burden are all reduced. Fig. 16 demonstrates
that the developed controller can guarantee the system (65) to
be stable. The convergence of three player’s value functions
is shown in Fig. 17, where all of them converge to different
values. From the simulation results, we can conclude that the
developed ADP-based RETC method not only achieves the
individual objective of each player but also guarantee the sta-
bility of the torsional pendulum system with input constraints
and dynamical uncertainties.

V. CONCLUSION

In this article, the MNSG problem for unknown nonlin-
ear CT systems with uncertainties and constrained inputs is
addressed by using the ADP-based RETC method. An NN-
based identifier is established to rebuild the system dynamics
by utilizing the measured system data. Then, the approximated
event-triggered optimal control for each player is obtained by
the solution of HJ equation with the critic NN. By introduc-
ing the ER technique, the PE condition is relaxed. In order
to reduce computational and communication burden, a new
triggering condition for the MNSG problem is presented with-
out control information. Moreover, the UUB stability of the
critic NN weight estimate error dynamics and the multiplayer
system are demonstrated by the Lyapunov stability theorem.
Finally, the effectiveness of the ADP-based RETC approach
is validated by two simulation examples. The main innova-
tion of this article is on developing a robust stabilization
scheme with a new nonquadratic value function for unknown
multiplayer systems with uncertainties and constrained inputs.
Furthermore, the developed event-triggered robust controllers
are updated aperiodically such that the computational and
communication burden is alleviated. In our future work, in
order to improve the realizability of this developed approach,
we will try to relax Assumptions 1 and 2 since they are strict in
practice. Moreover, tracking control problems of multiplayer
systems will be considered by using the ADPETC approach,
since the system states have to follow the reference trajectories
in an optimal manner in practice, such as hypersonic aircrafts,
spacecrafts, and robots.
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Event-Triggered Control of Discrete-Time
Zero-Sum Games via Deterministic Policy
Gradient Adaptive Dynamic Programming

Yongwei Zhang™', Bo Zhao

Abstract—In order to address zero-sum game problems for
discrete-time (DT) nonlinear systems, this article develops a novel
event-triggered control (ETC) approach based on the determin-
istic policy gradient (PG) adaptive dynamic programming (ADP)
algorithm. By adopting the input and output data, the proposed
ETC method updates the control law and the disturbance law
with a gradient descent algorithm. Compared with the conven-
tional PG ADP-based control scheme, the present controller is
updated aperiodically to reduce the computational and commu-
nication burden. Then, the actor-critic-disturbance framework is
adopted to obtain the optimal control law and the worst dis-
turbance law, which guarantee the input-to-state stability of the
closed-loop system. Moreover, a novel neural network weight
updating law which guarantees the uniform ultimate bound-
edness of weight estimation errors is provided based on the
experience replay technique. Finally, the validity of the present
method is verified by simulation of two DT nonlinear systems.

Index Terms—Adaptive dynamic programming (ADP), event-
triggered control (ETC), neural networks (NNs), policy gradient
(PG), zero-sum games (ZSGs).

I. INTRODUCTION

PTIMAL feedback control, which gains extensive
research in control theory and engineering, aims to
design a feedback controller that minimizes the user-defined
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performance index function [1], [2]. In practice, the occurrence
of external disturbance is ineluctable, which undermines the
control performance. The Ho, control which is taken as a two-
player zero-sum game (ZSG) is widely studied to maintain
a satisfactory control performance in the existence of exter-
nal disturbance [3], [4]. For nonlinear systems, one needs to
obtain the solution of the Hamilton—Jacobi—Isaacs (HJI) equa-
tion which is tough to solve due to its inherent nonlinearity
when dealing with ZSG problems [5].

Adaptive dynamic programming (ADP), which was put
forward by Werbos [6], is competitive to solve the non-
linear HJI equation and has been applied to solve optimal
control problems for discrete-time (DT) systems [7]-[12]
and continuous-time (CT) systems [13]-[19] with trajectory
tracking [20]-[22], fault tolerance [23], and robust stabiliza-
tion [24]. For ZSG problems, several ADP-based optimal
control methods have been proposed [25]-[27]. In [25], the
ZSG problem for DT systems was considered by develop-
ing a novel iterative ADP algorithm. The theoretical analysis
illustrated that the upper and lower iterative cost functions con-
verge to the optimal solution of the ZSG, and the existence
condition of the saddle-point equilibrium was not demanded.
In [26], a globalized dual heuristic programming (GDHP) was
presented to solve the HJI equation for unknown DT non-
linear systems. Three neural networks (NNs) were built to
obtain the approximate solution of the HJI equation. In [27],
the ZSG problem was addressed through the modified pol-
icy iteration (PI) algorithm and the actor-critic-disturbance
framework.

It is worth noting that the aforementioned controllers are
periodically updated with a mass of transmitted data, which
leads to heavy computational and communication burden. In
order to break this bottleneck, the event-triggered control
(ETC), which executes the control aperiodically, is investi-
gated in the control community [28]-[34]. The ETC approach
updates the control policy only when the error between the
actual system state and the sampled system state violates the
triggering condition. In [35], the neuro-dynamic programming-
based ETC approach was developed to cope with fixed final
time optimal control problems for DT nonlinear systems. The
event-triggering condition was determined by the actor NN
weights and the system states. Then, the control policy and
all the NN weights were tuned aperiodically to reduce the
computational burden. In [36], the optimal control problem for
CT nonlinear systems with saturating actuators was tackled by

2168-2216 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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the ADP-based ETC method. Based on the Lyapunov stabil-
ity theorem, the triggering condition was derived considering
the control constraints. The NN weights and the control law
were tuned at the triggering moments to reduce the transmis-
sion cost. In [37], an ADP-based ETC scheme was presented
to deal with the CT ZSG problem. In order to save compu-
tational resources, the controllers were renewed at triggering
moments only. From the above discussions, the event-based
control updates the control input at triggering instants only,
which reduces the frequency of controller updating such that
the computational and communication resources are econo-
mized. In practice, the external disturbance is unavoidable and
the computational resource should be utilized with a higher
efficiency. However, to our best knowledge, most of existing
methods for DT ZSG problems are time triggered, where the
controller executes periodically and consumes massive com-
putational resources. Moreover, the training of the model NN
which rebuilds the unknown system dynamics increases the
computational burden. Hence, it is significant to develop a
data-based ETC method to address the ZSG problem for DT
systems with unknown dynamics, which motivates this work.

As it is well known, policy gradient (PG), which is a pow-
erful approach to cope with model-free control problems, has
been developed in the reinforcement learning (RL) and ADP
community. In [38], Google DeepMind investigated the deter-
ministic PG (DPG) algorithm which acts in continuous spaces.
Compared with the stochastic PG algorithm (SPG), the DPG
algorithm updates the control law in the direction of the value
function gradient. In [39], the policy gradient ADP (PGADP)
algorithm was proposed to cope with the model-free control
problem for DT nonlinear systems. It is an off-policy learning
method and the controller was renovated by the gradient of
the Q-function with respect to the action. Inspired by existing
works [38], [39], the DPG-based ETC (DPGETC) approach is
developed to handle ZSG problems for DT nonlinear systems.
The contributions of our work are outlined as follows.

1) A novel data-based DPGETC scheme is developed to
extend the PG-based control approach to handle the ZSG
problem. Different from existing methods [37], [41], the
model NN is not needed to establish and the designed
controller is updated aperiodically and trained by system
data.

2) A triggering condition is deduced to ensure the input-
to-state stability (ISS) of the closed-loop system, the
control law and the disturbance law are tuned aperiodi-
cally at triggering instants only to save the computational
and communication resources.

3) The actor-critic-disturbance structure is established to
approximate the control law, the Q-function, and the dis-
turbance law, respectively. Furthermore, by employing
the experience replay (ER) technique, new NN weight
updating laws are designed to guarantee the uniform
ultimate boundedness (UUB) of the weight estimation
errors.

The remainder of this article is organized as follows.
In Section II, the problem statement for two-player ZSGs
is given. In Section III, the actor-critic-disturbance struc-
ture is established to design the event-triggered controller. In
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Section IV, the ISS of the closed-loop system is analyzed. In
Section V, the convergence analysis of the NN weight esti-
mation errors is provided. In Section VI, two examples are
given to verify the effectiveness of the developed method. In
Section VII, concluding remark is given.

Notations: The real and non-negative real numbers are
denoted as R and Rxq, respectively. €2 is a compact set of
R". N = {0,1,2,...,} denotes the set of all non-negative
integers. .71 o 7 represents the composition function of .7
and 9>, i.e., 710 72(-) = T1(T2(+)). L, represents the iden-
tity function, i.e., Zy(s) = s for all s € R>¢. .#, represents
pth data in the historical data set, where ./ is a real number
or a real matrix.

II. PROBLEM STATEMENT

Consider the nonaffine nonlinear systems given by
w1 =F @ undp), 1=0,1,2,... (1)

where z; € R” is the system state, u; € R™ is the control input,
d; € R® is the external disturbance, and .% (-) is the unknown
nonlinear system function. In ZSG, u, and d; can be viewed
as two players.

Assumption 1: System (1) is controllable and observable.
F (21, us, dy) is a Lipschitz continuous on a set € in R” con-
taining the origin, ie., |.Z ()l < bsllzll, where by is a
Lipschitz constant.

Remark 1: If Assumption 1 holds, there exist feedback con-
trol laws u; = w(z) and d; = v(z) with w : R" — R™
and v : R" — RS to stabilize the system asymptotically
[29], [40].

Define a monotonically increasing subsequence of time
instants {£;}7° as sampling instants. Under the event-triggering
architecture, the feedback control law and the disturbance law
are formulated as

Uy = w(zti)

dr = v(z,,.).
The event-triggering error is given by

& =2 )
fort; <t <ty withi=0,1,2,..., where z; is the current

state and z; is the sampled state. Then, system (1) can be
rewritten as

241 = F (2, @ (& + 20), v(& + 7). 3

The performance index function for system (1) is defined as

J(@) =Y Cla, @ (E+u), v+ ) )

I=t
where C(, -, -) is the utility function and defined as
Clz @ (21), v(z))
=20z + @ ()R (z,) — Bu (z)v(z) (5
where Q € R™" and R € R™™ are positive definite matri-

ces, and B is a constant describing the precribed level of
disturbance attenuation.
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Fig. 1. Diagram of the actor-critic-disturbance framework.

According to Bellman’s principle of optimality, the optimal
performance index function satisfies

T = nzin) n(lax){c(z“ @ (24). v(z)) + T* @) }-

Let U and D be policy spaces of two players, respectively.
For DT ZSG problems, our goal is to find an optimal con-
trol policy @w*(z;) and a worst disturbance policy v*(z;)
such that C(z, w*(z,), v(z) = Clz, T*(2), v*(z)) =
Clzr, @ (z1), v*(z)) [25], [26].

In order to develop the DPGETC control scheme, the action-
state function, i.e., the so-called Q-function, is defined as [39]

o0
QGrah) =CGna,h)+ Y Ca o (E+u), v(E+)
I=t+1

(6)

where Q(0,0,0) = 0, a € U, and h € D. Based on (4), (6)
can be rewritten as

Q(Zh a, h) = C(ZZ’ a, h)
+ Q@1, @ (Er1 + 2e41), V(€41 + 241))
=C(za, h) + T (zer1). (N

The optimal Q-function satisfies

Q@ a. ) = minmax{Crah) + TG} ®)

The saddle point solution (& *(zy,), v*(z;;)) should satisty the
following two conditions:

0Q* (Zt: (2 (Zti)’ U(Zli))

3@'(1[,-) =0
0Q* (21, @ (2), v(zn)) _ 0.
Bv(Zt,-)
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Then, the optimal control law and the worst disturbance law
are expressed as

@* (2,) = argmin Q* (z. a. h) ©

v*(z,) = arg max Q*(z, a, h). (10)

It indicates that the optimal control law @ *(z;) and the
worst disturbance law v*(z;) depend on the optimal Q-
function Q*(z;, a, h), but hard to obtain [26]. In the next
section, the DPGETC approach is introduced to conquer this
bottleneck.

III. EVENT-TRIGGERED CONTROLLER DESIGN

In this section, an event-triggered controller is developed
based on PGADP. In order to approximate the control law, the
QO-function and the disturbance law, the actor-critic-disturbance
framework is constructed. It is noticed that the weights of the
action and the disturbance networks are adjusted through the
gradients of the Q-function with respect to action and distur-
bance, respectively. Moreover, an event generator is adopted to
measure the event-triggering error. Once the event is occurred,
the current state z; is sampled as a new sampled state z;,. The
diagram of the actor-critic-disturbance framework is shown in
Fig. 1.

A. Critic Network

The three-layer critic network is established to approxi-
mate the Q-function @(z, a, h). Taking the sampled state z,,
the action a and the disturbance A as the input of the critic
network. Then, we can obtain

Qe ah) = iTo (¥17,) = il (@)

[F.aT, hTT e RO @, = ¥]Z, v, €
RO+m+9xle il e Rl represents the weight vector from the

where 7, =
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hidden-to-output layer, /. denotes the number of nodes in the
hidden layer, and o (-) = tanh(-) is the activation function. The
error function of the critic network is defined as

€ic = @i(ztiv a, h) - C(Zl‘i’ a, h)
- V@i(Zz,-H, wi(Zti-H)a Ui(2z,~+1))

where 0 < y < 1 is a discount factor. The objective function
is given by
.1
Ee =S¢ (11)

By employing the ER technique, the critic NN weight vector
is renovated by

; oE!
A4+l AT
e T _Z“C[ aw’}

where a. > 0 represents the learning rate, and n, denotes the
size of historical data.

12)

B. Action Network

The action network is adopted to approximate the control
policy @ (z;,). Consider the input z;, the output of the action
network is given by

Bi(a) = Wl o (Yz,) = #ilo ().

The involved parameters are defined similarly to the critic
network. Motivated by [38] and_[45], the partial gradient of
the O-function with respect to W}, can be calculated as

Vi Qi = Vi @i (Zz,»)Va@i(Zt,-, a, h) la=di(z,,) -

Therefore, the action network weight vector is tuned by

ny
-2 @V, Qi
p=1

where a, > 0 is the learning rate.

13)

witl = 3l (14)

C. Disturbance Network

Taking the state z; as the input of disturbance network, the
output of the disturbance network is provided as

01’(Zt,-) = \/AVZTU (Y;rztl) = Wd To(®,)

where the parameters are defined analogous to the critic
network. Then, the partial gradient of the Q-function with
respect to W', can be calculated as

V;Vil@i = V;Vil U (Zti)vh(@i(ztia a, h) |h=ﬁ,-(z,l_)-

Then, the disturbance network weight vector is updated by

15)

AH—I ~

w ZadV @,p (16)

where a; > 0 is the learning rate.

According to (13)—(16), the control law and the disturbance
law are updated by using the gradients of the Q-function.
Therefore, the developed control scheme is a kind of the PG
approach [38], [39].
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Remark 2: There are two important frameworks in PG-
based control methods, i.e., DPG and SPG. It is worth
mentioning that the ways of calculating the PG are differ-
ent, i.e., SPG employs both state and action spaces, but DPG
employs state space only. Therefore, the DPG method is more
efficient due to the strategies adopted in controller update are
deterministic, rather than stochastic.

Remark 3: Compared with conventional ADP-based con-
trol approaches, the advantages of the DPG-based control
scheme lie in that:

1) It is a data-based approach and the controller is renewed
by adopting the gradient of the Q-function; therefore, the
system functions are not needed in designing the control
policy;

2) The DPG-based control approach is not only suitable to
affine systems, but also nonaffine systems.

Remark 4: It noticed that traditional ADP-based control
methods abandon incoming data immediately after being used.
It might neglect rich experience and knowledge which can
be used later. Thus, to make full use of system data, the ER
technique is employed to improve the data usage efficiency by
reusing the sampled data and to break the temporal correlation
among historical data.

Remark 5: In RL/ADP, the value function is the expected
return when starting with the state z and following a policy @ .
However, the Q-function is the expected return when starting
with z and the action a, and following the policy w, i.e.,
the information of action a is also required. In this article,
the DPGETC approach is developed based on the Q-function,
where both the control law and the disturbance law are updated
by the corresponding gradients of the Q-function. However,
the corresponding gradients cannot be obtained from the value
function directly. Therefore, it is feasible to use the Q-function
in this article. It is worth noticing that the Q-function and
the value function are both widely used in RL/ADP. Their
selection depends on the specific problem.

IV. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

Before the stability analysis, the following definitions and
assumptions are provided.

Definition 1: A function A : Rs>9 — Rx¢ is a K-function
if it is continuous, strictly increasing and A(0) = 0; it is a
Koo-function if it is a K-function and satisfies A(s) — oo as
s — oo [43].

Definition 2: A function B : R>o xR>9 — R is a KL-
function if, for each fixed + > 0, the function B(-, 1) is a
IC-function, and for each fixed s > 0, the function B(s, -) is
decreasing with B(s,t) — 0 as t — oo [43].

Definition 3: Let ¢ be a KL-function, and ¢ and ¢, be
JIC-functions. For each initial state zop € R”, all u € R™ and
d € R’, system (3) is said to be ISS if the inequality

Izl < ¢ llzoll, ) + @1 @) + p2(d) 7)

holds, where u = sup{|jul| t € N} < oo and d =
sup{||d;]| : t € N} < oo [42].
Definition 4: Let €1, %2, and €3 be K -functions, and y,

and y; be IC-functions. A continuous function ¥ : R"—Rxq
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is referred an ISS-Lyapunov function if the following inequal-
ities:

C1llzell) < P(z) < €2(llz) (18)
and
MNT (2, @ (2 + &), vz + &) — V(z)
< —=C3lzl) + max{ye(IEND, valldd)} — (19)
hold.

