
姓名 | 胡巧怡 | 性别 | 女 |
研究生导师类型 | 硕士生导师 | 研究方向 | 非线性偏微分方程 |
职务 | 暂无 | 职称 | 副教授 |
所属组织机构 | 暂无 | ||
办公地点 | 数学楼706 | 办公电话 | / |
电子邮箱 | huqiaoyi@scau.edu.cn | 个人主页 | 暂无 |
胡巧怡,数学副教授
教育经历:
2007.9 – 2010.6,中山大学,数学与计算科学学院数学系,博士
2002.9 – 2005.6,中山大学,数学与计算科学学院数学系,硕士
1998.9 – 2002.6,中山大学,数学与计算科学学院数学系,本科
工作经历:
2015.3–至今, 美国德克萨斯大学泛美分校数学系,访问学者
2013.12 –至今,华南农业大学,数学与信息学院数学系,副教授
2008.7 – 2013.12 华南农业大学,理学院数学系,讲师
2005.7 – 2008.6 华南农业大学,理学院数学系,助教
奖励:
广东省高等学校“千百十工程”校级培养对象
华南农业大学骨干教师培养对象
华南农业大学数学与信息学院2016年度“十佳科研工作者”
华南农业大学理学院青年教师学术论坛三等奖
科研项目:
主持完成 广东省自然科学博士启动基金(No. S2011040001127), 2011.10-2013.10.
主持完成 广东高校优秀青年创新人才培养计划(No. LYM11030), 2012.1-2013.12.
主持完成 国家自然科学天元基金(No. 11226186), 2013.1-2013.12.
主持 国家自然科学青年基金(No. 11401223), 2015.1-2017.12.
主持 广东省自然科学面上基金(No. 2015A030313424), 2016.1-2019.1.
主持 广州市科技计划(No. 201607010005),2016.4-2019.3.
SCI论文:
1. Qiaoyi Hu and Z.Yin, Global existence and blow-up phenomena for a periodic 2-component Camassa-Holm equation, Monatsh. Math., 165 (2012), 217–235.
2. Qiaoyi Hu and Z.Yin, Well-posedness and blowup phenomena for a 2-component periodic Camassa-Holm equation, Proc. Roy. Soc. Edinburgh Sect. A, Vol.141, No.1 (2011), 93–107.
3. Qiaoyi Hu, Global existence and blow-up phenomena for a weakly dissipative periodic 2-component Camassa-Holm system, J. Math. Phys., 52, 103701 (2011), 1–13.
4. Qiaoyi Hu, On a periodic 2-component Camasssa-Holm equation with vorticity, J. Nonlinear Math. Phys., Vol.18, No.4 (2011),541–556.
5. Qiaoyi Hu and Z. Yin, Blowup phenomena for a new periodic nonlinearly dispersive wave equation, Math. Nachr., Vol.283, No.11 (2010), 1613–1628.
6. Qiaoyi Hu and Z. Yin, Blowup and blowup rate of solutions to a weakly dissipative periodic rod equation, J.Math. Phys., 50, 083503 (2009), 1-16.
7. Qiaoyi Hu, L. Lin and J. Jin, Initial boundary value problem for a coupled Camassa-Holm system with peakons, Appl. Anal., Vol. 92, No. 6(2013), 1254–1 270.
8. Qiaoyi Hu, Global existence and blow-up phenomena for a weakly dissipative 2-component Camassa-Holm system, Appl. Anal., Vol. 92, No. 2, 398 –410(2013).
9. Qiaoyi Hu, L. Lin and J. Jin , Well-posedness and blowup phenomena for a three-component Camassa–Holm system with peakons, J. Hyperbo. Differ. Eq., Vol. 9, No. 3, 451 –467(2012).
10. Qiaoyi Hu and Z. Yin, Local well-posedness and blow-up phenomena for a weakly dissipative rod equation, Acta. Math.Appl.Sin., (2012) (Accepted)
11. Qiaoyi Hu and Z. Qiao, Persistence Properties and Unique Continuation for a Dispersionless Two-Component Camassa-Holm System with Peakon and Weak Kink Solutions, Discrete Contin. Dyn. Syst. Ser. A, Vol. 36, No. 5, 2612 –2625(2016).
12. Qiaoyi Hu and Z. Qiao, Analyticity, Gevrey regularity and unique continuation for an integrable muti-component pekon system with an arbitrary polynomial function, Discrete Contin. Dyn. Syst. Ser. A, Vol. 36, No. 12, 6975 –7000(2016).
13. Qiaoyi Hu, The Cauchy problem for a deformed nonlinear Schrődinger equation, Appl. Anal., DOI: 10.1080/00036811.2016.1207244. Vol.96, No. 12, 2118-2129(2017).
14. Z ZhaQilao, Qiaoyi Hu and Zhijun Qiao, Multi-soliton solutions and the Cauchy problem for a two-component short pulse system, Nonlinearity 30 , 3773– 3798(2017).
学术会议:
2007.12.2-12.6,香港城市大学,应用数学冬季班及国际会议
2009.7.18—8.5,华南师范大学,第七届非线性偏微分方程暑期班及学术会议
2011.7.13—7.28, 中山大学,第九届非线性偏微分方程暑期班及学术会议
2015.3.28—3.29,休斯顿大学(美国),第37届德克萨斯州偏微分方程国际学术会议,并在会上用英文做题为“Initial boundary value problem for a coupled Camassa-Holm system with peakons”的报告。
2015.4.1—4.4,佐治亚大学(美国),The 9th IMACS Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory,并在会上用英文做题为“Well-posedness and blowup phenomena for a new integrable system with peakon solutions”的报告。
Qiaoyi Hu
Associate Professor of mathematics, Department of Mathematics, South China Agricultural University, Guangzhou 510642, China.
