Qiaoyi Hu

NameQiaoyi Hu
Titleassociate professor
Areas of ResearchNonlinear partial differential equation
Personal Profile

Qiaoyi Hu

 Associate Professor of mathematics, Department   of Mathematics, South China Agricultural University,  Guangzhou  510642, China.   

E-mail: huqiaoyi@scau.edu.cn  

 

Education

Jun. 2002,   B.Sc. in Applied Mathematics,   Sun Yat-sen University,  China

Jun. 2005,   M.Sc. in Pure Mathematics,       Sun Yat-sen University China

Jun. 2010,   Ph.D. in Pure Mathematics,       Sun Yat-sen University, China


Professional experience:

Mar. 2015- Mar. 2016, Visiting Scholar,   Department of Mathematics, University of Texas Pan American,  USA

Dec. 2013-,  Associate Professor, Department of   Mathematics, South China Agricultural University,  China

Jul. 2008-Nov. 2013,  Lecturer, Department of Mathematics, South   China Agricultural University,  China

Jul. 2005-Jun. 2008,  Assistant, Department of Mathematics, South   China Agricultural University, China


Reseach area(s) and grands

Reseach area : Nonlinear partial   differential equations and Applied analysis.

Reseach grands:

1.  Guangdong Natural Science Foundation (No. S2011040001127), 2011.10-2013.10.

2.  The Foundation for Distinguished Young Talents in Higher Education of

    Guangdong, China (No. LYM11030), 2012.1-2013.12.

3.  National Natural Science Foundation of China (No. 11226186),2013.1-2013.12.

4.  National Natural Science Foundation of China (No. 11401223),2015.1-2017.12.

5.  Guangdong Natural Science Foundation (No. 2015A030313424), 2015.8-2018.8.

6.   Science Technology Program of Guangzhou (No.201607010005),2016.4-2019.3.


Research   activities: 

1.Dec. 2, 2007—Dec.6City University of Hong Kong, Winter school on

   Applied  Mathematics and the international conference. 

2. Jul. 18,   2009—Aug.5South China   Normal University, Guangzhou, The

   7th Summer School and   Conference on  Nonlinear Paritial Differential

    Equation.

3. Jul. 13, 2011—Jul.28,  Sun Yat-Sen University, Guangzhou, The 9th

   Summer School and Conference on  Nonlinear Paritial   Differential

   Equation.

4. Mar. 28, 2015—Mar.29University of Houston, Houston, TX,   USA,

   Participated the 37th Texas Conference on Parital Differential

   Equation,  and gave a talk entitled with“Initial   boundary value problem

   for a coupled Camassa-Holm system with peakons”.

5. Apr. 1,   2015—Apr.4University   of Georgia, Athens, Georgia, USA,

   Participated the 9th IMACS   Conference on Nonlinear Evolution Equations

   and Wave Phenomena: Computation   and Theoryand gave a talk entitled

     withWell-posedness and blowup phenomena for a new integrable   system with peakon

     solutions”.

 

Current research interests: 

I am now working on various problems of nonlinear differential   equations arising in mathematical physics. Most of my current work has   concentrated on the analysis of local well-posedness, global existence and   blow-up phenomena of strong solutions.

Publications

  1. Qiaoyi   Hu and Z.Yin, Global existence and blow-up phenomena for a periodic   2-component Camassa-Holm   equation, Monatsh. Math., 165(2012),217–235.

  2. Qiaoyi Hu and Z.Yin, Well-posedness and   blowup phenomena for a 2-component periodic Camassa-Holm equation, Proc. Roy. Soc. Edinburgh Sect. A,   Vol.141, No.1 (2011),   93–107.

  3. Qiaoyi Hu, Global existence   and blow-up phenomena for a weakly dissipative periodic 2-component   Camassa-Holm system, J. Math. Phys.,   52, 103701 (2011), 1–13. 

  4. Qiaoyi Hu, On a periodic   2-component Camasssa-Holm equation with vorticity, J. Nonlinear Math. Phys., Vol.18, No.4(2011),541–556.

  5. Qiaoyi Hu and Z. Yin, Blowup phenomena for a new   periodic nonlinearly dispersive wave equation,Math. Nachr., Vol.283,   No.11 (2010), 1613–1628.

  6. Qiaoyi   Hu and Z. Yin, Blowup and blowup rate of solutions to a weakly   dissipative periodic rod equation, J.Math. Phys., 50, 083503 (2009),   1-16.

  7. Qiaoyi Hu, L. Lin and J. Jin, Initial boundary value   problem for a coupled Camassa-Holm system with peakons, Appl. Anal., Vol. 92,   No. 6(2013), 1254–1270.

  8. Qiaoyi Hu, Global existence and blow-up phenomena for   a weakly dissipative 2-component Camassa-Holm system, Appl. Anal., Vol.   92, No. 2, 398 –410(2013).

  9. Qiaoyi Hu, L. Lin and J. Jin , Well-posedness and blowup   phenomena for a three-component Camassa–Holm system with peakons, J. Hyperbo. Differ. Eq., Vol. 9, No. 3, 451–467(2012).

  10. Qiaoyi Hu and Z. Yin, Local   well-posedness and blow-up phenomena for a weakly dissipative rod equation,   Acta. Math.Appl.Sin., (2012) (Accepted).

  11. Qiaoyi Hu and Z. Qiao, Persistence   Properties and Unique Continuation for a Dispersionless Two-Component   Camassa-Holm System with Peakon and Weak Kink Solutions, Discrete Contin. Dyn. Syst.   Ser. A, Vol. 36, No. 5, 2613-3626(2016).

  12.  Qiaoyi Hu and Z. Qiao, Analyticity, Gevrey regularity and unique continuation for an integrable muti-component pekon system with an arbitrary polynomial function, Discrete Contin. Dyn. Syst. Ser. A, Vol. 36, No. 12, 6975 –7000(2016).

13. Qiaoyi HuThe Cauchy problem for a deformed nonlinear Schrődinger equationAppl. Anal., DOI: 10.1080/00036811.2016.1207244. Vol.96, No. 12, 2118-2129(2017).

14. Z ZhaQilao, Qiaoyi Hu and Zhijun Qiao, Multi-soliton solutions and the Cauchy problem for a two-component short pulse system, Nonlinearity 30 , 3773– 3798(2017).