Assumption 2: There exists positive constants /1 and />, and
a continuous function ¢ such that
|7 (21, @ (2 + &), vz + ENI < LIEN + Rzl (20)
and
IEN < llzell < & (@) 1)

hold [41].
Lemma 1: Assume €4(-) = €3(¢;, (), then according
to (19), the inequality

V(F (2, (2 +E), v+ &) — V(@)

< =C4(V(z)) + max{y.(I1&), va(lld: D} (22)
holds.
Proof: According to (18), we have
€ (V@) < Nl (23)
Since €3(+) is a Koo-function, we can get
€3(%;' (V@) = (lzl), 24)
By using (24), (19) becomes
V(F (u, @@+ E), v+ &) — V()
= =&3(%3 (V@) + max{ye €N, valdiD). @)

Letting €'4(-) = €¢3(¢; 1(.)). Then, we can get (22). The
proof is completed. |
Lemma 2: Define

Y, =1z : Yz <o)

where ¢ = €' o n~ ! (max{y.(I&1). va(ld: D), n is a Koo-
function. If there exists an integer fop € N such that z;, € 2,
then we have z; € X, 1 > 1.

Proof: Suppose that z;, € X,. Then, we can get ¥(z;,) < 0.
From Lemma 1, we can obtain

T (s @ (21 + &), V(2 + E))) — ¥ (2)
= =Ca((a)) + max{ye(| €, ). va(ldn[)}. @7)

According to the proof of [43, Lemma B.1], we can conclude
that Z; — %4 and Z; — n are K-functions. Then, (27) becomes

(26)

4827

+ max{ye([[& ), va(|di)}
< @a- %4)(7/(5‘0)) + max{yg(H&O )’ yd(”dto ”)}
< (Za = €(@) + max{ye([[& ). va(lds )}
(28)

Since Zy; — n is a K-function and using 1 o %4(0) =
max{ye(|I&), ya(lldi|D)}, we have

Wzi+1) < Za — C4)(©@) +max{ye(|| € ). val|ldn )}
= —%4(0) + no€4(0) + 0 —no%4(0)
+ max{ye([| & ). va(ldi )}
=—(Zg—n) 0C4(0) +0—1noC4(0)
+ max{ye(|E ). va(|di )}
=—Za—mo%s0) +o

=o.

(29)

Hence, we know that z;,41 € X;. By using the mathematical
induction, we have ¥(z;4;) < ¢ for all j € N. This means
that z; € 3, for all # > #y. The proof is completed. |

Theorem 1: Suppose that the system (3) admits an ISS-
Lyapunov function ¥. If there exists a continuous function
¢ satisfies

€ < & ()

then the system (3) is ISS.
Proof: Letting t; = min{t € N: z; € .} < 0o. According
to Lemma 2, we have

V(ze) < ymax{y.(I&D, valldD}) VYi=1

where ¥/(-) = €' o n~' (). Then, we have 10 €4(¥(z)) <
max{ye (&I, va(lld:|)}. When t < 11, we can obtain

max{y.(1€D, va(ld: D} < n o Ca(¥ (@)

Thus, considering (32) and Lemma 1, we have

(30)

€1V

(32)

VT, (@ +E), v+ &))) — V()
< —C4(P(z) + max{y.(1EID, va(lld: D}
=—Za—n) oCa(V(2)) —noCa(V(z))
+ max{y.(1&1), va(ldi}
< —Za—n) o Ca(V(21)-

According to the proof of [41, Th. 1], forall 0 <t <# + 1,
there exists a CL-function €’s such that

Y(z) < €s5(¥(20), 1)

(33)

(34)

holds. According to (31) and (34), we can get (35), shown at
bottom of this page. Hence, we further get

Yz = max{€'s(¥(z0), ), ¥ (max{y. (€1, va(lld: DD}

Nagr1) = Za(Mz)) = Ca( (20)) (36)
Mz) < | max{€s(¥(20), 1), ¥ (max{ye (&, valldDD}, 01 <t <t1+1 (35)
Y(max{y. (&1, va(ld:D}), t>1+1
Authorized licensed use limited to: Guangdong Univ of Tech. Downloaded on January 26,2023 at 02:19:17 UTC from IEEE Xplore. Restrictions apply.
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for all + € N. According to (18), we have

lzell < €7 (P (@)
< ‘Kl_l(max{%5 (P (z0), 1),
y(max{y (1€, ya(ld:HH)).

According to (30), we can further derive that

Izl < €7 (s(V (200, 1))
+ €7 (W max{ye (1€, va(llddD})
<7 (€5(€2(l0l), 1) +ET" oW oy, 0 L ()
+ 67" oy o va(d).
According to (37) and Definition 3, we know that system (1)
is ISS. The proof is completed. [ |
Lemma 3: Consider Assumption 2 and suppose the

system (3) admits an ISS-Lyapunov function. The triggering
condition

(37

1= (i +B)"
Gl <ér=——"77"7—""—1I
&0 = & = —— 5kl
guarantees the system (3) to be ISS.
Proof: Based on (21) and (38), we can get

1—-1 )™t
g < - rhr®
1=+ b)

Hence, we can find a continuous function

by
e

to satisfy the inequality (30) in Theorem 1. Thus, the triggering
condition (38) guarantees that the system (3) to be ISS. The
proof is completed. |

Remark 6: This article studies the ZSG problem for DT
systems, rather than CT systems. In fact, for DT systems,
the intersample time At is greater than 0. By introducing the
event-triggering mechanism, the sampling time interval in DT
systems is always integral multiple of the intersample time
At. Therefore, even if the event is triggered at every sampling
time, the minimal intersample time satisfies tmin = At. Hence,
the Zeno behavior will not happen.

|, (h+h)#1 (38)

b (i) (39)

he(s) (40)

V. CONVERGENCE ANALYSIS OF NN IMPLEMENTATIONS

In this section, the convergence analysis of the NN weights
is provided. Let w{, wj, and w; be the optimal weights of the
critic, the action and the disturbance networks, respectively.
Define the network weight estimation errors as W, = Wi —
wi, wh =Wl —w#, and W, = W, — w*, respectively.
Assumption 3: The activation function o (-), the reconstruc-
tion error of the critic network 8., and the optimal weights w7,

wj; and w} are norm-bounded as

lo Il <&, 18I <&,

*
||Wa ” = Wam,

*
We ” = Wem

Wil = wan

where &, 8¢, Wem, Wam, and wgy, are positive constants.
Theorem 2: Consider the nonlinear system (3), the critic
network, the action network and the disturbance network are
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trained by (12), (14), and (16), respectively. Then, the network
weight estimation errors w., w,, and wy are UUB.
Proof: According to (13) and (15), we have

Vi Qi = 0 (P2 Vo ()Y Aq, (41)

Vi Qi = 0 (@)W Vo (Do) Y] Aq, (42)
Onxrm

where A, = (0Z,/38) = | Inxm |» Aa = (3Z,/30) =
Osscm

Onxs
Omxs |» Vo () = ([90(I)]/8Y) € R*>" for Y € R, and

ISXS
I is an identity matrix. Based on (41) and (42), the network

weight updating laws become

ny

P =l —ac Yo (Dep)el, (43)
p=1
ny
W =W —a, Y o (Pap) W Vo (Dep) Y] Aap  (44)
=1
ny
Wi = —ag Yo (Dap) W Vo (O p) Y] Adp.  (45)
p=1
Select a Lyapunov function candidate as
L=L+L,+Lyg
1 L LT LT
= a—tr{wlCwaj} + tr{wgrw’a} + tr{w’;—wii}. (46)
c
Consider the first term of (46), we have
1 . ) o
AL, = —tr{wg“”w;“ - WCTWC}
dc
1 s
T
= a—ctr W —a. Zelc 0 (Pe,p)
p=1
nr
x | Wl —ac Za(@c P)e’LTp — Wi
p=1
= tr{ALC] + ALc2} “47)
where
ny
AL, =tr —2v"v’;r Z o (CDL.,p)e’Jp
p=1
ny ny
ALy =trda. Z e’c’pGT(CDc‘p) Z o (CDC’p)egp

p=1 p=1

Define ¥,; = vT/éTa (®.) and 6, = YV, — eé. Considering AL
and applying the Cauchy—Schwarz inequality, we can obtain
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ny ny
AL =tr{ -2 ZVVETU (fbc,p)egp ALy = tr ag ZAL,YC,,,VUT(@C’p)ﬁ/éoT(@ml,)
p=1
ny
=] =2 W, +2ch,p i x Z Dy p) WV (e p) Y] Aap
p=1
r ia 2 .
<2 Z“ \yci’p”2 + Z” Weip ”2 T H For AL,1, we can derive that
p=1 p=1 0 .
nr - "
- _ Z” “chi,p ”2 5Tp ‘2 ALal = aulr ;(W; - a(CIDu,p)w’CTVU (Qc',p) Y;.I:pAa’p>
p=1 =
ny . )
<- Z |Weip ”2 + n,82. (48) X (% - o(qDa,p)VA"lch‘T (®c.p) YIPA%P)

Considering the second term AL, we can derive o T T T
— agtr Z(o (@a,p)wlc Vo(@c,p)Yc’pAa,p)
p=1

nr ny
ALy = trd a. Z e’c’paT(QDC,P) Z U(©c,p)€lch '
= o x (0(®ap) Vo (P, Y A0y )
ey (®er) - aanrtr{fvgfvfl}
? S ~iT T 2
= ac Z Weipo ! ( ZSC po 1 ( =a, Z Wy — 0 (Pap)Wl Vo (e p)Ye yAap H
p=1
ny 2 T 2
< 2a, Z ‘yci,pUT(ch,p) +2“C Z‘SC’PUT((D — Ga ZH al’ W Vo (q:’c,P)Yc,pAa»p ’
p=1 p=1
“9) - aanrllfva I
n,
Let Wy = [‘yci,lv cees "chi,n,]a OcM = - ~ T T 2
[UT(CDc,l), e, UT(q)c,n,)]: and 5M — [80’1’ o 80,)1,4], < aq Zl O’(@a,p)wc Vo ((Dc,p) Yc,pAa,p H
and assume that o.)s and s are the norm bounds of o.)s and b= .
8pm, respectively. Then, we have + aanr”ﬂ/; ” . (53)
ALy < 2a.||Wyo MH +2a, ‘SMGLMH For ALy, we can get
-2 2 -2 2 ny )
< 2.5 Zl” Wiy | + 2057 Zlnsc,p | Maz = wd @ 3AT Vo, VoT(00,) 50 (00y)
pP= pP= p:l
ny
<2452 Y | Weip | + 2n00:52,52. (50)
c chX:; cL,p récepc x Z ap W VJ(CD )YIpAa,p
According to (48) and (50), we can get ny . 2
. =a2| Y 0(Pap) W Vo (Pep) Y] Aup (54)
AL = —(1=2a:58) Y [Wei|* + 2105587 p=1
- p=1 LBF OaM = [O(Qa 1) ,0(Py nr)] Eq =
+ anC- (51) [VA"ICTVO’(q)c,l)Y;Ilea,I’ . W VU((DC nr) c,ny a ”r]’ 6aM

be the norm bound of osy, and Ag, be the maximum
eigenvalue of E uau . Then, ALy becomes

AL, = tr{ALy + ALy} (52) 5

2 =T
ALyp = aj|loam E,

Consider the second term of (46), we have

<arg,5h,. (55)

where

Acco_rding the proof of [44, Th. 2], let w., wq, W4, 01, Ve, Aas
ALy = tr{ —2a,w, Z ap w Vo (CI>C)p) YIpAa,p and A, be the upper-bounds of w,, w,, wg, Vo (+), Y¢, Ag, and
p=1 Ay, respectively. Then, we have
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o (®q p)ﬂ’iTva (Pc.p) YcT,pAa p|| =0 V_"?‘}lzl_’%,pf_\g,p O1,p
o (Pap)wi Vo (D) Y] Aup ? <G w005 An , =00
o (Pap) Wi Vo (Ocp) Y] Adp ? <GP W61y AG, =03,
o (Pup TV (0 )T Aa, | <6702,6352 43, = 6u,

Then, we can get

ny ny
_2 2 _2
AL, < agnywy, + aq Z Op+ag E O p +a A5, 05

p=1 p=1
(56)
Let  ogm = [0(Pg,1), - 0(Pan)],  Ed =
[WTVo (@)Y | Adts ... WIVO (P n Y], Adn),  Gam

be the norm bound of ogzy, and Ag, be the maximum
eigenvalue of Ey E}-. Then, by using the similar process, we
have

ny ny
ALg < agnivy+aq y | O3p+aq y | Osp+ajhz,o5.
p=1 p=1
(57)

Denote
ny ny
Pr=aen, > +a, y O, + @2, + a’rg, 62
1 = QallyW, a Lp T da 2,p AgMEOam
p=1 p=l1

ny ny
Pr = adnrﬁfﬁ +ag Z O3, +ay Z O4p + aflkgdc_ij.
p=1 p=1
Then, according to (51), (56), and (57), we can get

AL = AL.+ AL, + ALy
ny
_ 2
_(1 - 2ac"czM) Z” Weip ”
p=1
-2 2 32
+ 2n,a.05,0; +n8; +P1+ P>

ny
< —(1-24:83) D[ Wai > + Ps
p=1

IA

(58)

where P3 = 2nracéczM(§Z + nrgg + P1 + P>. Therefore, if a. <
(1/ [26CZM]) holds, and W,; ), lies outside the compact set

P3
Qu,, = {\Ilci,p 1 [ m}

we have AL < 0. The proof is completed. |

Remark 7: In fact, Assumption 3 is widely used in previous
papers [41], [44], [45]. The rationalities of Assumption 3 are
explained as follows.

1) In the NN implementation, the activation function o (-)
is usually selected as tanh(-). Therefore, it is reasonable
to assume that it is norm bounded.

2) It is noticed that the NN weights o}, o}, and o are
optimal weights. In addition, §. is the reconstruction
error of the critic NN. Since they cannot be infinite
in practice, it is reasonable to assume that they are
norm-bounded.
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TABLE I
PARAMETERS OF TORSIONAL PENDULUM SYSTEM

Symbols Description Value
M Mass of the pendulum bar skg
Iy Length of the pendulum bar %m
0 Angle 6(0) =0.2
/4 Angular velocity #(0) =—-0.2
Ji Rotary inertia IMI?
fa Frictional factor 2
g Gravity 9.8m/s?

Remark 8: The difference between the developed DPGETC
method and the existing methods [26], [37], [39], [41],
and [45] are outlined as follows.

1) On the one hand, unlike [37] which solved the ZSG
problem for CT systems, the developed DPGETC
method can be applied to DT systems. On the other
hand, different from [41] which tackled the optimal
control problem with the dual heuristic dynamic pro-
gramming (DHP)-based ETC approach, this article con-
sidered the ZSG problem. The developed data-based
DPGETC approach updates the control law and the
disturbance law by the corresponding gradients of the
Q-function. Therefore, the model NN is not required
anymore. Furthermore, the ER technique is adopted to
design novel NN weight updating laws to improve the
data usage efficiency.

2) This article extends the DPGADP method to solve the
ZSG problem under the event-triggering mechanism.
Compared with [26], [39], and [45], the control law
and the disturbance law are renovated aperiodically at
triggering instants only to reduce the computational and
communication burden.

Remark 9: This article investigates the ZSG problem rather
than the non-ZSG problems. In ZSG, two players compete
with each other since the goals of the two players are com-
pletely opposite, i.e., one tries to minimize the performance
index function and another one tries to maximize it. However,
for nonzero-sum games, all players have their individual con-
trol objectives and an overall goal, i.e., they are not only
competitive, but also cooperative [46]-[49].

VI. SIMULATION STUDIES

In this section, two simulation examples are employed to
verify the effectiveness of the DPGETC scheme.

A. Example 1
Consider the torsional pendulum system given by
do
—=d¥

dt
J . Mgl;sinf — f, 40 +d
— = — sinf — fg— .
" Uy 8t d dr t

The parameters and corresponding initial values of the tor-
sional pendulum system are given in Table I. Inspired by [45],
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TABLE II
CONTROL PARAMETERS

Initial state Q R B8 n. I ly Ae Qg aq
Example 1 [1, —1] 0.01,, 0.01/ 1 20 03 03 0.2 0.1 0.15
Example 2 [1,—1] 0.01l 0.017 1 20 02 02 03 03 0.3
1 = 1
=
£ —
& 0r = Y
X/ DPGTTC ‘g
——DPGETC S ‘ ‘ ‘
-1 \ ‘ ‘ _
0 50 100 150 200 0 20 100 150 200
Time (s) B Time (s)
1 : Z 1=
g S I RN d,
0r 3 !
& S0 P
N DPGTTC s i
——DPGETC z . ‘ ‘ |
2 ‘ : Al 50 100 150 200
0 50 100 150 200 .
Time (s) Time (s)
Fig. 2. Trajectories of system states z; and zp under DPGETC and DPGTTC Fig. 4.  Trajectories of the control input and the disturbance input of
- Example 1.
methods of Example 1.
L4FT i i i ]
25, 5 — Il
2 hall &l ]
= 8 i
5 2f S 1
i K 5080
S % i
E15) Eoel
g s
E =04/
g 4l ( =l
= i
z S02
= 0
0.5 ' ' ' 0 100 150 200
0 50 ' 100 150 200 Time (s)
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Fig. 5. Evolution of the triggering condition of Example 1.