E-mail: huqiaoyi@scau.edu.cn
Education:
Jun. 2002, B.Sc. in Applied Mathematics, Sun Yat-sen University,
Jun. 2005, M.Sc. in Pure Mathematics, Sun Yat-sen University
Jun. 2010, Ph.D. in Pure Mathematics, Sun Yat-sen University,
Professional experience:
Mar. 2015- Mar. 2016, Visiting Scholar, Department of Mathematics, University of Texas Pan American, USA
Dec. 2013-, Associate Professor, Department of Mathematics, South China Agricultural University, China
Jul. 2008-Nov. 2013, Lecturer, Department of Mathematics, South China Agricultural University, China
Jul. 2005-Jun. 2008, Assistant, Department of Mathematics, South China Agricultural University, China
Reseach area(s) and grands:
Reseach area : Nonlinear partial differential equations and Applied analysis.
Reseach grands:
1. Guangdong Natural Science Foundation (No. S2011040001127), 2011.10-2013.10.
2. The Foundation for Distinguished Young Talents in Higher Education of
Guangdong, China (No. LYM11030), 2012.1-2013.12.
3. National Natural Science Foundation of China (No. 11226186),2013.1-2013.12.
4. National Natural Science Foundation of China (No. 11401223),2015.1-2017.12.
5. Guangdong Natural Science Foundation (No. 2015A030313424), 2015.8-2018.8.
6. Science Technology Program of Guangzhou (No.201607010005),2016.4-2019.3.
Research activities:
1. Dec. 2, 2007—Dec.6,City University of Hong Kong, Winter school on
Applied Mathematics and the international conference.
2. Jul. 18, 2009—Aug.5,South China Normal University, Guangzhou, The
7th Summer School and Conference on Nonlinear Paritial Differential
Equation.
3. Jul. 13, 2011—Jul.28, Sun Yat-Sen University, Guangzhou, The 9th
Summer School and Conference on Nonlinear Paritial Differential
Equation.
4. Mar. 28, 2015—Mar.29,University of Houston, Houston, TX, USA,
Participated the 37th Texas Conference on Parital Differential
Equation, and gave a talk entitled with“Initial boundary value problem
for a coupled Camassa-Holm system with peakons”.
5. Apr. 1, 2015—Apr.4,University of Georgia, Athens, Georgia, USA,
Participated the 9th IMACS Conference on Nonlinear Evolution Equations
and Wave Phenomena: Computation and Theory,and gave a talk entitled
with“Well-posedness and blowup phenomena for a new integrable system with peakon
solutions”.
Current research interests:
I am now working on various problems of nonlinear differential equations arising in mathematical physics. Most of my current work has concentrated on the analysis of local well-posedness, global existence and blow-up phenomena of strong solutions.
Publications:
Qiaoyi Hu and Z.Yin, Global existence and blow-up phenomena for a periodic 2-component Camassa-Holm equation, Monatsh. Math., 165 (2012), 217–235.
Qiaoyi Hu and Z.Yin, Well-posedness and blowup phenomena for a 2-component periodic Camassa-Holm equation, Proc. Roy. Soc. Edinburgh Sect. A, Vol.141, No.1 (2011), 93–107.
Qiaoyi Hu, Global existence and blow-up phenomena for a weakly dissipative periodic 2-component Camassa-Holm system, J. Math. Phys., 52, 103701 (2011), 1–13.
Qiaoyi Hu, On a periodic 2-component Camasssa-Holm equation with vorticity, J. Nonlinear Math. Phys., Vol.18, No.4 (2011),541–556.
Qiaoyi Hu and Z. Yin, Blowup phenomena for a new periodic nonlinearly dispersive wave equation, Math. Nachr., Vol.283, No.11 (2010), 1613–1628.
Qiaoyi Hu and Z. Yin, Blowup and blowup rate of solutions to a weakly dissipative periodic rod equation, J.Math. Phys., 50, 083503 (2009), 1-16.
Qiaoyi Hu, L. Lin and J. Jin, Initial boundary value problem for a coupled Camassa-Holm system with peakons, Appl. Anal., Vol. 92, No. 6(2013), 1254–1270.
Qiaoyi Hu, Global existence and blow-up phenomena for a weakly dissipative 2-component Camassa-Holm system, Appl. Anal., Vol. 92, No. 2, 398 –410(2013).
Qiaoyi Hu, L. Lin and J. Jin , Well-posedness and blowup phenomena for a three-component Camassa–Holm system with peakons, J. Hyperbo. Differ. Eq., Vol. 9, No. 3, 451–467(2012).
Qiaoyi Hu and Z. Yin, Local well-posedness and blow-up phenomena for a weakly dissipative rod equation, Acta. Math.Appl.Sin., (2012) (Accepted).
Qiaoyi Hu and Z. Qiao, Persistence Properties and Unique Continuation for a Dispersionless Two-Component Camassa-Holm System with Peakon and Weak Kink Solutions, Discrete Contin. Dyn. Syst. Ser. A, Vol. 36, No. 5, 2613-3626(2016).
Qiaoyi Hu and Z. Qiao, Analyticity, Gevrey regularity and unique continuation for an integrable muti-component pekon system with an arbitrary polynomial function, Discrete Contin. Dyn. Syst. Ser. A, Vol. 36, No. 12, 6975 –7000(2016).
13. Qiaoyi Hu, The Cauchy problem for a deformed nonlinear Schrődinger equation, Appl. Anal., DOI: 10.1080/00036811.2016.1207244. Vol.96, No. 12, 2118-2129(2017).
14. Z ZhaQilao, Qiaoyi Hu and Zhijun Qiao, Multi-soliton solutions and the Cauchy problem for a two-component short pulse system, Nonlinearity 30 , 3773– 3798(2017).