报告人:张兴发副教授
报告时间:2025年11月1日下午2:00
腾讯会议号:193-366-665
报告摘要:Establish a semi-parametric factor-GARCH model to estimate covariance matrix within a high-dimensional framework where both factors and factor loadings are unobservable and the data shows heteroskedasticity. Use projection technique to remove noise components, leading to a more precise estimation of the covariance matrix. The model is robust when the sample size is finite and particularly effective in high-dimensionality, lowsample-size settings.
报告人简介:张兴发,广州大学经济与统计学院副教授,兼广州大学岭南统计科学研究院副院长、硕士生导师。研究兴趣:时间序列分析、非参数统计、环境统计、机器学习等。主持国家自然科学基金项目1项,省市级教学科研项目4项。在《Journal of Econometrics》、《Science China Mathematics》、《Quality and Reliability Engineering》、《Journal of Statistical Computation and Simulation》,《Statistics and Probability Letter》、《应用概率统计》、《数理统计与管理》等期刊发表科研论文40余篇(SCI收录30篇)。
欢迎广大师生参加!