Fig. 3. Norm value of weight vectors of Example 1.

the torsional pendulum system is discretized as

200+ | 0.1z2¢ + 214
2(t+1) —0.49sin(z11) — 0.1f4z2¢ + 224

41 20+ 0 a
0.1 " o1 |*

where z; = [z15, 22017 = [0,, #:17, u; is the control input, and
d; is the disturbance. The initial state of the torsional pendulum
system and the control parameters are provided in Table II. The
structure of the critic network, the action network, and the dis-
turbance network are selected as 4-10-1, 2—-10-1, and 2-10-1,
respectively. The activation functions are selected as tanh. The
initial weights of all NNs are randomly chosen within [—1, 1].

The simulation results are exhibited in Figs. 2-6. The
evolution of system states under the DPGETC method and
DPG-based time triggered control (DPGTTC) approach is
revealed in Fig. 2. We can find that system states approach
to a small region of zero after 50 s. The norms of the weight
vectors are provided in Fig. 3, which displays that the weights
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DPGETC

Time-triggered

Fig. 6. Comparison of sample numbers in Example 1.

of NNs remain unchanged after 100 s. Fig. 4 indicates that
the control law and the disturbance law are aperiodic updated
and reach zero after 50 s. The event-triggering error | &/|| and
threshold &7 are depicted in Fig. 5, which explicitly displays
that the event-triggering error will converge to zero. A com-
parison of the sample number between the DPGETC method

133



4832

v | DPGTTC
0.5\, ——DPGETC||
& S
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-0.5 ' ' ' ' ' '
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Time (s)
0.5 . !
0r —
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-1 I I I I T T
0 50 100 150 200 250 300 350
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Fig. 7. Trajectories of system states z; and zo under DPGETC and DPGTTC
methods of Example 2.

and the DPGTTC method is revealed in Fig. 6. Compared
with 200 samples in the time-triggered method, the DPGETC
method needs 40 samples only, which means that it saves 80%
computation. Hence, the validity of the DPGETC approach is
verified.

Remark 10: The parameters /; and I, in the triggering con-
dition (38) play an important role on the control performance
since they determine the triggering threshold &7 directly. If
the triggering threshold &7 is too small, the control inputs
are updated with high frequency, which brings a large amount
of computation. However, if the triggering threshold is too
large, the control inputs are updated with a low frequency,
but the system may be unstable. Therefore, we need to select
these two parameters appropriately with repeatitive simula-
tions to tradeoff the control performance and the computational
burden.

Remark 11: 1t is noticed that the selection of the NN struc-
ture and the historical data size are challenging since they
affect the control performance directly. In this article, we select
the NN structure and the historical data size by “trial and error”
with repetitive simulations.

B. Example 2

Consider the nonaffine nonlinear system
Z1+1) = 0.97z1; + 0.9720,u, + 0.974,
22041) = 097221 +0.97(1 4 2, Jus + 0.9 +0.97d7.

The control parameters are displayed in Table II. In this
example, the structure of NNs and the activation functions
are the same as those of Example 1. We randomly initialize
the NN weights within [—0.5, 0.5]. Simulation results are pro-
vided in Figs. 7-11. Fig. 7 presents that the state trajectories
under the DPGETC method and DPGTTC approach station-
ary points after 250 s. We can discover that the norms of
weight vectors are convergent in Fig. 8. The curves of the ETC
law and the disturbance law are given in Fig. 9. It is distinct
that both of them are segmented signals and arrive to a small
region of zero after 200 s. The event-triggering error ||&| and
threshold &7 are depicted in Fig. 10, which shows that the
event-triggering error will converge to zero. The sample num-
bers of the DPGETC approach and the DPGTTC approach
are comparatively displayed in Fig. 11. We can conclude
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Fig. 10. Evolution of the triggering condition of Example 2.

that the time triggered-based controller updates 350 times,
and the DPGETC-based controller updates 24 times only.
From the above analysis, the developed DPGETC method
greatly reduces the computational and communication burden.

Remark 12: The convergence rate and the algorithm com-
plexity depend on the parameters of the NN, i.e., the NN
structure and the learning rate. On the one hand, a simple NN
structure can reduce the complexity but may result in poor
approximation performance. Otherwise, if the NN structure is
complex, the approximation performance will be improved,
but the complexity will be increased. On the other hand, a
large learning rate will accelerate the convergence, but the NN
weights may not converge, and vice versa. Therefore, we need
to select these parameters based on repeatitive simulations to
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400 ‘ ‘

DPGETC Time-triggered

Fig. 11. Comparison of sample numbers in Example 2.

get a tradeoff. In fact, the convergence rate and the algorithm
complexity are mainly reflected in the training stage. Once the
optimal weights are obtained, we can implement the optimal
controller directly.

Remark 13: In the ETC approach, an event generator is
employed to monitor the event-triggering error. Once the error
exceeds the triggering threshold, an event is triggered and the
current state is sampled as a new sampled state. Moreover, the
control input is updated and remains unchanged until the next
triggering instant.

Remark 14: The main difference between the ETC
approach and the time-triggered approach is that the ETC
is updated aperiodically, rather than periodically as the time-
triggered one. In the ETC approach, only when the magnitude
of the event-triggering error reaches the prescribed thresh-
old, an event is triggered and the control input is updated.
Therefore, compared with the time-triggered method, the num-
ber of control input updating are reduced, and the computation
and communication resources are saved.

VII. CONCLUSION

In this article, the ZSG problem for DT nonlinear systems is
investigated by using the DPGETC approach. A proper event-
triggering condition is deduced to guarantee the ISS of the
closed-loop system. The control law and the disturbance law
are approximated by the action network and the disturbance
network, and are updated by the corresponding gradients of
the Q-function. Therefore, it is a data-based method and the
system dynamics are not required. Moreover, based on the ER
technique, new NN weight tuning laws are designed to ensure
the NN weight estimation errors to be UUB. Simulation stud-
ies show that the developed DPGETC method alleviates the
computational and communication burden. The main novelties
of the developed DPGETC control scheme lie in that: 1) the
ZSG problem of unknown nonaffine nonlinear systems is
addressed without requiring the model NN and 2) the designed
controllers are updated aperiodically to reduce the computa-
tional and communication burden. The inadequacies of this
control approach and the related future work are provided as
follows.

1) It is noticed that Assumptions 2 and 3 are necessary

to ensure the stability of the closed-loop system. In our
future work, we will try to relax these assumptions.
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2) This article adopts the ETC approach to reduce the
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computational and communication burden. However, it
requires hardware equipment to monitor whether the
triggering condition is satisfied, and then triggering the
next sampling in real time, which is not available in
many practical systems. In our future work, we will
try to develop the ADP-based self-triggered control
approach since it calculates the next sampling time based
on the latest triggering instant and system dynamics
without additional monitoring equipments.
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Riemannian Mean Shift-Based Data Fusion Scheme
for Multi-Antenna Cooperative Spectrum Sensing

Yongwei Zhang', Shunchao Zhang

Abstract—In this article, the multi-antenna cooperative spec-
trum sensing problem in cognitive radio networks is investigated
over Riemannian manifold. At the beginning, a signal matrix is
constructed by using the sensing signals from secondary users
(SUs) and the corresponding covariance matrix is calculated.
Subsequently, the covariance matrices are transmitted to the
fusion center and mapped to points on the manifold. In order to
reduce the impact of aberrant SUs, a data fusion scheme based
on Riemannian mean shift algorithm is developed. After data
fusion, the representative points are obtained to train a classifier.
In order to realize clustering directly over Riemannian manifold,
a novel Riemannian distance based particle swarm optimization
(RDPSO) algorithm, is proposed to train a classifier, which is
employed to determine the state of primary user (PU). Finally,
in simulation part, the validity of the proposed scheme is verified
under different scenarios.

Index Terms—Cognitive radio networks, multi-antenna coop-
erative spectrum sensing, Riemannian mean, Riemannian
distance.

I. INTRODUCTION

ITH the continuous development of wireless com-

munication network, spectrum resource is becoming
increasingly scarcity [1]-[3]. However, most of the spectrum
resources are not using sufficient [4]. In order to alleviate
the shortage of spectrum resources, cognitive radio networks
(CRN) have emerged [5], [6]. Different from traditional
methods, CRN introduces cognitive radio (CR) technology
to enable secondary users (SUs) to perceive the status of
authorized channel. The SU can opportunistically access the
available channel for communication when the primary user
(PU) is not on the channel [7]. There are several spectrum
sensing algorithms, such as energy detection (ED) [8], [9],
matched filtering detection (MFD) [10], [11] and cyclostation-
ary feature detection (CFD) [12], [13] have been proposed.
However, these methods are restricted in practical applica-
tion due to some shortcomings, such as require the prior
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information of the PU, susceptible to noise uncertainty and
require a large amount of computation.

In the modern CRN, more and more communication devices
adopt multiple antennas to improve link reliability and com-
munication quality [14]-[16]. Multi-antenna spectrum sensing
has become a research hotspot in the field of spectrum sens-
ing over the past decade. In [17], a improved energy detector
which uses an arbitrary positive power of amplitudes of the
PU’s signal samples was developed for multi-antenna cooper-
ative spectrum sensing. The mathematical expressions of the
probabilities of the false alarm and the missed detection for the
developed approach were deduced. In [18], a detection scheme
based on eigenvalue weight was proposed for multi-antenna
CRN. Based on Neyman-Pearson criterion, the eigenvalue
based-likelihood ratio test was analyzed and a simple closed-
form expression was deduced. In [19], the optimal Wald
test based sequential Bartlett spectral detector was designed
for multi-antenna cooperative spectrum sensing (CSS). It is
suitable for single/multiple PU scenario or multiple-input
multiple-output wireless systems. In [20], a multi-antenna CSS
approach based on the expectation maximization (EM) algo-
rithm was developed to detect the PU signal. This method
can be regarded as joint detection and estimation, which used
EM algorithm to detect PU signal and estimated the unknown
channel frequency response and the noise variance of multiple
subbands iteratively. In [21], a multi-user multiple-input and
multiple-output based CR approach was developed for Internet
of Things, which used weighted-eigenvalue detection tech-
nique to analyze sensing, system throughput, energy efficiency
and expected lifetime. It is noticed that the above CSS meth-
ods need to derive an accurate threshold to judge the state
of the channel, which is difficult to achieve in a complex
environment.

In recent years, there are some machine leaning based
spectrum sensing approaches have been present to solve this
problem [22]-[24]. In [22], several familiar machine learn-
ing algorithms, such as K-means clustering, Gaussian mixture
model and K-nearest-neighbor were adopted to develop a
CSS scheme. This method used signal energy as a feature
and trained a classifier to judge whether the PU exists or
not. In [23], a support vector machine-based CSS model was
presented. In order to reduce the cooperation cost and improve
the sensing performance, CR users were appropriately grouped
using energy data samples and support vector machine mod-
els. In [24], a multiple-antenna CSS was proposed by using the
wavelet transform algorithm and the Gaussian mixture model.
The noise of the signal was removed by wavelet transform

2332-7731 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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and the Gaussian mixture model was adopted to obtain a
classifier to detect the spectrum hole. In general, compared
with traditional sensing methods, the machine learning based
spectrum sensing method has the advantages of high sens-
ing accuracy and strong adaptability to environment. By using
the feature vector and the clustering algorithm, a classifier is
trained to judge the channel state. Therefore, choosing suitable
feature vector and clustering algorithm are essential to acquire
expected detection performance.

It is well known that spectrum sensing can be regarded as
a signal detection problem. By analyzing the probability dis-
tribution of the detection data, the existence of the PU can
be determined. Under the background of information geom-
etry (IG), the spectrum sensing problem can be converted to
a geometric problem in manifold, and the geometric method
can be adopted to analyze the properties of probability distri-
bution function clusters. In recent years, several scholars study
the spectrum sensing problem based on IG theory. In [26], a
Riemannian distance (RD) detector which does not require the
noise statistical characteristics and the priori knowledge of PU,
was designed to estimate the channel state by using the RD
and the Riemannian mean. In [27], a CSS scheme based on
empirical mode decomposition (EMD) and IG was proposed
to enhance the detection performance under complex elec-
tromagnetic environments. The EMD algorithm was adopted
to denoise the signals collected by the SUs and the covari-
ance matrices were calculated and mapped onto the manifold.
Subsequently, the geodesic distance between two points on the
manifold was used as a signal feature, and the K-medoids clus-
tering algorithm was adopted to train a classifier to determine
whether the PU exists or not. However, these methods use the
geometric distance value on the manifold as a signal feature
only and cannot be used directly in the manifold space.

In this paper, unlike previous CSS approaches which are
suitable for vector space only, we propose a novel spec-
trum sensing method that can be employed on manifold space
directly. In actual scenarios, SU may be interfered by the envi-
ronment and receives aberrant signal data. If these data are
used directly, the sensing performance of the whole CRN will
be affected. Therefore, a novel data fusion method based on
Riemannian mean shift (RMS) algorithm is developed to elim-
inate the aberrant data. Finally, a RD-based particle swarm
optimization (RDPSO) algorithm which works on manifold
space, is designed to acquire a classifier to perceive the state
of PU. The innovations of this paper are given as follows.

1) This article develops a novel data fusion approach to
eliminate the aberrant data by using the RMS algo-
rithm. Traditional methods [24] and [27] use denoising
algorithms to reduce environmental interference, but it
may remove some useful information in the signal. The
proposed data fusion scheme can exclude the aberrant
data directly and is suitable on manifold space.

2) A novel RDPSO clustering algorithm is developed,
which uses RD to estimate the two points on the
manifold.

3) By using the sample points on the manifold and the
RDPSO algorithm, an RMS based RDPSO (RMS-
RDPSO) approach is proposed to train a classifier for
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Fig. 1. The scenario of CRN.

determining the state of the channel. Different from
existing methods [25] and [26], the developed CSS
scheme is adaptive, it does not need to derive a precise
threshold and can be used on manifold space.

The structure of this article is given follows. The scenario of
the multi-antenna CSS is introduced in Section II. Section III
develops an RMS-RDPSO approach for CSS. The validity of
the RMS-RDPSO approach is tested under different scenarios
in Section IV. Finally, a conclusion is provided in Section V.

II. MULTI-ANTENNA COOPERATIVE SPECTRUM SENSING
IN COGNITIVE RADIO NETWORK

In this section, we study a CRN system which contains one
PU with single antenna and £ SUs with P antennas [28].
The structure of the CRN system is provided in Fig. 1. In
CSS scenario, in order to guarantee the communication of the
PU, the CRN needs to judge the channel state before allow-
ing the SUs to access the spectrum. Therefore, SUs should
transmit their sensing data to fusion center (FC) for acquir-
ing a global decision to identify whether the PU is exist. In
summary, the spectrum sensing can be regarded as a binary
hypotheses testing problem, which is formulated as

(n), n=1,..., N,

Ho : ylp(n) = zlp
Pn)z(n)+ 2 (n), n=1,...,N, (1)

Hi oyl (n) =

>

where ylp (n) represents the signal received from the pth
antenna of /th SU, z(n) represents the signal transmitted by
the PU and obeys the Gaussian distribution with mean zero
and variance 02, i.e., z(n) ~ N'(0,02), and 2 (n) represents
the Gaussian white noise and satisfies z/(n) ~ N (0,al2p),
l=1,2,...,L,p=1,2,...,P. N represents the number of
sample points, hlp (n) = 1 represents the channel gain [29], Ho
and H; stand for the absence and presence of PU, respectively.

In this paper, we use the probabilities of detection P, and
the false alarm Py to reflect the sensing performance, which
are defined as

Pg = P[H1|H1], 2
Py = P[H1[Ho). 3)
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Fig. 2. The structure of the developed RMS-RDPSO scheme.

III. MULTI-ANTENNA COOPERATIVE SPECTRUM SENSING
BASED ON RMS-RDPSO SCHEME

In this section, the structure of the developed RMS-RDPSO
scheme is provided in Fig. 2. To begin with, the FC collects
the sensing data from each SU and maps the corresponding
covariance matrices to coordinate points on the manifold. In
order to reduce the interference of aberrant SUs, the RMS
algorithm is developed to fuse the coordinate points to a ref-
erence point. Moreover, the RDPSO algorithm is adopted to
cluster directly on manifold. Finally, a data set which con-
tains the reference points is collected to obtain a classifier to
determine whether the PU exists.

Remark 1: The received signal from each SU with P anten-
nas can form a signal matrix. Then, we can calculate the
covariance matrices of all the signal matrices. It is noticed that
under the background of IG theory, the covariance matrix can
be regarded as a point on the Riemannian manifold. Therefore,
we can use the RD to measure the distance between two points
on the manifold. Since the SUs may be interfered by the envi-
ronment and receive aberrant signal data. We develop an RMS
algorithm to remove the abnormal data. It is well known that

Authorized licensed use limited to: Guangdong Univ of Tech. Downloaded on February 23,2023 at 08:35:06 UTC from IEEE Xplore. Restrictions apply.

the spectrum sensing is a binary hypothesis problem, i.e., the
PU is present or PU is absent. Hence, we propose the RDPSO
algorithm to train a classifier to judge whether the PU exists.
It is worth mentioning that the developed RDPSO algorithm
is worked on manifold space directly. Therefore, the spectrum
sensing problem is solved on the Riemannian manifold.

A. Multi-Antenna Cooperative Spectrum Sensing Over
Riemannian Manifold

In this section, the multi-antenna spectrum sensing problem
is analyzed in manifold space. The received signal of the pth
antenna of the /th SU is expressed as

yf = [y (). g (NI )
Therefore, the signal matrix of /th SU is given as
yé(l) yé@) yé(N)
Y, = Y (1) Y (2) Y (N) )
B @ P
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The corresponding covariance matrix is calculated by

1 T
C,=-—-Y)Y 6
l N l ) ()

where Cl € RP*P. Then, the binary hypotheses can be
reformulated as

Ho : Cl = U%L

M1 : C = Cg+ Rl (7)
where Cﬁ € RPXP represents the covariance matrix of PU
signal, I € RP*P represents the identity matrix, O'R =
diag[a%l,.. a”;] According [26], we find that Cl obeys

the Wichter distributions W (P, 0%1I) and W(P,Cﬂ + o%I)
in the case of Hg and Hi, respectively. Under the back-
ground of IG theory, the Wichter distributions WP, o RI) and

W(P, Cﬁ + URI) can be mapped into the statistical mani-
fold and the covariance matrices o RI and Cg + a%,{l can be
considered as the corresponding coordinates.

In this paper, the RD is employed to estimate the distance
between two points on the manifold. Assume that Z; and Zo
are two points on the manifold. Then, the RD between =; and
Ey is calculated as

R%(E1,8s) =

= log*(\), ®)

where || - || is the Frobenius norm and A; is ith eigenvalue of
the matrix | "E.

B. RMS-Based Data Fusion

In actual environment, SUs may be affected by the environ-
ment noise and send aberrant data to the FC. To ensure the
performance of spectrum sensing, an RMS-based data fusion
approach is adopted to reduce the interference of aberrant
points. It is well known that mean shift is a crucial clustering
algorithm for obtaining representative centers of the disturbed
data and widely used in many fields since it easy to implement
while owning good convergence property. However, tradi-
tional mean shift algorithm works on vector space only. To
achieve fusing directly on manifold, inspired by [30], the RMS
algorithm is adopted.

Assume that the matrix set in the FC is expressed as

U= {Cl,...7CM}, )

where M represents the size of data set. The kernel density
estimator is defined as
- (F2L00)

; (10)
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Algorithm 1: RMS Algorithm

Input: Random initial center point ®;. Let j = 0 and
€ > 0. Initial the maximum number of iteration
T1.
Output: ®;
1 while j < T do
2 Calculate the mean shift vector my, (®;) by

M g(RhC 00, (€5)

my, (®;) = (16)
M 2,,C;
>i=1 Q(D(hig))
Update the center point as
Pj 1 = exp(log(®;) + mp(P5)). (17)
if |my, (®;)| < ¢ then
3 | break
4 end
5 end

where ® is the center of the data, k(-) is a profile function
satisfying k() > 0 for r > 0, h is bandwidth parameter, and
2 p, 1s a constant which ensures that f(@) integrates to one.
The gradient of the f(®) with respect to ® is calculated as

V(@) = % % Vi L) (@’ Ci)

pr h?
:_% Mg R%(:;,CZ) VR%}(L;{LQ)’ o
=1

where g(-) = —k’(-) and k/(-) is the tangent at k(-). Inspired
by [30], we know that the gradient of the RD satisfies

VR, (@, éi) — —2logg (Ci). (12)
Therefore, according to (11) and (12), we can obtain
i) = 2 Mo (RY ((I), Ci) logg (Q) s
f( ) - M ' g h2 h2 ( )
=1
Therefore, the mean shift vector can be defined as
R2 (0,6, R
Mg <D<z)> logg (Cz>
my (®) = . (14)

It is noticed that the mean shift vector always point toward
the direction of maximum increase in the density. Thus, the
center ®; is updated by

D19 = exp(log(q)j) + my, (<I>j)).

The complete algorithm of the RMS is given in Algorithm 1.
The developed RMS algorithm can directly fuse data points
on manifold. After data fusion, the interference of the aberrant

15)
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points can be avoided. The convergence of the RMS algorithm
is analyzed in Lemma 1.

Lemma 1: Suppose that the kernel K has a con-
vex and monotonically decreasing profile, the sequence
{]%(‘I)j)}]‘:1727_n7 is convergent and monotonically non-
decreasing if the bandwidth 4 is less than the injectivity
radius.

Proof: Since the size of data set M is finite, the value
of f(CIJj) is bounded. Hence, if f((I)j_H) > f’(q)j) is sat-
isfies, then the sequence {f(éj)}jzljgy._” is convergent and
monotonically non-decreasing. According to (10), we can get

F(@541) = F(2))

n? h? '

The convexity of the profile k& implies that

M
_ Zkh

T M«
=1

k(z2) > k(1) + K (21) (22 — 1) (18)
for any z1, 72 € R. By using g(-) = —k’(), (18) becomes

k(m2) — k(21) > g(71)(21 — 22).

Based on (19), we have
F(®j41) — F(2))

_ kb % ; R%(q)j’éi) (R%(@,Ci)
1=1

19)

T M2 “ h2

5 3:1.6)

From [30], we know that if the bandwidth £ is less than the
injectivity radius, then we have

2 e
s () oo

~R%, (<1>j+1,(31-)) > 0.

Therefore f(tbj_,_l) > f(®;) is satisfied. The proof is
completed. |

C. Cooperative Spectrum Sensing Based on RDPSO
Algorithm

In this part, a classifier is trained to judge whether SUs
can access the channel. It is well known that particle swarm
optimization (PSO) is a popular optimization algorithm, which
finds the optimal solution through cooperation and information
sharing among individuals in the group. Moreover, PSO algo-
rithm can find the class center of the sample by minimizing
the sum of the distances from each sample to the particle.
Traditional PSO algorithm is used in vector space only. In
order to achieve clustering on manifold, the RDPSO algorithm
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Fig. 3. The ROC curves of several approaches in Coj.

is developed. Before moving on, a data set which includes the
fused samples is built as

& ={d1,...,00}, (20)

where @, € R”*” denotes the gth sample in ® and Q denotes
the size of fused data set. For the spectrum sensing problem,
the RDPSO requires to find two centers on the manifold which
represent PU is absent and PU is active, respectively.

Suppose that there N, particles in Riemannian manifold.
X; and V; represent the position and velocity of ith particle,
respectively. In each iteration, the position and velocity of each
particle are renovated by

Vi(t+1) = wV;(t) + ricr(Pbest; (t) — X;(t))
+ rpco(Gbest — X;(t)),
Xi(t+1) = x;(t) + Vi(t+ 1),

where ¢ represents the iteration index, w represents the inertia
weight, Pbest; represents the individual best of ith parti-
cle, and Gbest represents the global best. ¢; and cp are
non-negative acceleration coefficients, r; and rp are positive
constants and randomly selected within [0, 1].

In traditional PSO algorithm, it is inevitable to calculate
the fitness value of the particle to evaluate the performance of
the particle. In fact, the particles represent the class centers
for spectrum sensing problem. Therefore, we use the sum of
the geodesic distances between the particles and each sample
as the fitness value. The details of the RDPSO algorithm is
described in Algorithm 2.

After the training is completed, we can obtain a classifier as

s :RQD(Tl,T)
<) R%(TQ,T)’

where T represents the data on the manifold which required to
be classified, Y1 and Y5 are the cluster centers. If F(T) > ¢,
then the PU is presence and the SUs cannot use the channel.
Otherwise, the SUs can access the spectrum. ¢ is a positive
constant, which used to determine P; and Pf.

21
(22)

(23)

D. Complexity Analysis

The complexity of the RMS algorithm is given by O(M x
Ty), where M is the number of data set, T} is the number of
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Algorithm 2: RDPSO Algorithm
Input: Initial the individual best Pbest;, the global best
Gbest, the position and velocity of each particle
X;i(t) and V;(t), and the maximum number of
iteration T5.
Output: Gbest
1 Lett =0
2 while t < Ty do

3 Obtain the fitness value of the Gbest by
Q
Fa =) R} (g, Ghest).
q=1
4 for i =0 — N, do
5 Obtain the fitness values of the ith particle and
the Pbegti by
6 Fi=) Rh(®q, (1),
q=1
Q
7 Fip = Z RQD(qu, Phest;).
q=1
8 if 7; < Fj, then
9 Pbest; + Xz(t)
10 if 7;, < Fg then
1 | Gbest < Pbest;
12 end
13 end
14 end
15 | for i=0— N, do
16 Update the position and velocity of each particle
by (21) and (22)
17 end
18 if Gbest is convergent then
19 | break
20 end
21 end

By
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Fig. 4. The ROC curves of several approaches in Cos.

iteration. It is noticed that the complexity of the RMS algo-
rithm can be rewritten as O(M) as the number of data set
increase.

The complexity of the RDPSO algorithm is calculated as
O(T2 x (Q +Np x2Q +Np)), where Ty is the number of
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Fig. 6. The ROC curve of the RMS-RDPSO approach with different SN'R.

iteration, M, p is the number of particle, and Q is the number of
fused date set. Therefore, with the () increase, the complexity
of the RDPSO algorithm becomes O(Q).

Remark 2: Different from the existing approaches [28]
and [31] which used unsupervised clustering algorithms, such
as K-mean and fuzzy-c mean algorithms for CSS, this paper
develops an RDPSO algorithm. It is noticed that the unsu-
pervised clustering algorithms are sensitive to the choice
of initial point, which require several attempts to achieve
good performance. However, the RDPSO algorithm can obtain
excellent performance by randomly initializing the velocity
and the position of the particles. Moreover, this paper devel-
ops an RMS algorithm to eliminate the aberrant data, which
further improves the sensing performance.

Remark 3: It is noticed that the distribution of the test-
statistic and the threshold are not required in this approach. In
this paper, we adopted sensing data and the developed RDPSO
algorithm to obtain a classifier to determine whether the PU
exists. Compared with traditional approaches which require to
derive a precise threshold, this approach is more adaptive. This
is because a precise threshold is hard to obtain on complex
environment.

Remark 4: Compared with the single-input and single-
output based scheme, the advantages of the multiple-input
and multiple-output based scheme lies in that: 1) multiple-
input and multiple-output based scheme can obtain higher data
transmission rate and more reliable link transmission through
multiplexing gain and diversity gain without increasing the
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Fig. 9. The ROC curves of several approaches in Cos.

system bandwidth and transmission power. 2) multiple-input
and multiple-output technology allows SUs to obtain useful
data and reduces the effects of multipath fading, shading and
receiver uncertainty.

IV. SIMULATION ANALYSIS
A. SUs in Same Condition

In this section, the validity of the RMS-RDPSO based
CSS approach is analyzed on the conditions of Cojp, Cog
and Coz, where Coj, Cos and Coz represent SN'R =
[~12dB, —12dB], SNR = [—14dB,—14dB] and SAN'R =
[—16dB, —16dB], respectively. The SA/R is the signal to noise
ratio of the antennas of the SU. Let the number of the SUs that
participate the data fusion be M = 10, the number of antennas
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be P = 2, and the number of sample points be N = 1000,
respectively. By applying the RMS algorithm, the data set
¢ = {®,...,P1900} which contains 1000 fused samples
is prepared. After RDPSO optimization, the class centers are
given as

. _ [11.2338,0.7418] . _ [10.3258,-0.2695
1= 10.7418,11.3071” ~2 = |-0.2695,10.3258 |

Under the conditions of Coy, Coo and Cos, the experiment
results of the RMS-RDPSO based CSS scheme and other
previous methods, i.e., EMD-RDFCM, DARDMM, 1QDMM,
and IQRMET [24], [27], [28], [31], are shown in Fig. 3-5,
respectively. The simulation results expound that the RDPSO

144



54

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 1, MARCH 2022

TABLE I
THE P4 OF DIFFERENT APPROACHES WHEN SUS IN SAME CONDITION

RMS-RDPSO EMD-RDFCM  RDPSO DARDMM DARIG IQDMM
Co1, Py =0.1 0.995 0.952 0.638 0.625 0.590 0.585
Coy1, Py =0.2 0.998 0.981 0.781 0.720 0.706 0.695
Cog, Py = 0.1 0.852 0.706 0.374 0.346 0.281 0.280
Coz, Py = 0.2 0.978 0.888 0.512 0.478 0.436 0.435
Cosz, Py = 0.1 0.707 0.363 0.313 0.210 0.170 0.168
Coz, Py = 0.2 0.801 0.650 0.404 0.334 0.308 0.305
TABLE I

THE P, OF DIFFERENT APPROACHES WHEN SUS IN DIFFERENT CONDITION

RMS-RDPSO EMD-RDFCM  RDPSO DARDMM DARIG IQDMM

Coy4, Py = 0.1 0.994 0.955 0.539 0.475 0.539 0.472
Coyq, Py = 0.2 0.997 0.984 0.718 0.648 0.695 0.645
Cos, Py = 0.1 0.886 0.671 0.407 0.231 0.269 0.268
Cos, Py = 0.2 0.951 0.830 0.567 0.403 0.401 0.425
Cog, Py = 0.1 0.576 0.328 0.215 0.139 0.138 0.136
Cog, Py = 0.2 0.781 0.612 0.398 0.305 0.309 0.301

TABLE III

method obtain superior performance in contrast to conven-
tional approaches. It is worth noticed that the RMS-RDPSO
achieve better result than RDPSO, which means that the RMS-
based data fusion method is valid. The detailed data are given
in Table I. In the case of Col,Pf = 0.1, compared with
previous approaches, the P; of the RMS-RDPSO scheme is
improved by 4.51%, 55.95%, 59.20%, 68.64%, and 70.08%,
respectively. Fig. 6 shows the receiver operating characteris-
tic (ROC) curve of the RMS-RDPSO approach with different
SNR. We can observe that when Pf = 0.2, the P; will rise
with the SA'R increase. The convergence of the cost value for
the RDPSO algorithm under Co; is displayed in Fig. 7. We
can know that the developed RDPSO algorithm is converged.

Remark 5: It is worth mentioning that the existing algo-
rithms DARDMM, DARIG, and IQDDM are worked on
Euclidean space, which use Euclidean distance to measure the
distance between two points. However, the developed RMS-
RDPSO approach can be applied on manifold space, which is
an extension of the previous methods. Furthermore, the RMS
algorithm is developed to eliminate the aberrant data, which
further improves the sensing performance.

Remark 6: In this paper, the cost value of the RDPSO algo-
rithm is the sum of the distances between the particle and
all the sample points. Therefore, as the number of iteration
increase, the particle is closer to the class center, so the cost
value will decrease.

B. SUs in Different Conditions

In this part, we will verify the validity of the RMS-RDPSO
scheme on the conditions of Co4, Cos and Cog, where Coy,
Cos and Cog represent SN'R = [—12dB, —12.5dB|, SN'R =
[—14dB, —14.5dB] and SN'R = [—16dB, —16.5dB], respec-
tively. The experimental results are given in Fig. 8-10, where
we can conclude that compared with previous approaches, the
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THE P4 OF THE RMS-RDPSO SCHEME IN DIFFERENT NUMBER OF SU

L=2 L=4 L=6

Cog, Py = 0.1  0.991 0.908  0.656

Cog, Py =02 0999 0964  0.791
TABLE IV

THE P4 OF THE RMS-RDPSO SCHEME IN DIFFERENT NUMBER OF

ANTENNAS

P=2 P=4 P=6

Cog, Py =0.1  0.639 0.931 0.998

Cog, Py = 0.2 0.801 0.975 0.999

RMS-RDPSO scheme can acquire the best sensing results. The
P, of serval approaches are displayed in Table II. In the case
of Coy, Pf = 0.1, we can calculate that the P; of the RMS-
RDPSO scheme is enhanced by 4.08%, 84.41%, 109.26%,
84.41%, and 110.59%, respectively. According to the results
of Sections IV-A and IV-B, we can find that the RMS-
RDPSO approach acquires the best detection performance than
conventional schemes under two different scenario.

C. Different Number of SUs

In this section, we verify the performance of the developed
RMS-RDPSO scheme when the number of the SU is different.
The ROC curves and P, are shown in Fig. 11 and Table III,
respectively. According to the experimental data, we can find
that the sensing performance is better with the increase of SU.

D. Different Number of Antennas

In this section, we analyze the influence of the number of
antennas on the performance of the RMS-RDPSO scheme. The
simulation results are shown in Fig. 12 and Table IV. We can
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find that with the number of antennas increase, the P; of the
RMS-RDPSO scheme is raised.

V. CONCLUSION

In this article, an RMS-RDPSO scheme is proposed to deal
with the spectrum sensing problem in CRN. To improve the
sensing performance, a data fusion scheme based on RMS
algorithm is adopted to eliminate the aberrant data in FC.
Then, an RDPSO clustering algorithm is developed to clus-
ter samples on manifold space. After the classifier is trained,
we adopt it to judge whether the PU exists or not. Finally, the
detection performance of the RMS-RDPSO scheme is verified
under two different conditions. The main contributions of this
paper are on adopting an RMS-based data fusion scheme to
eliminate the aberrant data and developing an RDPSO clus-
tering algorithm to train a classifier on manifold. It is worth
mentioning that the RMS-RDPSO scheme approach can use on
manifold directly and acquires the better sensing performance
than previous approaches. In our future work, since the sce-
nario of this paper is ideal, we will consider more complex
scenarios, such as the primary network traffic model, the
energy consumption, the spatial diversity of the SU is not
enough, and the SUs are mobile.
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ARTICLE INFO ABSTRACT
Keywords: In this article, we propose a dynamic event-triggered neuro-optimal control scheme (DETNOC)
Adaptive dynamic programming for uncertain nonlinear systems subject to unknown dead-zone and disturbances through the

Integral sliding mode control
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Uncertain nonlinear systems
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design of a composite control law. An integral sliding mode-based discontinuous control law is
utilized to compensate for the effects of unknown dead-zone, disturbance, and a component of
uncertainties. As a result, a system dynamics that evolves free of these effects during the sliding
mode is obtained. Then, an adaptive dynamic programming-based dynamic event-triggered
optimal control law is designed to stabilize the sliding mode dynamics with the help of critic-
only neural network architecture. Finally, stability analysis of the closed-loop system is provided
and the effectiveness of the developed DETNOC scheme is verified.

1. Introduction

Due to the inherent properties of actuators, dead-zone is one of the prevalent constraints in practical systems. It widely exists
in electrical servomotors, hydraulic actuator, power generators, etc. The existence of dead-zone can severely degrade the control
performance, cause the system instability, and even lead to safety accidents if not appropriately compensated or tackled. Owing
to its distinguished features, such as a simple structure, ease of implementation, inherent robustness, and fast dynamic response,
sliding mode control (SMC) has been extensively studied and applied to address dead-zone constraints [1,2]. However, it is worth
mentioning that the stability of the closed-loop system is a fundamental requirement in controller design. Additionally, the designed
controller is expected to achieve a significant level of optimality.

Optimal control is an effective methodology to optimize a pre-defined performance index function [3,4]. To achieve the above
control objective, many methods design a composite control law consists of a discontinuous control law and an optimal control law
by integrating SMC and optimal control approaches [5]. For uncertain linear systems, Das and Mahanta [6] proposed an optimal
second-order SMC method. In this method, the discontinuous control law was designed by combining the terminal sliding mode
and integral sliding mode surfaces (SMSs). Additionally, the optimal control law was obtained by solving the algebraic Riccati
equation (ARE). In [7], an optimal integral SMC (ISMC) method was proposed, in which the discontinuous and optimal control laws
were designed by using ISMC and solving the ARE, respectively. In the aforementioned methods, the discontinuous control law is
employed to mitigate the impact of uncertainties and disturbances, resulting in the attainment of linear sliding mode dynamics. On
the other hand, the optimal control law is utilized to stabilize the linear sliding mode dynamics (SMD) while achieving a significant
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level of optimality. In the case of nonlinear systems, the resulting sliding mode dynamics are nonlinear. To obtain the optimal
control law, the Hamilton-Jacobi-Bellman (HJB) equation needs to be solved. However, the HJB equation is a partial differential
equation that is often impossible to solve analytically due to its complexity [8-10]. To address this challenge, the adaptive dynamic
programming (ADP) technique, inspired by reinforcement learning (RL), has been developed. ADP leverages approximators, such as
neural networks (NNs) [11] or fuzzy logic systems [12] to compute forward-in-time and finds an approximate solution to the HJB
equation.

Recently, numerous RL or ADP-based methods have emerged to solve the HJB equation and derive the optimal control law [13-
19]. It should be mentioned that these approaches typically employ time-triggered control (TTC) strategies, which can result in
unnecessary computational burdens and inefficient use of communication resources and bandwidth [20-22]. Fortunately, there has
been a growing interest in the development of event-triggered control (ETC) methods, as they offer the capability to address these
challenges. Numerous promising results have been reported in this area [23-25]. Nevertheless, the event-triggering condition will
become conservative as the sampling error decreases, leading to several unnecessary triggering [26—-30]. To overcome this deficiency,
Mu et al. [26] developed an ADP-based dynamic event-triggered optimal control (DETOC) method for nonlinear systems, where an
internal dynamic variable was introduced to establish a dynamic event-triggering condition for determining the occurrence of events.
Zou et al. [27] developed a dynamic event-triggered optimal tracking control (DETOTC) method by using ADP. This method utilized
an auxiliary dynamic variable to construct a dynamic triggering rule. Yang et al. [28] developed an RL-based decentralized DETOC
method for interconnected nonlinear systems, where the triggering rule relied on the system states and the variables generated by
time-based differential equations. Tan et al. [29] proposed an ADP-based DETOTC method for uncertain nonlinear systems. This
method designed a composite control law, in which a discontinuous law was used to compensate uncertain terms and acquire the
nonlinear SMD, and the ADP-based DETOC law was designed to stabilize the nonlinear SMD.

Although there have been several reports on ADP-based DETOC methods for addressing optimal control problems, it is important
to note that research in this area is still in its early stages. The practical and theoretical significance motivates us to develop the ADP-
based dynamic event-triggered neuro-optimal control (DETNOC) scheme for uncertain nonlinear systems with unknown dead-zone
and disturbances. The novelties and contributions of this work are outlined below.

1. Unlike the existing methods [26-29,31] that addressed optimal control problem without input dead-zone, the ISMC and
ADP are combined to investigate optimal control problems for uncertain nonlinear systems with unknown dead-zone and
disturbances.

2. Different from existing method [32,33] which constructed auxiliary systems to address the control problems for nonlinear
systems with mismatched uncertainties, this paper designs a modified value function to address the effect of the mismatched
component of uncertainties.

3. Compared to existing event-triggered mechanisms [20,23,24], this scheme adopts a dynamic event-triggered mechanism by
introducing a dynamic variable, which effectively reduces the computational burden and saves communication resources.

The remaining sections of this paper are structured as follows. Section 2 presents the problem statement. In Section 3, we
develop an ADP-based DETNOC method and provide a stability analysis. Section 4 includes two simulation examples to illustrate
the effectiveness of the proposed ADP-based DETNOC method. Finally, Section 5 provides a brief conclusion.

2. Problem statement

Consider a class of nonlinear systems
Z=T,2)+1L,(2)(DW) +0) + KF(2). €N

where Z € R" is the system state with Z; = Z(0), u = [uy, ..., u;, ..., u,]" € R" is the control input, Z,(Z) € R", 1,(Z) € R™" and
K(Z) € R"™4 are continuously differentiable functions, ¢ € R" is the disturbance, 7(Z) € RY is the unknown perturbation, and
D) = [D1(uy)s -, D; W), .., D,,(,)]T € R™ is the output of the dead-zone with

m.(u; —o,) if u;>o,
D;u;) =10 if o <u; <o, (2)
my(u; —o)) if u; <o

where m,,m; € R are the slops of dead-zone and m, = m; = m, and o,, 0, € R denote the bounded unknown parameters of dead-zone.
Furthermore, the model (2) can be described as

D;(u) = mu; +d;(u;) 3)

where d;(u;) is written as

-mo, if u; 2o,
d,-(ui(t)) =<-my; if o <u; <o, “@
—-mo; if u; <o

Let d(u) = [dy(wy), ..., d;(®;), ... , d,,(u,,)]T. Then, the system (1) can be formulated as

Z=1,2) +1,(Z)(mu+ d() + 0) + K(2)F(2). 5)
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For the uncertain term K(Z)F(Z), it can be composed of two components

matched component mismatched component
K@)F(2) = L DT (DKEF(D) +U, - LD IS (2NKE)F(Z). ©)

Hence, the system (1) can further be rewritten as
Z=1,2)+1,(Z)(mu+p)+hZ)F(Z), ()]
where p = d(w) + 0+ I} (2)K(2)F(Z) and h(Z) = (I, - I,(D)T} (Z2)HK(2).

3. Controller design based on ISMC and ADP

In this paper, to guarantee the stability of system (1) with considerable optimal performance, a composite control input is
designed as

u=uy +0u, ®

where u, is the discontinuous control input employed to eliminate the influences of dead-zone, disturbance, and the matched
component of uncertainties via ISMC, u, is the DETOC input designed to stabilize the SMD by using ADP-based dynamic ETC (DETC)
method, and 4 is the adaptive term to approximate the reciprocal of the unknown slope parameter m.

Remark 1. Indeed, it is well known that ISMC is an effective technique to deal with the dead-zone, disturbance, and uncertainties
effects [1,2,34,35]. Furthermore, the stability of the closed-loop system is only the foundation, and the control performance should
also be considered in the process of controller design. Recently, ADP has emerged as a powerful method widely employed to solve
optimal control problems. Hence, this paper combines ISMC and ADP to develop a DETNOC method and design a composite control
law for nonlinear systems with the unknown dead-zone, disturbance, and uncertainties.

Remark 2. Recently, many ADP-based ETC methods have been investigated to solve optimal control, robust control, and fault-
tolerant control problems [3]. It is worth noting that these control schemes are implemented under the static event-triggering strategy
relating on the current values of system state and sampling error [26]. Different from the ADP-based static event-triggering strategy,
the ADP-based dynamic event-triggered strategy designs an internal signal in the basis of static event-triggering rule. As a result,
larger sampling intervals can be generated by the ADP-based dynamic event-triggering rule compared to the static one, which can
further reduce the wastage of computation and communication resources.

3.1. Discontinuous control design

On the basis of the SMC technique, an integral type sliding mode function is formulated as

t
&(Z,0)=06(2) - GZy) - / M) (L,(2) + 1,(Du (2))dr, ©
0
where G(Z) € R" is a design function and 9(Z) = 0G(Z)/0Z € R™". The time derivative of G(Z,) is derived by
&(2.1) =MD)Z - M) (1,(2) + 1,(D)u,)
= M) (1,(2) + Ly(2)mu + p) + h(DF(2)) = M(Z)(1(2) + 1,(Du, )
= M) (L) (mu+ p — u.) + h(2)F(2))
= M) (L,(2)muy + mbu, + p — u,) + H(ZF(2)). (10)
To maintain the system trajectory on the SMS, the discontinuous control law is designed as
uy = —Ksgn(=2(2)), an
where 2(2) = I](2)IM"(2)&, K denotes the sliding mode gain, and
sen(Z(2)) = [sgn; (2,2, . sgnu(Z(D)]
where sgn;(+) is the sign function.
Remark 3. The control law u; = —Ksgn(=(Z)) aims to maintain the system trajectory on the SMS and achieve the SMD without
the effects from dead-zone, disturbance, and the matched component of uncertainties, thereby enhancing the robustness of the
nonlinear systems. Specifically, the function sgn(-) is employed to resist parameter changes and perturbations, the sliding mode gain

K is selected in accordance with the magnitude of these changes and perturbations. Moreover, the form of (11) is straightforward
to implement and is widely used in the ISMC control field [29,34,35].
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Theorem 1. Considering the nonlinear system (1), the sliding mode function (9), Assumptions 1 and 2, the adaptive term is turned by
6= —%GTDﬁ(Z)Zb(Z)uC, the discontinuous control law can maintain the system trajectory on the SMS, that is, & = 0.

Proof. Select a Lyapunov function candidate as
L= -16T6 4,5 (12)
2m

where 6 = § — 0 is the approximation error. Taking the time derivation of L,, we have

i = ﬁGT{Dﬁ(Z)(Ia(Z) + I,(2)(mu + p) + h(2)F(2)) = M(Z)(L,(2) + T,(D)u,) } +700

1

m

= &ML, (2)u+ %esz(Z)z,,(zm + %@mzm(ar(a - %@mamz)uc + 706, 13)

&T{M@) (T, D+ p =) + HDF (@) } + 100

Let 6 = %, we have

Ly = STM)L,(2)u + 06TMZ)L,(Z)p + y00 + 08TMZIA(Z)F(2) — 0GTM(Z)T,(2)u,
= - K& L,(D)sgn(I] (M (2)6) + 8STMZ) LY (D), + ST ML) L, (2)p + L
+ 08TMDMZ)F(Z) — 06 M) L,(D)u,
=— K& L,(Z)sgn(I] (M (2)8) + 6&TM) L (Z)u, + 0STMZ)LY(Z)p + 0STM)N)F(Z) + v@0, 14)

Then, recalling the turned rule 6= —%GTDﬁ(Z)Ib(Z)uL., L, becomes

Ly =— K&"TMD)L,(Z)sgn(I] (M (2)G) + & M) Ly(2)u, + 0STIUZ)LL(Z)p + 06T MWZ)F(Z) — 0STMZ)L,(2)u,

= - K&"M(2)L,(2)sgn (I (M (2)&) + 0 TM(Z)L,(2)p + 0T MZ)A(2)F(Z)

<= KISTMDLLD); +6lplllISTMR)LL(D)| + 08T MDAZIF(Z)

<= (K = 0llpDISTMLL(D)|| + 6STIM(2)(Z)F(2). (15)

Inspired by [31,34], 9(Z) is chosen as 1;(2), (15) becomes

Ly <-IISII(K = 6llpll) + 68T I (D)R(2)F(2)
< -lISI(K -85 - 0h), (16)

where 0 < 0, 5 and h are the norm-bound of p and I (Z)h(Z)F(Z), respectively. Thus, if K > 6(5 + h) is satisfied, the system
trajectory is maintained on SMS. []

According to the SMC theory, from &(Z,t) = &(Z,t) = 0, we can obtain the formulation of equivalent control law as
1 A 1 -
tieg = =20 = (0 = Dute =+ (MDTY2)) " MOMDF (). an
Substituting (17) and (8) into (1), the SMD is obtained as

Z=1,2)+ 1,(2)(muy + bu,) — p) + K(ZF(2)
= 1,(2) + LD, — L(2)(MDI,(2) MBEZIF(Z) + h(Z)F(Z)
=1,2)+1,(2u, + (1,, - 1b<2)(fm(Z)zb(a)’lsm(Z))h(Z)F(zy (18)

Considering MM(Z) = Z;(Z), (18) becomes

Z=1,2) + L,(Du + (1, - (DI (D) h(D)F(2)
=1,2) + 1,(Du, + (I, - LD} (D) (1, - I,(DI; (2)) K(DF(Z)
= 1,2) + L,(Du, + (I, - T,(DI] (D) K)F(2). 19

Then, the SMD (19) is revised as

Z2=1,2) + 1L,(Du, + h(2)F(2). (20)

Assumption 1. The mismatched component h(Z)F(Z) satisfies ||n(Z)F(Z)|| < I'(Z) and the input matrix function 7,(2) is
norm-bounded by ||7,(Z)|| < g, where I'(Z) is a known function and g is a positive constant.

4
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3.2. ADP-based DETOC design

In the following, a DETOC law u, is designed to stabilize the SMD (20). Through the design of a modified value function, the
control problem of the SMD is transformed into a DETOC problem of its nominal version, which is given by

2 =1,2)+1,@u,. (21)

For the system (21), the value function is derived by
V(Z,u,) = / (M@ + V7 (VY (2)+Z70Z +u] Ru,)dr, (22)
t

where O € R™" and R € R™"™ are positive definite symmetric matrices. Denote the optimal value function as 7"*(Z), which satisfies

72 = Jmn V(Z,u,), (23)
where R(£2) is the admissible control set over £2. The 7*(Z) is the solution of the following HJB equation

min % (Z,V7*(2),u,) =0, 29
ER(Q)

uL‘

where % (Z, V7 *(2),u.) is the Hamiltonian for V7*(Z) and u,, written as

H(Z,VV*(2D)u,) = 7T IN2) + Tp(Du,) + Z2TQZ +ul Ru, + T(2) + VZ (VY (2), (25)
where V7*(2) £ 07*(Z)/dZ. From (24). we have

0% (Z,VV*(D),u,)

=0, 26
F” (26)

—*
c U =uy

Then, according to (26) and (25), it yields

w(@) = -SRI @VT () 27)
Substituting (27) into (24), we further obtain

H(ZNV*(2)ul) = VT (DT (2) + L, (D) + ZT0Z +u'TRu* + T (2) + VN (2)V7*(2) = 0. (28)

It is noted that the HJB equation (28) is a nonlinear partial differential equation, the analytical solution is extremely difficult or
even impossible to be obtained. Many methods have been developed to solve the HJB equation using ADP-based time-triggered
mechanism, and these methods design the TTC law which often involves heavy computational burden and wastes communication
resources. To overcome this shortcoming, we develop a DETNOC method in the following.

Denote {t.}% as a I}mnotonically increasing sequence of triggering instants, where s is the sth triggering instant. Let the
event-triggered state as Z, = Z(t,), the event-triggering error can be defined as

e =2,- 2. (29)
Then, the DETOC law is derived by
1
2
Inspired by [26,28], a dynamic event-triggering condition is designed as

u'(Z) = -z R'IJEIVT*Z). (30)
i =int{1> 11P0) + (1 = wH)ZT0Z - L2&Ne,0I?) <0} 31)
with 7, = 0, where f is a design parameter and P(¢) is updated by
P@t) = —aP@®) + (1 - wH)ZT0Z - L2g*|le, )| (32)

with P(0) > 0, where « > 0 and 0 < w < 1 are two design parameters, L, > 0 is the Lipschitz constant from the following
Assumption 2.

Assumption 2. For the optimal control law u, there exists a Lipschitz constant L, such that

uf(2) - Z I < LIIZ = 2,1l = Llle )l (33)
Lemma 1. Let P(t) be turned by (32), and the events be generated using the condition (31), then P(t) > 0 for any t € [0, o).

Proof. Based on the triggering condition (31), for any ¢ € [0, o), one has

P+ (1 - @)ZT0Z - L2 ]le,(O]*) 2 0. (34)
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If p =0, then P(r) > 0 is true. If g # 0, by combining (31) and (34), we can derive
P(t)

P +aP@®) = (1 - @2 QZ - L& |le,0|*> > e (35)
with P(0) > 0. Then, by using the comparison lemma, we have
1
P(t) > PO “T1, 1 €0, 00). (36)

It implies that P(¢) > 0 for any ¢ € [0,00). []

Theorem 2. Considering the system (1), the SMD (20), Assumptions 1 and 2, the composite control law (8) with (11) and (30). By
designing the dynamic event-triggering condition as (31), the closed-loop system (1) can be ensured to be asymptotically stable.
Proof. Select a Lyapunov function candidate as

Ly(t) = 7(2) + P(). (37)

According to Theorem 1, the trajectory of system (1) is maintained on the ISM surface, and then, the sliding mode dynamic system
(19) can be obtained. Taking the time derivative of the L,(?), it yields

Ly®) = V7T (2)(1,2) + T, 2ur(Z,) + h(2F(2)) + P(). (38)
According to (27), it reveals
V7 U DL(2) = -VV (DL — ZT0Z — ul Rut — T'(2) - VTV (VT *(2), (39)
Together with (39), we have (40).
L) = V7T (D)L, (Zy) + VI T (DWZDIF(Z) - VT T (DL, (2u! — 2702 — T (D)Ru*(2) - I'(2)
- VTV *(2) + P(t)
<-270Z - TR + VTV T DL () (Z)) - u}) + VT T DNDF(2) - T(2) - VT (VT (2) + P(0)
<= 2702 ~uT @R + SIVT T @I + ST (W ED) - @) P + 3IV7 @I + 1@ F @I
- I - V7 NQVT*(2) + P()
<-Z'0Z - (@Ru}(2) + %gzu (WX (Z,) - (D)II* + %Ilh(Z)F(Z)IIZ - I'(2)+PQ). (40)
Let R = r'r, and recalling Assumption 2, we get
Ly(t) <= ZT0Z + Li@ e, = IrP (DI + P()
<-2*Z270Z - (1 -0*Z'0Z + L2 |le,®I* = 71l DI + P(1)
<-w’ZT0Z - (1 - wHZT0Z + LLg% e, = IrIPIu(DI* = aP®) + (1 - wH)ZTQZ — Lg% |le, )|
<-@?Z270Z - aP() — Il DI (41)
Since P(¢) > 0 based on Lemma 1, we further derive from (41) as
Ly < —w*ZT0Z ~ IrIP (DI <0. (42)
Therefore, the closed-loop system (1) can be guaranteed to be asymptotically stable. []

In the sequence, a three feedforward NN is used as a critic NN to approximate the optimal value function 7"*(Z) on the compact
Q by

V*(2) = 9$,(2) + (D). (43)

where 9, € Rl is the ideal weight vector, I, is the number of neurons, ¢,(2) = [$,,(2), p,2(2). ..., bu, (&)]T is the activation function,
and its element ¢,,(Z) satisfy ¢,;(Z) € C1(Q) with ¢,;(0) = 0 and V¢,;,(0) =0, i = 1,2,...,1,, and {,(Z) € R is the approximation
error. Differentiating 7°*(Z) with respect to Z, it yields

VT*(Z) =Vl (2)9, + Vi, (D). (44)
Inserting (44) into (30), we have
u,(2,) = —%R‘llg(?,&)(vﬂ(?ﬁs)&u +VE,(2). (45)

Note that the ideal weight vector 8 is unavailable, which causes the inability of implementing u,(Z,). To solve the issue, an estimated
weight vector § is employed to replace 9, and then the approximation 7*(Z) is expressed as

7(2)=81$,(2). (46)
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_,| Dynamic event ¥(2) [Critic neural
generator networks
=T - = Control phase
EARTER
Control law 2
(30) System (1) Z 1/s Z
o~ Uqg
Uo(Zs) |
Zero-order Integral sliding mode | & | Discontinious
hold i ( Z, t) fun?[tlon control law (11)
Fig. 1. The control phase of the developed ADP-based DETNOC method.
In similar to (44), we deduce
V7(2) = Vo (D), 47)
Then, the approximation DETOC law is given by
s o175 o it s
0.2 = =3 R TZ )V (29, (48)

Replacing simultaneously 7"*(Z) and u}(Z) in Hamiltonian (27) with 7*(Z) and uc(é ), the approximate Hamiltonian is expressed
as

F(ZVT (2),052) = 9IV,(D)(I,(2) + I,(Di(Z)) + Z270Z + al (Z)Ra(Z,) + ['(2) + 8]V, (2)V! (2)d,,. (49)

¢

According to (28), 7/(2’ VV*(2), uj) = 0. Thus, there exists an error between (28) and (49). Let ¢, be the error, we have

e, = H(ZNT(2)0,2,) - X (ZVV*(2D)u?) =@, + Z270Z + 2] (Z)Ra (Z,) + I(2) + TV, (2IVP! (2)d,. (50)

where ¢, = V$,(2)(I,(2) + I,(2)i, ). The training objective of the critic NN is to make e, — 0 through tuning §, — 9,. To achieve
this objective, we should minimize the square function defined as E, = 0.5¢]e, via updating 9,. Based on the gradient descent
algorithm, §, is updated by
5 1 <0E> @, +2V¢, (VP (2,
=—-q,—— — =—q
‘A+ole,)? \ad, ¢ 1+ @l p,)?

e, (51)

, =
Let §, = 9, — 9, be the weight error vector, which can be guaranteed to be UUB with the updating law (51). The proof has been
provided in [11,20,24], so the detail is omitted here.

To illustrate the developed ADP-based DETNOC method, the control architecture is shown in Fig. 1, and the process of controller
design is provided in Algorithm 1.

3.3. Stability analysis

Assumption 3. V¢,(2), V{,(Z) and § are norm-bounded, i.e., |[V¢,(2)|| < ¢,, IVE(D) < &, and |9 < 9, where ¢, &, and §,
are positive constants.

Theorem 3.  Considering the system (21), Assumptions 1-3, the approximate DETOC law (48), if the dynamic event-triggering
condition (31) is satisfied, the closed-loop system (21) is guaranteed to be UUB and P(t) is asymptotically stable.

Proof. Choose the Lyapunov function candidate as

Ly =7*Z)+7*( 2+ P (52)
—— Y~ Y~
Ly L3 L3

Case 1: There is no event triggered, i.e., Vt € [t,,7,,). Differentiating (52), yields

Ly =0, (53a)

Ly = V7T (1,(2) + T,(Di(Zy)), (53b)

Ly = P(0), (53¢)
7
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Algorithm 1 ADP-based DETNOC method

Step 1: Switch control law design
1-1: Construct the sliding mode function as

t
6(Z,n=6(2)-6(Zy) - / M) (DL,(2) + T(D)u (D))dr.
0

1-2: Design the adaptive term 6, which is updated by 0= —(1/7)&TIM(2)I,(Z)u,. Moreover, design a discontinuous control law
ug = —Ksgn(Z(Z)) to maintain the system trajectory on SMS for obtaining the SMD

Z =1,2) + Iy(Z)u, + H2)F(2).

Step 2: Dynamic event-triggered control law design
2-1: According to the nominal version of the SMD, define the value function as

7(Z.u,) = / (Fr@+ V7 (V7 (2)+Z2"0Z +ul Ru,)dr.
t
2-1: Design a dynamic event-triggering strategy as
t,) = inf {z > 1,1P() + (1 - HZT0Z — L22le,)|I?) < o}.

2-2: Introduce a critic NN to approximate the optimal value function, the weight vector of the critic NN is updated by

S——
Y, =—-a0, ——— — .
¢ “A+@le)? \ 09,

2-3: Obtain the dynamic event-triggered control law as

12 =~ R ITE VG0,

Step 3: Integrate the discontinuous control law u, and the ADP-based DETOC law 4.(Z,)
3-1: From composite control law (8), integrate the control laws u,; and ﬁc(fs) as

u=-Ksgn(=2(2)) - %9R_IIbT(2S)V$I(2S)SU.

3-2: Apply the composite control law to nonlinear system (1) with uncertainties, disturbances, and dead-zone.

From (28) and (60), we have

Ly=-v7* N1, - 2702 — ' (2)Ru}(2) + V7T (DI D)0, (2,) + P(1) - [(2) - VIV T (Z)VV *(2)

<-2T0Z - u T (DR (2) + VT T (DLW 4,2 ) — ul(2) + P(t) = VV* (VT *(2)

<= 2707 ~WT @R + SITy@)AZ) ~ @I + P()

<-Z70Z - u T (DR (2) + %gz I6*(2) — 4, (2 IP +P(0). (54)

| ——
(e}
Considering 9, = 8, + J,, we get
S A N 2
0 = || (1@ -u)) + (WE) - 12|

2

2
2 (+2

IA

u'(2)—ui(Zy) w2y -2y

2
2 2
+2L2le, )

IA

1. —12- 5.4 5 5
S 1PE | Va8, - Va2, - VE )
2|

<3 [FHPE2 0 = V(2 — VT (Z ), 11* + 2L e (D
<2L%le, N + I 1178% (P28% + ). (55)
——
Jig

According to (32) and (55), (54) becomes

Ly==2T0Z = Plu}DI* + Lig* e, 1> + 1T + P(1)
=-w?ZT0Z - (1 - o) Z70Z - IrlPI @I + L2 lle,ON* + 1T — aP(t) + (1 - wHZTQZ — L2g*|le,(1)]|*- (56)
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Therefore, it yields

Ly < @ L @I ZI* = IIFlP e DI = aP@) + 1. (57)
Then, if Z lies outside the compact set Q; = {Z: | Z|| < V1T /(w? 4, (Q))}, we have
Ly < =[IrlPluf (D)1 - aP() <0, (58)

Furthermore, it shows L; < —||r[|[lu*(2)|I> < 0,VZ # 0 and L3 < —aP(r) < 0,VP(r) # 0. Hence, it reveals that the closed-loop system
(21) is guaranteed to be UUB and P(r) is asymptotically stable using the Lyapunov theorem [26,28].
Case 2: Events are triggered, i.e., V¢ =, . Calculating the difference of the Lyapunov function candidate, we have

ALy = ALy + AL3yy + ALss, (59)
with

ALy =7*Zo) -V (Ey). (60a)

ALy = V7 (Z2(t00) = 7 (247, ))- (60b)

ALy3 = P(tyy) — P, ), (60c)

where h(t, ) = limy_o h(t, — A1), and A(-) denotes Z(-) and P(-), respectively. According to the proof presented in Case 1, L.y <0
for t € [t,,1,,) if Z lies outside the compact set (58). This gives that L; is strictly decreasing over ¢ € [t,,¢,,,). With all systems
signals are continuous, it means that AL;; <0, AL3, <0 and AL3; < 0. Then, we have

ALy < —x(lles1 I <0, (61)

where e, ((t,) = Z,,; — 2, and y(-) is a class-K function. Thus, it can be concluded that the Lyapunov candidate is decreasing
Vi=tg,.

Combining Cases 1 and 2, one can obtain the conclusion that the UUB stability of Z and the asymptotic stability of P(r) are
guaranteed under the dynamic event-triggering condition (31) and the approximate DETOC law (48). []

Remark 4. Recall the property that multilayer NNs are universal approximators, capable of approximating smooth functions on a
compact set [26,36]. However, there is always a deviation between the approximate function and the target function in practice.
Observing Theorem 3, this deviation results in an error term given by 0.5]r~1||2g2|| - V¢,(£,)—- Vo] (Z,)9, 1> occurrence in (55), which
is upper-bounded by a positive constant /1. In Theorem 3, according to Lyapunov theorem, only UUB stability can be guaranteed
for the closed-loop system (21), rather than asymptotically stable, due to the existence of IT.

Assumption 4. The nonlinear function Z,(Z) is uniformly bounded on £, i.e., supz¢q I7,(2)Il < K,||Z|l, where K is a positive
constant [28,37].

In the following sequence, we will provide a proof that the Zeno behavior is excluded.

Theorem 4. Let Assumption 4 holds, considering the system (21), the dynamic event-triggering condition (31), the minimal intersampling
time At;, has lower bound by

— 27T
FTANES L1n<1 L YPWIh+ -2 QZ) >0,
K, B

(62)

z

where K, and B3, are positive constants.

Proof. Differentiating the event-triggered error e, (), yields

d(ey(n)
dt
By using the (29) and (48), we have

=e()=2,- 2= -2 V€ t,1,,)

llegll = 1211

= ‘z,,(Z) +I1,(2)a,
7@ +||72228
K lixll + K,
K2, —e,ll +K,
< Ky lleyll + K N1 2,1+ K, (63)

IN

IN

IN
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Fig. 2. Critic NN weights.

where || Z,(2)i || < K,, 1,(2) is a Lipschitz function which satisfies ||Z,(2)|| < K[| Z|l, where K is a positive constant. According
to [28,37], we can obtain from (63)

K20+ K
leyl) <~ (st - 1) (64)
!

for all ¢ € [1,,1,,,). Recalling the dynamic event-triggering condition (31), we have

P/ + (1 -w)ZT0Z

2

lle, 17 > s 65)
for t =t,,;. According to (64) and (65), it indicates that the sth intersampling time satisfies

P/B+ (1 —w®)ZT
IS+1—tSZLln 1+ VP/h+ (- w2102 >0,
K, B,
where B, = w That is to say, At,;, = min{r,,; —t,} > 01in (62). O
4. Simulation studies
4.1. Example 1
Consider the following nonlinear system
K(2)
o(1) — F(2)
Z= 2 [ (D) + sin(2t) cos(r)) + 015 (0.252, sin(Z, Z,) cos(Z ); (66)
T2+ 050202, T | o[V =2 v

where Z = [Z,,Z,]" € R? is the system state, u is the control input, the input dead-zone D(u) is given as m, = m, = 0.5, o, = 0.25
and o, = —0.25, and the nominal system can be given by

; Z; 0

<= [—zl +0.5(1 - Zﬁ)&] " ] “ ©7)

First, the ADP-based DETOC law is designed for nominal system (67). Define the value function as (22), and its parameters are
setas Q = I, R=1and I'(Z) = || Z||*. For the critic NN, 0,(2) = [22,2,2,. 221", §, = [8,1, 8,0, 9,317, @. = 1.8. The parameters of
the triggering condition are selected as L, = 15, w =06, § = 1.2, # = 0.6, P(0) = 4, and « = 0.3. Simulation results are illustrated in
Figs. 2-10.

From Fig. 2, it can be observed that the weight vector of the critic neural network J. converges to the values
[1.2312,0.1066, 1.1633]" finally. Fig. 3 provides the state trajectories of the nominal system. As shown in Fig. 4, the DETOC input
i, is a piecewise signal which is updated at 7, only and keeps unchanged during [#,,7,,,) under the DETC mechanism. The curves
of dynamic event-triggered threshold and error are shown in Fig. 5. The sampling period of TTC mechanism is set as 0.05 s, the
updating times of the DETC, ETC and TTC are depicted in Fig. 6, it is clear from this figure that the less updating frequency of the
control signal in DETC than ETC and TTC mechanism, and easy to conclude that the computational and communication resources
can be saved. Fig. 7 presents the curves of dynamic variable and its low bound function, one can find that the dynamic variable

—_
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Fig. 5. Dynamic event-triggered threshold and error.

is always greater than or equal to the bound function with the time increasing. The triggering time instants are shown in Fig. 8,
which demonstrates that Zeno behavior is avoided.
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Table 1
Parameters of the pendulum system.
Parameter J L M g fa
Value 4 kg m? 1.5 m 4/3 kg 9.8 m/s? 0.8 N m s/rad

Next, the sliding mode function is designed as (9) with ¢(Z) = Z, and 9(Z) = [0, 1]. In order to weaken the chattering, the
discontinuous control law (11) is designed as u; = —Ktanh(Z](Z)MT(2)6(Z)/¢) to replace —Ksgn(Z] (2)M' (2)6(2)) with & = 0.0001
and K = 3. The composite control input (8) with (11) and (48) is employed to drive the system (66) for simulation. As depicted
in Fig. 9, the states of the closed-loop system converge to a small region of zero (SRZ) within 20 s. Fig. 10 presents the curves of
the DETOC and the composite control input. Based on the aforementioned discussions, it is evident that the proposed ADP-based
DETNOC method effectively addresses the challenges posed by dead-zone, disturbance, and uncertainties.

4.2. Example 2

Consider the following pendulum system [38]

" . MgL
9:—%9— Jg sin(€)+§u,
where 6 € R is the pendulum’s angle position, u is the control input, and the system parameters are shown in Table 1. Define Z, =0,

Z, = 6, and considering dead-zone, disturbance, and uncertainties, we have
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o(t) —— F(2)
—— ——
- oz +1 0| (D@ +sinGn) + (0.252, sin(Z,2,) (68)
—49sin(Z;) —0.2Z,] = ]0.25 e 1277

where Z = [Z,, Z,]" € R? is the system state, and the parameters of the dead-zone are set as m; = m, = 0.5, 0, = 0.25 and o, = —0.25.

First, an ADP-based DETOC law is designed to the nominal system

; Z, 0

<= [—4,9 sin(Z,) - 0.222] * [0.25] “ ©9)
The value function parameters are chosen as Q = 2I, R = 0.05, and I'(Z) = || Z||%>. The structure of critic NN is chosen as the same
to Example 1, and the learning rate of critic NN is set as a, = 2.

The learning process of critic NN is depicted in Fig. 11, and the vector of the critic NN weight finally converges to [0.4196,
—0.2065, 0.5616]". Fig. 12 shows the convergence of states of system (68), it is evident that the states tend to an SRZ after 15s.
From Fig. 13, we can observe that the DETOC input is updated in an aperiodic manner. Fig. 14 presents the curves of dynamic
event-triggered threshold and error, which indicates the effectiveness of the designed triggering condition. In comparison with the
TTC method, a equidistant period of 0.05 s is employed. From Fig. 15, we observe that DETC requires a lower updating frequency of
the control signal compared to ETC and TTC mechanisms, which means that DETC can help save computational and communication
resources. In Fig. 16, it is emphasized that the dynamic signal is indeed restricted by an exponential signal. From Fig. 17, it can be
seen that the minimal intersampling time At ;, = 0.047 is greater than zero, indicating the avoidance of Zeno phenomenon.
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Then, in the sliding mode function, G(Z) = 4Z,, M(Z) = [0,4]. Similar to Example 1, in the discontinuous control law (11),
—Ksgn(Z](Z)MT(Z)S) is replaced by —Ktanh(Z](Z2)M'(2)&/&) with & = 0.0001 and K = 4 to reduce the chattering phenomenon.
The composite control input (8), composed of (11) and (48), is employed to control the uncertain system (69) for simulation. As
depicted in Fig. 18, one can observe that the states of closed-loop system converge to an SRZ as time increases. The curves of the

DETOC and the composite control inputs are presented in Fig. 19. The simulation results illustrate the effectiveness of the developed
ADP-based DETNOC method.

5. Conclusion

The paper presents a DETNOC method for addressing the optimal control problem for uncertain nonlinear systems with unknown
dead-zone and disturbance. By combining ADP and ISMC techniques, the proposed method involves the design of a composite
control law comprising discontinuous and DETOC laws. The discontinuous control law effectively eliminates the effects of dead-
zone, disturbance, and the matched component uncertainties, while obtaining the SMD. Subsequently, the ADP-based approximate
DETOC law guarantees the stability of the SMD. The Lyapunov stability theorem is employed to prove the UUB of the closed-loop
system. Simulation results are presented to demonstrate the effectiveness of the proposed DETNOC method.

Fixed-time and predefined-time control methods have attracted widespread attention in the control field, as they can guarantee
the closed-loop systems stability within fixed-time and predefined-time, respectively. In future work, fixed-time optimal and
predefined-time optimal control will be further investigated for nonlinear systems with input constraints.
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1 | INTRODUCTION

| Yonghua Wang? | Dacai Liu! | Jiawei Zhuang! | Yongwei Zhang?

Summary

In this paper, an event-triggered nearly optimal tracking control method is
investigated for a class of uncertain nonlinear systems by integrating adap-
tive dynamic programming (ADP) and integral sliding mode (ISM) control
techniques. An ISM-based discontinuous control law with a neural network
(NN) adaptive term is designed to eliminate the influence of the uncertain-
ties and obtain the sliding mode dynamics which is equivalent to the tracking
error dynamics without uncertainties, and relax the known upper-bounded
condition of uncertainties. In order to guarantee the stability of tracking error
system and the considerable optimality, under the ADP technique, a critic NN is
applied to approximate the optimal value function for solving the event-triggered
Hamilton-Jacobi-Bellman equation and the event-triggered nearly optimal feed-
back control is obtained. The feedback control law is updated and transmitted
to plant only when events occur, thus both the communication and the compu-
tational resources can be saved. Furthermore, the stability of tracking error is
proven thanks to Lyapunov’s direct method. Finally, we provide two simulation
examples to validate the developed control scheme.

KEYWORDS

adaptive dynamic programming, event-triggered mechanism, integral sliding mode control, neural
networks, uncertain systems

With the existing of model uncertainties and disturbance, there will always be a deviation between practical control sys-
tems and their nominal systems employed for controllers design.!? It is necessary to investigate a robust control method
for guaranteeing the stability and desired performance of systems in the presence of deviation. During the past few years,
many advanced control methods, such as adaptive control,>* robust control,> H,, control,’ and sliding mode control
(SMC),”® have been used to design robust controller. Among these methods, as an effective technique, SMC has attracted
much attention due to the insensitive of parameter changes and the ability of fast respond.”!? Liu et al.!! proposed
an adaptive SMC method for nonlinear systems with parametric uncertainties and external disturbances by combining
immersion and invariance adaptive scheme. Ding et al.}? developed a discontinuous and a quasi-continuous second-SMC
methods for uncertain nonlinear systems, and the chattering phenomenon was reduced in the last method to some extent.

© 2023 John Wiley & Sons Ltd. | 2639
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The traditional SMC composes two parts, that is, the initial reaching and the sliding motion phases, and the robustness is
only occurred during the sliding motion. In order to avoid the reaching phase and improve the robustness, many integral
SMC (ISMC) methods!*!® have been developed in recent years. Cao et al.'* developed an ISMC method for nonlinear sys-
tems with uncertainties by designing a nonlinear integral-type sliding mode surface (SMS). In these methods, the system
trajectory starts on the sliding manifold for any initial system state by designing an integral sliding mode function.

Although the aforementioned methods have been widely employed to design robust controllers, they are required to
not only stabilize the systems with uncertainties, but also satisfy the considerable optimality in practical applications.'®
By integrating ISMC technique and optimal control (OC) approaches, many approaches designed a composite control law
to achieve the objective for linear systems.!”2? Surjagade et al.>! developed an optimal ISMC method for a pressurized
heavy water reactor system, this method combined the optimal control law with ISMC law to guarantee the stability of
the closed-loop system when the existing of uncertainties and external disturbances. Das and Mahanta?? proposed an
optimal second-order SMC method for uncertain linear systems by combining the terminal SMS and the integral SMS.
On the whole, a discontinuous control law is employed to eliminate the effect of uncertainties or disturbances and obtain
sliding mode dynamics, and the OC law from solving algebraic Riccati equation is obtained to stabilize the linear sliding
mode dynamics. However, for the nonlinear systems, these methods are not easy to implement since they are difficult to
obtain the OC law for nonlinear sliding mode dynamics by solving the Hamilton-Jacobi-Bellman (HJB) equation, which
is difficult or even impossible to obtain the analysis solution.

Fortunately, as two effective techniques, adaptive dynamic programming (ADP) and reinforcement learning (RL)
are viewed as synonyms which overcome this difficulty by computing forward-in-time.?*?> Many significant ADP-based
control methods have been reported to solve the OC problem for nonlinear systems.?%2” Vamvoudakis and Lewis?® devel-
oped an actor-critic (AC) strategy to solve the OC problem for nonlinear systems. Vrabie and Lewis®® developed an
integral RL-based method to obtain the solution of HIB equation and solve the OC problem of partially known nonlin-
ear systems. It is easy to find that the aforementioned results are achieved for optimal regulation problems. However,
in many practical systems, the objective of controller design is to guarantee the system state tracking an user-defined
reference trajectory rather than regulate the system state approaching the origin.3®3! Hence, it is significant to track
the user-defined reference trajectory with optimal performance and is also one of the common problem in ADP- or
RL-based control community. For discrete-time (DT) nonlinear systems, the optimal tracking control problem was con-
verted into an OC problem for tracking error dynamics and a neuro-optimal tracking control scheme was developed
for nonlinear systems via the ADP technique.3? Wei et al.3* developed a data-based optimal tracking control method for
DT nonlinear systems and to apply the coal gasification system. For continuous-time (CT) nonlinear systems, Modares
and Lewis** developed an integral RL-based tracking control method for CT nonlinear systems. Zhao et al.3> developed
an ADP-based robust tracking control method for CT nonlinear systems with uncertainties, where the tracking control
problem was transformed into an OC problem for the augmented system. Wang et al.3¢ developed an adaptive-critic-based
robust tracking control method for uncertain nonlinear systems, and this method was applying to a spring-mass-damper
system.

However, these methods adopted time-triggered mechanism, the updating of the control law with a fixed period
may increase the energy consumption, and waste computational and communication resources. In order to save the
computational and communication resources on the basis of satisfying some control performance, many researchers
have introduced the event-triggered mechanism to ADP, and developed many ADP-based ETC methods,>”*° where the
event was defined as the event-triggering error exceeded the designed event-triggering condition and the control law was
updated only when the occurrence of the events. For example, Vamvoudakis*® developed an event-triggered OC (ETOC)
method for CT nonlinear systems, this method was implemented based on AC structure, a critic and an actor neural
networks (NNs) were employed to approximate the cost function and the ETOC law, respectively. Wang et al.*? devel-
oped an event-triggered robust control method for uncertain CT nonlinear systems, where the robust control problem
was transformed into an ETOC problem by designed a modified value function. For the tracking control problem, Zhang
et al.*! developed an event-triggered tracking control (ETTC) scheme for CT nonlinear systems, the designed control law
composited with a feedforward and a feedback control laws which were employed to track the reference trajectory and
stabilize tracking error dynamics, respectively.

Based on the above-mentioned literature, these methods involved precise system dynamics only, research in
ADP-based ETTC has not been fully taken into account. However, the uncertainties is widely existed between actual plant
and its nominal system. On the other hand, among existing methods*>#%#? required the upper-bounded function of the
uncertainties which is difficult to be obtained. Inspired by the aforementioned literature, this paper focus on developing
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an event-triggered nearly optimal tracking control (ETNOTC) method for uncertain nonlinear systems by integrating
ADP and ISMC. The main contributions of this scheme is summarized in the following three aspects.

1. In contrast to existing methods!’-?> combined the ISMC and OC approaches to develop robust control methods for
uncertain linear systems, this paper develops an ISMC and ADP-based ETNOTC method for uncertain nonlinear
systems with the considerable optimality.

2. Unlike works3>3640-42 developing robust control methods for nonlinear systems required the known upper-bound
of uncertainties, the developed method adopts the ISMC technique with a neural network-based adaptive term to
eliminate the effect of uncertainties with unknown upper bound.

3. Different from works!7-224344 which adopted time-triggered mechanism to design the nearly optimal continuous
control law, this paper develops an ETC method to save the computational and communication resources.

The reminder of this paper is organized as follows. Section 2 presents the problem statement. Section 3 introduces

the composite control law design in detail. In Section 4, a numerical and a practical examples are employed to verify the
effectiveness of ETNOTC method. In Section 5, conclusion is given.

2 | PROBLEM STATEMENT
Consider the uncertain nonlinear system described by
8(t) = F(s(1) + G(s(O)u(t) — AF(s(t)), 1)

where s € R" is the system state, u € R™ is the control input, AF(s) = G(s)d(s) € R" is the uncertainties, F(s) € R" and
G(s) € R™™ are continuously differentiable matrix functions, and G(s) is invertible.

Assumption 1. The system (1) is controllable, and the system dynamic F(s) + G(s)u is Lipschitz continuous
on a compact set Q and 7(0) = 0.17

For the tracking control, the system state is expected to track an user-defined reference trajectory which is give by

Xa(t) = Pp(xa), ()

where x; € R" is the reference state, and ¢(x;) € R" is an Lipschitz continuous function. According to (1) and (2), the
tracking error is defined as 6(t) = s(t) — x4(¢), and the tracking error system is given by

5(t) = 8(t) — Xq4(t)
= F(s) + Gs)u(t) — AF(s) — p(xq). (3)

In the following, a composite control law u is designed to guarantee the system state tracking the reference trajectory and
minimize a given value function as far as possible.

3 | COMPOSITE CONTROL LAW DESIGN VIAISMC AND ADP

For the tracking error system (3), an ETNOTC method which integrates ADP and ISMC techniques is developed to design
a composite control law as

U=u,+ug+w, 4
where u, € R™ is the discontinuous component to eliminate the influence of the uncertainties, u; € R™ is the continuous

feedforward control component to track the trajectory, w € R™ is the continuous ADP-based feedback control component
to guarantee the tracking error stabilization.
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3.1 | Discontinuous control law design via ISMC

The integral sliding mode (ISM) function is designed as

t
S(6(t), 1) = Ab — Ady — / A(F(s(2) + G(s(r)W(T) — (xa))dr, (5)
0

where 6y = s(0), W = ug + w,A € R™" is a design matrix. It is worth pointing out that the ISM function satisfies S(6y, 0) =
0 for any initial state &y, the state of tracking error system (3) starts on the ISM surface, thus the reaching phase can be
removed.

Differentiating S(56(t), t) with respect to t, it yields

5(8,t) = A6 — A(F(s) + CW — ¢p(xq))
= A(F(s) + G(s)(u — d(s)) — Pp(xa)) — A(F(s) + G(OW — ¢(xq))
= AG(S)(uc — d(s)).

According to SMC theory, let S(s, t) = 0, the equivalent control law u., is derived as
Uceq = d(S). (6)
Substituting (6) into (3), we get the sliding mode dynamics as
5(t) = F(s) + GO)W — (xa). (7)

However, the u.q cannot be obtained since the unknown d(s). To keep the integral sliding mode function as zero, that is,
S(6,t) = 0, the discontinuous control law u, is designed as

u. = —Ksgn(g), (8)
where E = GT(s)ATS, sgn(-) is the sign function, K > disa sliding mode gain, d is the norm-bound of d(s). In order to
relax the requirement of the known d, a radial basis function (RBF) NN-based adaptive team is designed to estimate the
uncertainties as

d(s) = 0*Th(s) + e,

where 6* € Rl+X™ is the ideal weight, I; is the number of neurons, h(s) € R is a RBF, and ¢ is the approximation error.
Denote § € Rl*™ be the estimation of 6*, we have

d(s) = 0 h(s).
Furthermore, the discontinuous control law u,. in (8) is changed as
u. = —Ksgn(g) + d(s), 9

where K is the improved sliding mode gain satisfying K > ¢, and ¢} is the norm-bound of e.

Theorem 1. For the nonlinear system (1), the designed integral sliding mode function (5), and Assumption 1,
the discontinuous control law u. (9) can maintain the system state trajectory on the ISM surface S = 0 with the
adaptive law

b= —%h(s)STAQ(s), (10)

where y > 0 is the updating rate.
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3.2

Proof. Consider the Lyapunov function candidate given as
() = %STS + gtr{éTé}, 1)

where § = § — 6*. The time derivative of the ¥; is deduced as

1() = STACF(s) + G(s)(u — d(5)) — p(xa)) = STACF(S) + GOW — p(xa)) + ytr {60}
= STA(F(5) + G(s)(uc + W — d(s))) — STA(S)(F(s) + G(5)W) + ytr{§T§ }

= STA<Q(S)<—ngn(E) +d(s) - d(s))) +ytr{8'0)
= —KSTAG()sgn(®) + rtr{8'0} + STA©)G(s) (d(s) - d(s))

= —KSTAG(s)sgn(2) + ytr {0} + STAg(s)<éTh(s) — 0" Th(s) — e). (12)

Considering the adaptive law (10) and 6= é, (12) becomes

1) = —KSTAG(s)sgn(E) + STAg(s)(éTh(s) - €> —tr{0"h(s)STAC(s)}

= —KSTAG(s)sgn(E) — STAG(s)e
< —K|ISTAG®)|l1 — ISTAG(s)el|
< —(K - e)|ISTAGE) 1. (13)

Therefore, if K > ¢, holds, the system state trajectory is maintained on sliding mode surface. [

Remark 1. 1t is noticed that the improved sliding mode gain K is different from the gain £, where K depends
on the norm-bound of approximation error € instead of the norm-bound of the uncertain term d(s). In practical
applications, it is difficult to obtain the norm-bound of of the uncertain term. The approximation error e can
be guaranteed to be arbitrary small by selecting sufficient number of neurons.*>*® Although the selection of
gain K is challenging, there is no guiding method to select an optimal sliding mode gain, and it can be selected
based on repeated “trial and error”.

Remark 2. From (13) if the sliding mode gain K is chosen as K > ¢, we have X,(f) < 0, the Lyapunov
candidate function (11) will decrease gradually and the sliding mode surface S will converge to zero.

Remark 3. In this paper, a tracking control problem is investigated for nonlinear uncertain systems. Indeed,
it is well known that ISMC is an effective technique to deal with the uncertainties of nonlinear systems. How-
ever, the stability of the closed-loop system is only the basis, and the control performance and cost should be
further considered in the process of controller design. Recently, as a powerful method, ADP has been widely
employed to solve optimal problems. As a result, this paper combines ISMC and ADP to develop an ETNOTC
method.

Remark 4. For the ETNOTC problem, the main technical difficulty lies in that (1) a neural network adaptive
term is designed to relax the unknown bound of uncertainties; (2) a discontinuous control law is developed to
eliminate the effect of the uncertainties; (3) an ADP-based event-triggered feedback control law is designed
to satisfy the considerable optimality.

|  Continuous control law design via ADP

Assume that the desired trajectory satisfies

Xq(t) = F(xq) + G(xq)ug,

WILEY— 22

(14)
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where uy is the feedforward control law. Combining (2) and (14), we have
ug = G (xa)(Pp(xa) — F(Xa)), (15)
where G*(xy) denotes the generalized inverse of G(xy). Substituting (15) into (7), the tracking error dynamics is given by

5(t) = X(t) — X4(t)
=TF(s) + G(s)(uq + w) — P(xq)
= F(8) + G()G* (xq)(d(xa) — F(xq)) + G(S)W — p(xq).

Letting F5 = F(s) + G(8)G* (Xa) (p(xa) — F(xq)) — $(xa), we have
5(t) = Fs + G(s)w. (16)

Then, under the event-triggered mechanism, an ADP-based control method is developed to design the feedback control
law w. The value function of (16) is defined as

V() = / " (6"(1)Qs6(r) + w'(r)Rw(r))dr, 17)

t

where Q; € R™" and R € R™ are symmetric positive definite matrices. Based on (17), we have
0=26"Qs6 + W Rw + VVT(6)(Fs + G(s)w)
with V(0) = 0, where VV(8) £ 9V(5)/d5. The Hamiltonian of system (16) is given by
H(VV(8),8,w) = 8" Qs6 + W Rw + VVT(8)(Fs + G(s)w).

The optimal value function V*(§) satisfy the following HJB equation

0= mugnH(VV*(é), S5,w), (18)

where VV*(8) £ aV*(6)/05. We drive from (18) that

OH(8, VV*(6), w)

=0,
aw -
where w* is the optimal tracking control law and given by
woey _ Llo1aT x
w*(6) = ER G (6)VV*(6). (19)

Substituting (19) into (18), we further obtain

H(VV}(8),8,w*) = 6'Q36 + W RW* + VV*T(8)(F5 + G(s)w*)
=0. (20)
From (20), it is a time-triggered HJB equation whose solution often involves heavy computational burden and the waste
of communication resource by using ADP-based time-triggered mechanism. Hence, we developed an ADP-based ETC

method to obviate this shortcoming. Under the ETC framework, the sampled state is denoted as

§K =s(t;), VteE [t tK+1)s
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where ¢, represents the xth sampling instant, k € N. The corresponding tracking error is given by

b =8c = Xa(ty), VYt € [t ts).
Then, introduce an triggering error function as

Eo(D) = 6, = 8(), VL E [t tes).
According to (21), the ETC law is expressed by

W(b,) = WEL() + 5(1)),
Based on (22), the system (16) becomes
5(t) = Fs + G)W(dy).

Furthermore, the event-triggered optimal tracking control (ETOTC) can be obtained from (23) as

W (S) = —%R—lgT(3K>VV*($K>

WILEY— 2%

1)

(22)

(23)

4

for all t € [t, tes1), Where VV*(5,) 2 aV*(5,) / 95, By replacing w in (18) with w*(8s), the event-triggered version of HIB

equation at t = ¢, is written as

H(VV*(8),5,w*(8,)) = 8"Qs6 + w*T(5)RW*(6,) + VV*T(8)(F5 + Gls)w*(5,)).

Assumption 2. w*(8) is Lipschitz continuous, that is, |[w*(6(t)) — W*(6,)|| < Lw||E«(t)]], where L,; > 0 is a

constant.3842

Theorem 2. For the tracking error system given by (3), the sliding mode dynamics (16), Assumptions 1 and 2,

the composite control law (4) with (9), (15) and (24), if the triggering condition is designed as

(1= $57Qs6 + IrlPIw* (6,012

= T’%?
L3,

2
IE.|I” <

(25)

where L,, is a positive constant, T, is the event-triggering threshold, the closed-loop tracking error system (3) is

guaranteed to be asymptotically stable.
Proof. Choose a Lyapnuov function candidate as

() = V*(6).

Based on Theorem 1, by using the discontinuous control law u,, the system state trajectory can be forced on
integral sliding mode surface S = 0 and maintained on it. And then, applying the feedforward control law, the

tracking error system is obtained as (16). Using the trajectories of system (16), we find
2(t) = VVT(8)(Fs + Gow*(5,)).
Based on (19), we have
VVT(8)G(s) = —2w*T (8)R.
From (20), it reveals that

VV (8 F;5 = — §7Qs6 — wT () RW*(8) — VV*T(8)G(s)w* (8).

(26)

(27)

(28)
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Substituting (27) and (28) into (26), we obtain
2(t) = —67Q58 — W (B)RW*(8) — VV*(8)G(s)W*(8) + VV*T(5)G(S)W*(5,)
= —6TQ;58 + w*T(6)Rw*(5) — 2w*T(8)Rw* (8,
= =6TQs6 + (W*(3) = w*(5,)) R(W*(6) —w*(8,)) — wT(B)RW* (B,).
According to Assumption 2, we have
2(0) £ =87Qs6 + Ly lITIPNE@I = Il Iw* G0l
< =B Amin(Qa)I811* + (B> = DAmin(@a)I811” + LLIPIP NI = I Iw* G0l
where R = r'r, r € R™™ is a square matrix. Then, if condition (25) holds, we have
£2(8) < =F* Amin(Qa)IISNI* < 0
for any 6 # 0, it means the closed-loop tracking error system (3) is asymptotically stable. [
3.3 | Critic-only structure implementation
The optimal value function V*(§) can be represented via a critic NN with /. hidden neurons as
V*(8) = pcoe(d) + &(6), (29)

where @, € Rk is the ideal weight vector, 6.(5) € Rk is the activation function, and &.(8) is the reconstruction error.

Differentiating V*(6) in (29) with respect to 8, it yields
VV*(8) = Vol (8)pe + VE(5).
According to (19) and (30), we have
W) = =S RIGT) (VolGe + VE8,).
Letting . € Rk be the estimate of ¢, the approximate V*(8) is given by
V(6) = pioc(d).
and its partial derivative is given by
VV(8) = Vol (8)d,.
Based on (31) and (32), the approximate ETOTC law is obtained as
(6, = =S RGOVl
Noticing (32), the approximate Hamiltonian is defined as

Hi((e, 8,W(8,)) = 67Q36 + W (5 )RW* (6,) + VV*T(8)(F5 + G(s)W* (6,))
=&,.

(30)

(31

(32)

(33)
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Obviously, we can obtain

0&,
0P,

= Vo.(8)(Fs + C(s)W(d,)) £ 7,

where 7 is a [.-dimension column vector. To minimize the objective function @, = (1/2)E ., ¢. is updated by

b e (29) < et -

- -, s
‘A+7T7)2 \ 09, ‘A+xTm)? °

where a. > 0 is the learning rate.

Lemma 1. Let » = ¢ — { be the weight error vector, then the weight error dynamics is derived as § = —. The
weight error dynamics is guaranteed to be UUB with the updating law (34).

Proof. The related proof of Lemma 1 is similar to that in References 47,48, so it is omitted here. ]

3.4 | Stability analysis

Assumption 3. Vo.(6), VEc(6), G(s) and @ are norm-bounded, thatis, || Voc(9)]| < o, [[VE()I| < g NSl <
gand ||®|| < @, where o, &, g and @ are positive constants.”*849

Theorem 3. Take the system (16) into account, if Assumptions 1, 2, and 3 hold and the event-triggering
condition is designed as

(1 - pz)ﬁmin(gé)lléllz

)
=T, 35
a2 (35)

€I <

where 0 < p < 1, and T is the event-triggering threshold. Then, the approximate ETOTC law (33) can guarantee
the closed-loop system (16) to be UUB.

Proof. Choose a Lyapunov function candidate as
23(0) = Za1(8) + Z32(0),

where X3,(f) = V*(6) and Z3,(t) = V*(5,). The stability analysis is presented as the following two cases.
Case 1: Vt € [t, tc41), Wwe have

(1) =0, (36)
According to (20), we can derive

231(0) = =87Q36 — wT()Rw* (8) — VV*T(8)G(sW*(8) + VV*T(8)G(s)W(S,)
= —57Q;6 — wT()RW* () + VV*T(8)G(s)(W(5,) — w*(8)). (37)
Based on (19), (37) becomes
231(0) = —67Q56 — w(§)Rw* (8) + 2w*T (5)R(W* (8) — W(S,))
= —67Qs6 + wT(8)RW*(5) — 2w*T(§)RW(5,)
= —6TQs6 + (W*(8) —W(8,)) R(W*(8) —(8,)) — WT(B)RW(S,)
C IR GO (38)

= —57Qs6 + [Ir]12[[w*(6) = w(4.)
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Considering @ic = @;. + @;., we get

1" (@) = WGl = | (w'3) = w'(60) + (w"(B) = (6.) |

2

< 2w @) - wGo|| + 2w G - w0

2
+2L4|IEc(0I

IA

1, 1,2= 2 \a 2 A
SIr g VolGod. = Vol (6, )e: - V6,

IA

- : .-
SITIPE N = Ve = Vol G0l + 25 B0l

2 - =2
<20 I + I 1F (52 + & ). (39)
According to (39), we further derive from (38) as

. oA Y -2
£31(0 < =87Qs6 + 2L3 IrIPIEOIP = IFPINGOIP + 118 (5270 + e ) (40)

~
(€]

By combining (36) and (40), we obtain
23(8) < =p*Amin(Qa)IS11* + (p* = D Amin(Qa) IS + 2/IFlIPLE I Ec(0)]|* + ©.

Therefore, if the condition (35) holds and § lies outside the compact set

O
Qs=16 6]l £/ =——=— ¢,
? { el < szzmm(Q,»}

we can find that 23(f) < —p®Amin(Qs)||6]|> < 0 for any & # 0.
Case 2:Vt = tgy1, We have

A1) = Z3(S41) — Z3(8(67,)
= AZ3 (1) + ATz (0).

Noting the fact that § and V*(-) are both continuous, we derive

AX51(0) = V(1) = VF(S(,)) <0, (412)
AT3(t) = V*(Sx41) = VF(6) < =9 Ecs1(tOID), (41b)

where 6(t ;) = lima;—o 6(te41 — Al), 9(-) is a class-K function and E,.1(tx) = 5¢41 — 6,. Based on (41), we
derive AZ;(t) < 0. In the end, from the two aspects, if (35) holds, the closed-loop system is UUB. [

Remark 5. Assumption 1 which is also provided in References 1-7 is a basic assumption for the nonlinear
systems. For Assumption 2, w*(6) represent the optimal tracking control law. Based on Assumption 1, one can
find that w*(8) is Lipschitz continuous. Thus, there exists a Lipschitz constant such that ||w*(5(¢)) — w* Gl <
L, ||Ex(0)]| (References 38-42). For Assumption 3, the optimal value function V*(§) is bounded, which implies
@. is norm-bounded. Then, according to Lemma 1, the critic NN weight error dynamics is guaranteed to be
UUB. Thus, @, can be further assumed norm-bounded by ||@,|| < @., where @, is a constant. The term Vo[ ()
is the partial derivation of activation function respect 6 by selecting a suitable activation function ¢.(6) and the
term V&I (5) is the partial derivation of reconstruction error, they are reasonable to assume norm-bounded by
[[Voe(6)|] £ ocand ||VE(D)]]| £ Ec, where ¢, and Ec are constants. G(s) is the input gain function, it reasonable to
assume that it is norm-bounded by a constant.*>**3 In fact, Assumption 3 is usually employed in the ADP-based
control ﬁeld‘1-11,23-29,35-48,49
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4 | SIMULATION RESULTS

The effectiveness of the proposed ETNOTC method is demonstrated by employing a numerical and a realistic nonlinear
systems.

41 | Examplel

Consider the nonlinear system with uncertainties as

§= l 52 ] + l()] (u+d), (42)
—0.553 — 0.5s, 1

where s € [sy,s,]" is the system state, d = sin(0.6s;) cos(s,) cos(0.6s1) is the uncertainties. The reference trajectory is
chosen as
—0.5sin(t) + 0.6 cos(3t
Xq = ® ] (30 . (43)
—0.5cos(t) — 1.8 sin(3¢)

The feedback control input in continuous control component is designed by using ADP-based ETC control method
for system (16). The parameters of the value function are set as Q; = 4I and R = 0.1. In the critic NN, the learning rate
a. = 2, the activation function is chosen as ¢.(8) = 57, 6,6, 5§]T, the weight vector is defined as ¢, = (@1, @, ¢C3]T.
Figure 1 displays that the weight vector of the critic NN @; finally converge to [0.1361,0.0691,0.1613]". Figure 2
shows the feedback control and the continuous control inputs, the feedback control input w is updated at ¢, only,
and keeps unchanged during [t,t..1). Figure 3 describes that the tracking errors converge to a small region of
zero (SRZ) after 7 s. From Figure 4, it is found that the less updating frequency of the feedback control signal is
required by using ETC than TTC mechanism, which implies that the computational and communication resources can
be saved.

Then, in the discontinuous control component, the initial weight vector 0 is randomly selected within [—-1, 1], the RBF
h(s) = [hi(s), ha(s), ... , hia(s)]" is chosen as

2
—|Is—c¢
hy(s) = exp(%), (44)
" il
=
R i
(0]
=
2 il
Z
) i
© ooaf 1
002} - =Pl |
o e Pe2
0f — D3
-0.02 ‘ ‘ ‘
0 5 10 15 20
Time (s)

FIGURE 1 The learning process of critic NN weights.
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FIGURE 3 Tracking errors of system (16).
wherel=1,2, ... ,lj, and ¢ is the Ith colum vector of the matrix
-3 -2 -1 0 1 2 3
Cyq =
-3 -2 -1 0 1 2 3
The sliding mode gain is chosen as K = 0.02, A = [0, 1]. The discontinuous control law (9) is given as u, = —Ksign(AT(s)

g'(s)S) + a(s). The composite control input (4) is employed to drive the tracking error dynamics (3) for simulation. Figure 5
displays the tracking performance. As shown in Figure 6, the the tracking errors converge to a SRZ after 7 s. The curves of
composite control input and sliding mode function are presented in Figure 7. Figure 8 shows the curves of d(s) and d(s)

and their difference, we can conclude that the adaptive term is effective to approximate the d(s).

4.2 | Example 2

The pendulum system>° is formulated as

b=

_Ja, _ MeL
T

sin(6) + %(u +d),
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Uncertainties and its estimation

0.6 . . . . .

FIGURE 8 The uncertainties and its estimation.

where 6 € R denotes the angle position of the pendulum, and the parameters are given in Table 1. Let s; = 6, s, = 8, we
have

. hY) 0
s=l _ ]+l ](u+d), (45)
—4.9sin(s;) — 0.2s; 0.25

where s = [s1,5,]" € R? is the system state, d = sin(s;) cos(s,) sin(s,). The reference system is chosen as

i l—0.6 sin(t) + 0.4 cos(ZI)] . 46)

—0.6 cos(t) — 0.8 sin(2t)
First, ADP-based ETC method is developed to design the feedback control input. The value function is given as (16)

with Qs = 5I and R = 0.05. The structure of the critic NN is the same in Example 1. As shown in Figure 9, the weight
vector ¢ finally converges to [0.4230,0.1627, 0.5893]". Figure 10 shows the feedback control and the continuous control
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TABLE 1 Parameters of the pendulum system.
Parameter J L M g Ja
Value 4 kg - m? 1.5m 4/3kg 9.8 m/s? 0.8 N-m-s/rad

-
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03 e
0.8 Pe3

o
3

o
o

Critic NN weights

0.4 ,
0.3 1
0.2 ]
0.1F 1
0 ‘ ‘
0 5 10 15
Time (s)
FIGURE 9 The learning process of critic NN weights.
(A)

Feedback control
input

Continuous control

FIGURE 10 Feedback and continuous control inputs.

inputs, the feedback control input w is a piecewise signal, which implies it only updated when events occur. Figure 11
displays that the tracking errors converge to a SRZ after 15 s. Figure 12 shows the updating times of the feedback
control input, the TTC and ETC methods are required 1200 and 399 times, respectively. Thus, the computation and
communication resources are saved.

Then, in the discontinuous control component, K = 0.2, A = [0, 1], and the parameters and structure of the adaptive
term are selected as the same in Example 1. Furthermore, The composite control input is used to drive the tracking error
dynamics. Figure 13 shows the tracking performance. From Figure 14, we can find that the tracking errors converge to a
SRZ after 15 s. Figure 15 displays the curves of the composite control input and the sliding mode function. According to
Figure 16, we known the adaptive term El(s) estimate d(s) successfully.

180

95U8017 SUOWIWOD SA1E81D 8qeot[dde aup Ag peusencb a1e 9jo1e YO ‘9SN Jo SojnI Joj Akeuqi8UlJUQ A8]IM UO (SUONIPUD-pUE-SWR)L0o A3 | 1M AleIq1jeul Juo//SAny) SUORIPUOD pue SWiB | 81 8eS " [120z/20/70] uo AkeiqiTauliuo A|im ‘i nouby eulyd yinos Agq 660 0U1/Z00T 0T/I0p/uoo"A8|im Al ijeuluo//sdny woij pepeojumod ‘v ‘v20z ‘6EZT660T



10991239, 2024, 4, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/rnc.7099 by South China Agricultural, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

=)
2 —
=
53]
&)
Z
<
jan]
N
o o
T o (<]
< S B
_
_
L 4 o I p— EETe)
39 & 3%
. m n
‘ 18 Lu H e 18
i
—_ 1 —
N — o
N = N
L {w () L Tw 1 w© ()
£ ! £
= 3 o p Lt (==
L & T w
‘ i \ = E i
°
=
=}
o
Q
= 40 v - B
Q
[a+]
0
& ~ = 5}
TIos 3 , , , , , , 3 g
< 8 8 8 g8 g8 8 g -° & £
+ = i o = 3 « ] D 1) 3 & o . o m
2 - |5 = 2 - 2 =)
S 2 indui josu00 = - . - BS)
sJolie Bunjoel | W yoeqpas) ay; Jo sawi Buiepdn ay 2 sel0}oalel] pue seiels walsAs W
o —_
£ g g
(5] M Q
g e kS
4 =} 4
8 Q 2
= < =~
= = =

= | WILEY
FIGURE 11
FIGURE 12
FIGURE 13



10991239, 2024, 4, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/rnc.7099 by South China Agricultural, Wiley Online Library on [04/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

2655
182

WILEY

o o o o
T @ @ " @ @
—
w0 w @
n =3
1 1
L 1w L o) L 1w H 1 1w
[ Y 4 [
o o
- 1 r 18 r 1R [ IR
— —_ e
(2 (%] (2
- -~ -
- \.rme L ) L 1w O L \we
- -~
S € S
L 1o L 1o L 1o L 1o
- = = -
r 1w + 4 10 - 4 r 1w
0
=)
-
. o ° x ° . L L L L n - L o
L2l - Le] 0 o 7o) L < @ N - =4 - N @ < 0
- - - ' o o©o o o o $ © © ¢ o

slole mc_v_om_.__. indui _o:cou uonouny epow Bulpls uonewse sy pue ww._Em_tm_ED

FIGURE 15 The curves of composite control input and sliding mode function.

FIGURE 14 Tracking errors of system (3).
FIGURE 16 The uncertainty and its estimation.

ZHANG ET AL.




2656 W ILEY ZHANG ET AL.

5 | CONCLUSIONS

In this paper, we develop an ETNOTC method for nonlinear uncertain systems by integrating ADP and ISMC techniques.
The discontinuous control input with an adaptive term is developed to eliminate the influence of uncertainties and obtain
the sliding mode dynamics, this method can relax the assumption of known upper-bounded function of uncertainties,
and the designed continuous control input composed of feedforward and feedback control inputs is employed to achieve
the tracking task. The ADP-based feedback control input is updated only when events occur, thus the updating frequency
is reduced, and the computational and communication burdens are reduced. According to Lyapunov stability theorem,
we prove that the closed-loop tracking error system is asymptotically stable. Finally, the simulation results declare that
the developed ETNOTC method is effective.

Itis noticed that dead-zone is one of the most commonly encountered non-smooth non-linearities and widely exists in
many mechanical and electrical systems, such as mechanical transmissions, hydraulic actuators, and power generators.
Furthermore, finite-time and predefined-time control methods have attracted widespread attention in the control field,
which can guarantee the close-loop systems stability under finite-time and predefined-time, respectively. In the future
work, finite-time optimal and predefined-time optimal tracking control will be further investigated for nonlinear systems
with dead-zone.
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